
Using traffic analysis to identify The Second

Generation Onion Router

John Barker

School of Computer and

Security Science

Edith Cowan University

Mt Lawley, Western Australia

Email: jebarker@our.ecu.edu.au

Peter Hannay

School of Computer and

Security Science

Edith Cowan University

Mt Lawley, Western Australia

Email: p.hannay@ecu.edu.au

Patryk Szewczyk

School of Computer and

Security Science

Edith Cowan University

Mt Lawley, Western Australia

Email: p.szewczyk@ecu.edu.au

Abstract—Anonymous networks provide security for users by
obfuscating messages with encryption and hiding communica-
tions amongst cover traffic provided by other network partic-
ipants. The traditional goal of academic research into these
networks has been attacks that aim to uncover the identity
of network users. But the success of an anonymous network
relies not only on it’s technical capabilities, but on adoption by
a large enough user base to provide adequate cover traffic. If
anonymous network nodes can be identified, the users can be
harassed, discouraging participation. Tor is an example of widely
used anonymous network which uses a form of Onion Routing
to provide low latency anonymous communications. This paper
demonstrates that traffic from a simulated Tor network can be
distinguished from regular encrypted traffic, suggesting that real
world Tor users may be vulnerable to the same analysis.

I. INTRODUCTION

The first anonymous digital network, commonly known as

MixNet was proposed by Chaum in “Untraceable electronic

mail, return addresses, and digital pseudonyms” [1]. This paper

introduced a concept integral to many future anonymity pro-

viding designs, an intermediate system responsible for deliver-

ing messages without the identifying details of correspondents.

The intermediate system, referred to as a ’mix’ also employed

public key cryptography to ensure that eavesdroppers could

not obtain delivery information.

This seminal paper spurred research into new techniques for

providing anonymity and privacy for digital networks. One of

these, The Second Generation Onion Router (Tor) is based on

technology originally designed by the U.S. Naval Research

Lab in 1996 [2] and enjoys some measure of popularity, with

an average of two hundred thousand active users as of March

2011 [3].

II. THE SECOND GENERATION ONION ROUTER (TOR)

Like a mix, messages sent over an onion routing network

were encrypted with their routing information and delivered

to an intermediate server for forward delivery. Unlike the mix

however, messages delivered using the onion routing network

were encrypted multiple times, each ’layer’ using a different

encryption key and routing instructions. The first node in a

chain would only be able to encrypt the routing instructions

to deliver the message to the next node. Each node in the

sequence decrypting a layer until the complete message is

decrypted and transmitted to the destination. Figure 1 shows

the path a typical message takes through the Tor network.

Encrypted

Unencrypted

Tor Node

Regular Node

Client

Server

Exit Node

Figure 1. The Tor Network

Traffic enters the Tor network through an onion proxy which

accepts TCP streams. Some identifying features are scrubbed

from the data using application filters before the data is relayed

over the network through TLS [4] encrypted connections.

The intermediate nodes responsible for routing messages are

known as relays and are typically chained together to construct

a circuit. When traffic leaves the Tor network it is delivered by

a special kind of relay known as an exit node. At an exit node

the data is transmitted in the original format it was supplied

to at the onion proxy.

The onion proxy builds circuits incrementally, first obtaining

a session key from each successive relay in a circuit. Once all

session keys for a circuit have been obtained, the message

is broken into fixed sized cells of 512 bytes and iteratively

encrypted using the session key of each node in the circuit

in the reverse order that the data traverses the network. Cells

2011 Ninth IEEE/IFIP International Conference on Embedded and Ubiquitous Computing

978-0-7695-4552-3/11 $26.00 © 2011 IEEE

DOI 10.1109/EUC.2011.76

72

2011 Ninth IEEE/IFIP International Conference on Embedded and Ubiquitous Computing

978-0-7695-4552-3/11 $26.00 © 2011 IEEE

DOI 10.1109/EUC.2011.76

72

2011 IFIP Ninth International Conference on Embedded and Ubiquitous Computing

978-0-7695-4552-3/11 $26.00 © 2011 IEEE

DOI 10.1109/EUC.2011.76

72

come in two forms: control cells and relay cells. Control cells

are used to create and maintain circuits, while relay cells

contain commands for circuit maintenance and additional data

for verifying message integrity and identifying streams.

