
A CHALLENGING BUT FEASIBLE BLOCKWISE-ADAPTIVE
CHOSEN-PLAINTEXT ATTACK ON SSL

Gregory V. Bard
University of Maryland, Department of Mathematics

College Park, MD, 20914, USA
Email: gregory.bard@ieee.org

Keywords: Blockwise Adaptive, Chosen Plaintext Attack (CPA), Secure Sockets Layer (SSL), Transport Layer Security
(TLS), Cryptanalysis, HTTP-proxy, Initialization Vectors (IV), Cipher Block Chaining (CBC).

Abstract: This paper introduces a chosen-plaintext vulnerability in the Secure Sockets Layer (SSL) and Trasport Layer
Security (TLS) protocols which enables recovery of low entropy strings such as can be guessed from a likely
set of 2–1000 options. SSL and TLS are widely used for securing communication over the Internet. When
utilizing block ciphers for encryption, the SSL and TLS standards mandate the use of the cipher block chaining
(CBC) mode of encryption which requires an initialization vector (IV) in order to encrypt. Although the
first IV used by SSL is a (pseudo)random string which is generated and shared during the initial handshake
phase, subsequent IVs used by SSL are chosen in a deterministic, predictable pattern; in particular, the IV
of a message is taken to be the final ciphertext block of the immediately-preceding message, and is therefore
known to the adversary.
The one-channel nature of web proxies, anonymizers or Virtual Private Networks (VPNs), results in all Internet
traffic from one machine traveling over the same SSL channel.We show this provides a feasible “point of
entry” for this attack. Moreover, we show that the location of target data among block boundaries can have a
profound impact on the number of guesses required to recoverthat data, especially in the low-entropy case.
The attack in this paper is an application of the blockwise-adaptive chosen-plaintext attack paradigm, and is
the only feasible attack to use this paradigm with a reasonable probability of success. The attack will work for
all versions of SSL, and TLS version 1.0. This vulnerabilityand others are closed in TLS 1.1 (which is still
in draft status) and OpenSSL after 0.9.6d. It is hoped this paper will encourage the deprecation of SSL and
speed the adoption of OpenSSL or TLS 1.1/1.2 when they are finially released.

1 Introduction

This paper outlines a vulnerability of all ver-
sions of SSL and also TLS 1.0 by means of a
feasible blockwise-adaptive chosen-plaintext attack
(BACPA). The attack proceeds as follows. After valu-
able low-entropy data has been transmitted by the tar-
get (e.g. a stock from a list of 2–1000 companies) the
adversary inserts plaintext into the communications
stream by inducing the target machine to transmit data
designed to contain particular byte sequences. Based
on the ciphertext values of these known plaintexts,
the low-entropy data can be guessed. The probabil-
ity of success depends on the type of data being tar-
geted, with examples given below. Furthermore, it
is shown that the position of this target data within
block-boundariesdirectly and significantlyimpacts
the number of guesses required to recover that datum.

The vulnerability described here was closed in TLS
1.1 and OpenSSL after 0.9.6d. We believe all other
SSL implementations1 are vulnerable. Since TLS 1.1
is still in draft status, most TLS deployments use ver-
sion 1.0, which is vulnerable to this attack. Nonethe-
less, the main purpose of this paper is not to claim the
existence of a major threat to computer security, but
rather to disprove the myth that blockwise-adaptive
chosen-plaintext attacks are totally infeasible and thus
of theoretical interest only. Furthermore, we prove
that it is easier to guess the values of low-entropy
data when it is divided across block boundaries.2 It
is hoped this paper will highlight some of the disad-
vantages of Cipher Block Chaining, emphasize the
importance of using distinct keys for each source-
destination pair, and illustrate the importance of using

1There would be exceptions if others copy OpenSSL.
2We believe this has not previously been published.

random numbers as initialization vectors.

The Attack Modern users are becoming aware that
installing software of unknown origin is unsafe. For
this reason, and many others, the concept of an “un-
trusted applet” running in a “sandbox” within the Java
Virtual Machine was created (GJSB05). These ap-
plets have highly restricted security privileges, but
are commonly available on individual and commer-
cial web-sites as utilities and games. If an attacker
can manage to get a user to install a Java applica-
tion (or application in any other language) the attacker
can read the user’s keystrokes and broadcast them—
there is no need for cryptanalysis in this case. How-
ever, an untrusted applet does not have this privilege
(L9̈7) (GJSB05). It only receives notice (“events”)
from keystrokes pressed while the applet is on screen
and “has the mouse focus.” Therefore reading the
user’s keystrokes while he/she enters valuable data
into other applications is impossible. However, one
privilege of the untrusted applet is to open a TCP con-
nection to the web server from whence it came (L9̈7).
Imagine a user visiting a secure web-site for bank-
ing, and later playing a Java applet game. Naturally
the socket for the secure transaction and the socket
that the applet opens back to its server are unrelated.
However, in the special case of a web-anonymizer,
HTTP-proxy or virtual private network, all network
traffic leaving the user’s machine will travel over the
same SSL socket3. Since they travel over the SSL link
and in the same direction, the data in each case will
be encrypted with the same secret key. This results
in the targeted data, as well as data of the adversary’s
choosing (the chosen-plaintext), becoming available
for use in verifying guesses of the targeted plaintext
via Blockwise-Adaptive Chosen-Plaintext attack.

Blockwise-Adaptive Chosen-Plaintext BACPA
was simultaneously discovered in 2001 by Bellare,
Kohno, and Namprempre (BKN02) and by Joux,
Martinet, and Valette (JMV02). The BACPA differs
from classical chosen plaintext attack (now termed
“message-wise” or MCPA) in essentially one detail.
In MCPA, the attacker can generate arbitrary mes-
sages for the target to encrypt, as part of a sequence
of messages. In BACPA, the attacker can generate
arbitrary blocks for the target to encrypt, inserted
as part of an existing message (i.e., a sequence of
blocks). However, four years after its discovery,
BACPA has received very little notice outside the
cryptographic community, despite several additional
papers within it. Bellare, Kohno, and Namprempre
(BKN02), in addition to outlining a theoretical model

3We have recently learned that an e-mail posted to the
Certicom TLS mailing list in March of 2002 had also men-
tioned this possibility, though with fewer details (Res02).

of potential adversary capabilities that is expanded
upon in later papers (FJP04) (BT04) (FMP03),
loosely describe a general attack on the Secure Shell
(SSH) first found by (Dai02). That attack had a
success probability4 of 2−12.5 or 6.9 × 10−4. This
paper outlines an attack with a success probability
that can approach 100%. We are aware of no other
feasible attack under the BACPA model against an
existing or proposed protocol.

The Versions of the SSL Protocol The Secure
Socket Layer (SSL) (FKK96) is currently one of the
most widely-used methods for securing communica-
tion over the Internet5. There are two recent versions,
SSL 2.0 (1995) and SSL 3.0 (1996). The successor
protocol is Transport Layer Security (TLS), which in-
cludes version 1.0 (1999) (DA99), and version 1.1
(DR05) (still in draft status). Also, a version 1.2 has
been proposed (DR06). Almost all secure web trans-
actions (i.e. HTTPS) use either TLS 1.0 or SSL 3.0.
For simplicity, we refer to all versions of SSL, as well
as TLS 1.0, by saying “SSL.” OpenSSL is an open
source implementation of SSL. Versions of OpenSSL
since 0.9.6d (Var) have closed this vulnerability, as
has TLS 1.1 (DR05). All SSL deployments other than
OpenSSL, including