III. WEAKNESSES AND ATTACKS

When designing a system such as Tor, a number of trade-

offs have to be made between the strength of the security

provided and the convenience and performance of the system.

Tor designers consciously prioritized low latency, usability and

flexibility against security goals such as security against end

to end attacks [5, p. 4]. This means that by design, Tor is

vulnerable to a global passive adversary, however there are

some attacks that were not expected by the designers.

A well known attack involves sniffing traffic that leaves exit

nodes to capture private information [6]. Many users assume

that Tor provides end to end encryption, and transmit private

information over the Tor network.

Technologies such as Javascript and Flash can be embedded

in web pages accessed by Tor users, and have control over

network resources. By injecting network traffic with certain

patterns alongside regular network traffic, Tor users can be

identified [7].

Tor bridges, intended as a way to get censored users access

to Tor are easily identified. They are also vulnerable to

clogging attacks which make bridge operators more easily

identified [8].

Murdoch and Danezis [9] proposes a technique to identify

users by estimating the latency of individual Tor nodes using

a hostile Tor node. The hostile Tor node is able to send data to

users using a predictable traffic pattern and identify this pattern

as it is repeated through the network, correlating streams back

to individuals.

This attack was shown to be impractical as the Tor network

grew in size, with the increased number of users adding

enough congestion to mask the introduced identifying patterns

[10]. However a weakness in the Tor design meant that partic-

ularly configured hostile nodes could amplify the deliberately

introduced congestion to make individuals identifiable on the

larger network.

IV. SIGNIFICANCE

Most conventional attacks against secure networks are

known as traffic analysis, this is the process of examining

information about the communications rather than the informa-

tion contained within them. This information may include the

size of messages communicated, their frequency and timing.

Many researchers have proposed traffic analysis techniques

that allow attackers to reveal the identities of Tor users.

While Tor has been the subject of much academic literature

[11–13], the primary objective of researchers has historically

been the attempt to reveal participant identities [9, p. 3]. Many

attack techniques proposed have been somewhat academic in

nature and not necessarily feasible in practice [14]. In certain

circumstances they require compromise of large parts of the

Tor network, supplying hostile data to Tor users or complicated

knowledge of usage patterns and an excess of patience. The

technique demonstrated in this paper is a low cost technique,

which does not require sophisticated equipment and can be

completed by a passive observer.

V. TRAFFIC CLASSIFICATION

When considering the use of traffic analysis for classifi-

cation of Internet communications, three techniques are used:

exact matching, heuristic matching and machine learning [15].

Since Tor employs strong encryption and can communicate on

any port, it can easily an exact matching technique through

simple configuration options.

Heuristic based techniques have been designed to classify

encrypted communications, including the identification of P2P

traffic [16–18] and viruses [19].

Machine learning algorithms have also been used success-

fully to classify encrypted traffic including Skype [20] and

to identify application protocols tunnelled over SSH [21]. An

previous attempt to classify Tor using Bayesian networks was

attempted in Herrmann et al. [13] without great success.

It is difficult to say what machine learning technique is the

most effective as no consensus has been reached, the literature

covers a wide variety of techniques each with vastly different

goals and no two techniques can be directly compared as the

data used for analysis has not been disclosed [22]. However

some attempt has been made at comparison in Williams et al.

[23] which suggests that the C4.5 algorithm has the greatest

performance and accuracy when compared to a number of

Bayesian algorithms. Mohd [24] compares thirty machine

learning algorithms to find random tree, IB1, IBK and random

forest algorithms obtaining the greatest classification accuracy.

VI. EXPERIMENT

To determine if Tor traffic can be distinguished from regular

encrypted traffic, an experiment was conducted to generate a

series of traces for comparison. Network traffic was generated

using the commonly available Firefox browser, version 3.6.8

installed on an Ubuntu 10.04 desktop operating system. One

hundred and seventy simulations were run of varied user

interactions against a sample of thirty websites, using version

1.0.6 of the Selenium Browser testing framework. A private

Tor network was configured running three directory servers

and fifteen relays, with version 0.2.1.26.

The experiment consisted of three phases, the first was the

capture of regular HTTPS traffic which began Sunday the

3rd of October 2010 and finished Sunday the 17th that same

month. Phase two began immediately after and continued two

weeks till the 31st of October. This phase involved capturing

regular HTTP traffic routed through a private Tor network. The

final phase began on the 7th of November and concluded on

the 21st, this phase was the capture of HTTPS traffic through

a private Tor network.

To reduce the affect of confounding variables, all phases

conducted the same simulations, on an isolated test network

and were conducted within a virtual machine snapshot which

was periodically rolled back to a clean, known state. The

737373

experiment yielded three sets of, a summary is included in

table I.

Phase Total Size Packets Sessions

HTTPS 9.52GB 11,883,703 236,659
HTTP over Tor 10.50GB 14,823,849 168,876
HTTPS over Tor 5.58GB 8,161,620 95,203

Table I
CAPTURED DATA

VII. RESULTS

The data captured was in the form of 1MB capture files

which were recombined with mergecap [25] and processed by

NetAI [26] to produce ARFF format files for use by Weka

[27, 28]. NetAI identifies flows inside the capture files and

produces a number of statistics to be used as attributes for

classification.

All of the algorithms chosen were able to successfully

classify HTTPS and HTTP over Tor traffic with accuracy in

excess of 90%, with the Adaboost algorithm unable to classify

HTTPS over Tor. The best performing algorithm random forest

was able to classify HTTP over Tor with 93.7% accuracy and

a false positive rate of 3.7%. HTTPS over Tor was more easily

identified with a 97.7% accuracy and low false positive rate

of 0.3%. A summary of the results obtained by these machine

learning classifiers is available in Table II.

True Positive Rate False Positive Rate ROC Area

Random Forest

HTTPS 0.957 0.036 0.99
HTTP over Tor 0.937 0.037 0.986
HTTPS over Tor 0.977 0.003 0.999
Weighted Avg. 0.954 0.03 0.99

j4.8 With 10 fold cross validation

HTTPS 0.951 0.04 0.989
HTTP over Tor 0.978 0.043 0.98
HTTPS over Tor 0.97 0.007 0.992
Weighted Avg. 0.964 0.018 0.986

Adaboost

HTTPS 0.95 0.001 0.975
HTTP over Tor 0.999 0.324 0.838
HTTPS over Tor 0 0 0.777
Weighted Avg. 0.785 0.109 0.891

Table II
RESULTS FROM MACHINE LEARNING CLASSIFIERS

With some relative success classifying Tor traffic using

unsupervised machine learning techniques, the captures were

examined for a heuristics based classification approach. When

a histogram of packet sizes for each of the packet traces is

produced, a clear distinction can between seen between the

sample sets as seen in Figures 2, 3 and 4.

Investigating more closely, by examining individual packet

traces some significant patterns begin to appear. Table III

shows the packet sizes seen for the first 6 packets of a 1%

sample of sessions in each phase of data captured. The first

few packets contain 0 bytes of data, these are the typical SYN,

SYN/ACK and ACK flagged packets that are used to initiate

a TCP/IP connection. Following that only two packet sizes

are seen for HTTPS connections. For Tor sessions a range of

packet sizes from 131 to 152.

Index in Stream Observed Packet Sizes

HTTPS

0 0
1 0
2 0
3 100, 110
4 0
5 122, 516

HTTP Over Tor

0 0
1 0
2 0
3 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141,

142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152
4 0
5 915, 916, 917, 918, 919, 920, 921, 922, 923, 924, 925,

926, 927, 928, 929, 930, 931, 932, 933, 934

HTTPS Over Tor

0 0
1 0
2 0
3 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141,

142, 144, 145, 146, 147, 148, 149, 150, 151, 152
4 0
5 914, 915, 916, 918, 919, 920, 921, 922, 923, 925, 926,

927, 928, 929, 930, 932, 934, 935, 936

Table III
PACKET SIZES

This knowledge can be used to build a rudimentary classi-

fication algorithm to identify Tor traffic, the pseudo code for

an example algorithm is included in Figure 5.

1 i f packet [3] > 130 and

2 packet [3] < 153 and

3 packet [5] > 913 and

4 packet [5] < 937 then

5 i s t o r = true

6 else

7 i s t o r = fa lse

8 end

Figure 5. Pseudo Code for Matching a Tor Session

Applying this algorithm to the complete traces yields the

results as seen in Table IV.

747474

HTTPS Traffic

Packet size

F
re

qu
en

cy

0 500 1000 1500

0e
+

00
1e

+
06

2e
+

06
3e

+
06

4e
+

06
5e

+
06

Figure 2. Histogram of packet size for HTTPS traffic

Protocol Identified as Tor

HTTPS 1.06%
HTTP over Tor 98.13%
HTTPS over Tor 97.54%

Table IV
RESULTS FROM HEURISTIC CLASSIFIER

When examining the cases where the algorithm failed to

identify Tor streams, in all cases the session had failed to

successfully initiate the handshake required for a TCP ses-

sion. Which meant that no meaningful data could have been

transmitted.

VIII. DISCUSSION

Using Tor as a communications proxy incurs some over-

head, sufficient enough that when using a Tor proxy in

controlled conditions, its traffic can be distinguished from

regularly encrypted traffic. This overhead may be sufficient

enough that Tor nodes in a real world network can be identified

by using readily available eavesdropping techniques.

The encryption layers that wrap Tor level communications,

do not appear to obfuscate the size of communications sent

between Tor nodes. This is most apparent in the composition

of packet sizes that make up an individual session, with Tor

sessions showing a large percentage of packets just large

enough to fit the 512 byte cells that make up the Tor protocol.

757575

HTTP Traffic Over Tor

Packet size

F
re

qu
en

cy

0 500 1000 1500

0e
+

00
1e

+
06

2e
+

06
3e

+
06

4e
+

06

Figure 3. Histogram of packet size for HTTP traffic over Tor

However, this experiment was based on a small set of

simulated data, with which it would be impossible to cover

all possible real world conditions. The variability and noise

present in the real Tor network may make this classification

technique impossible.

IX. CONCLUSION

This research demonstrates that Tor does have characteris-

tics that make it distinguishable from regular encrypted traffic.

The encryption used by Tor does not appear to blur the size of

communication cells sufficiently to prevent automated identi-

fication of Tor traffic, even with only a few observed packets.

While the scope of this research is limited, it suggests that

it may be possible to build simple software to automatically

identify Tor users and block them from the network.

Further research needs to be conducted with live packet

traces from real participants in the Tor network. Most existing

traffic classification research operates this way, using exact

matching techniques to separate traces collected into treatment

and control groups. Real Tor traffic might be captured from

publicly available and co-operating Tor nodes and compared

to real encrypted sessions between well known public HTTPS

servers.

Training a classifier against real world traffic will account

for the different and varied nature of packet switching hard-

ware, with different maximum transmission units, performance

capabilities and geographic location.

767676

HTTPS Traffic Over Tor

Packet size

F
re

qu
en

cy

0 500 1000 1500

0
50

00
00

10
00

00
0

20
00

00
0

30
00

00
0

Figure 4. Histogram of packet size for HTTPS traffic over Tor

The heuristic based classifier used in this paper used a single

attribute: the size of individual packets in a stream, to classify

with great accuracy. But other attributes may be considered,

the most typical of these being inter packet arrival time -

though this is likely to be more affected by natural variability.

The encrypted traffic generated in the first phase of the ex-

periment, only covered a single application and version. It may

be possible that other applications use the same protocol with

encryption and have characteristics similar to that produced by

Tor. This would lead to any proposed classifier generating false

positives. Further research should also consider the nature and

characteristics of a wider set of encrypted communications.

REFERENCES

[1] D. L. Chaum, “Untraceable electronic mail, return ad-

dresses, and digital pseudonyms,” Communications of

the ACM, vol. 24, no. 2, pp. 84 –88, 1981.

[2] D Goldschlag and M Reed, “Hiding routing informa-

tion,” Information Hiding, 1996.

[3] The Tor Project, Inc., Tor metrics portal: users, Re-

trieved June 2011 from https://metrics.torproject.org/us

ers.html, June 2011.

[4] E. Rescorla and T. Dierks, The transport layer security

(TLS) protocol, Retrieved March, 2010 from http://tool

s.ietf.org/html/rfc5246, 2008.

777777

[5] R Dingledine, N Mathewson, and P Syverson, “Tor:

the second-generation onion router,” Proceedings of

the 13th conference on USENIX Security Symposium-

Volume 13, p. 21, 2004.

[6] D. Goodin, Tor at heart of embassy passwords leak,

Retrieved March, 2010 from http://www.theregister.co.

uk/2007/09/10/misuse of tor led to embassy passwo

rd breach/, 2007.

[7] T Abbott, K Lai, M Lieberman, and E Price, “Browser-

based attacks on Tor,” Privacy Enhancing Technologies,

pp. 184–199, 2007.

[8] J McLachlan and N Hopper, “On the risks of serving

whenever you surf: vulnerabilities in tor’s blocking re-

sistance design,” Proceedings of the 8th ACM workshop

on Privacy in the electronic society, pp. 31–40, 2009.

[9] S. Murdoch and G. Danezis, “Low-cost traffic analysis

of Tor,” IEEE Symposium on Security and Privacy.

IEEE CS, 2005.

[10] N. Evans, R Dingledine, and C Grothoff, “A practi-

cal congestion attack on tor using long paths,” 18th

USENIX Security Symposium, pp. 33–50, 2009.

[11] N Hopper, E. Vasserman, and E Chan-Tin, “How much

anonymity does network latency leak?” Proceedings of

the 14th ACM conference on Computer and communi-

cations security, p. 91, 2007.

[12] S. Murdoch and P Zielinski, “Sampled traffic analysis

by internet-exchange-level adversaries,” Lecture Notes

in Computer Science, vol. 4776, p. 167, 2007.

[13] D Herrmann, R Wendolsky, and H Federrath, “Web-

site fingerprinting: attacking popular privacy enhancing

technologies with the multinomial naı̈ve-bayes classi-

fier,” Proceedings of the 2009 ACM workshop on Cloud

computing security, pp. 31–42, 2009.

[14] The23rd Raccoon, How I learned to stop ph34ring NSA

and love the base rate fallacy, [Electronic mailing list

message]. Retrieved March 2011 from http://archives.s

eul.org/or/dev/Sep-2008/msg00016.html, January 2008.

[15] M Zhang, W John, K Claffy, and N Brownlee, “State of

the art in traffic classification: a research review,” PAM

Student Workshop, 2009.

[16] T Karagiannis, A Broido, and M Faloutsos, “Transport

layer identification of p2p traffic,” Proceedings of the

4th ACM SIGCOMM conference on Internet measure-

ment, pp. 121–134, 2004.

[17] M Perényi, T. Dang, A Gefferth, and S Molnár, “Iden-

tification and analysis of peer-to-peer traffic,” Journal

of Communications, vol. 1, no. 7, p. 36, 2006.

[18] W John and S Tafvelin, “Heuristics to classify internet

backbone traffic based on connection patterns,” Infor-

mation Networking, January 2008.

[19] A Lazarevic, L Ertoz, V Kumar, A Ozgur, and J

Srivastava, “A comparative study of anomaly detection

schemes in network intrusion detection,” Proceedings

of the Third SIAM International Conference on Data

Mining, pp. 25–36, 2003.

[20] R Alshammari and A. Zincir-Heywood, “Machine

learning based encrypted traffic classification: identify-

ing ssh and skype,” Proceedings of the Second IEEE

international conference on Computational intelligence

for security and defense applications, pp. 289–296,

2009.

[21] M Dusi, F Gringoli, and L Salgarelli, “A preliminary

look at the privacy of ssh tunnels,” Computer Commu-

nications and Networks, pp. 1–7, 2008.

[22] H Kim, U. CAIDA, D Barman, and M Faloutsos,

“Comparison of internet traffic classification tools,”

ANF Workshop, vol. 2, 2007.

[23] N Williams, S Zander, and G Armitage, “A preliminary

performance comparison of five machine learning algo-

rithms for practical ip traffic flow classification,” ACM

SIGCOMM Computer Communication Review, vol. 36,

no. 5, p. 16, 2006.

[24] A. Mohd, “Towards a flow-based internet traffic clas-

sification for bandwidth optimization,” International

Journal of Computer Science and Security (IJCSS), vol.

3, no. 2, p. 146, 2009.

[25] S. Renfro, Mergecap - the wireshark network analyzer

1.5.0, Retrieved August 2011 from http://www.wiresha

rk.org/docs/man-pages/mergecap.html.

[26] Swinburne University of Technology, netAI network

traffic based application ddentification, Retrieved May

2011 from http : / / caia . swin . edu . au / urp / dstc / netai/,

August 2006.

[27] M Hall, E Frank, G Holmes, B Pfahringer, P Reute-

mann, and I. Witten, “The weka data mining software:

an update,” ACM SIGKDD Explorations Newsletter,

vol. 11, no. 1, pp. 10–18, 2009.

[28] R. Bouckaert, E Frank, M Hall, and R Kirkby, “WEKA

Manual for Version 3-7-2,” 2010.

787878

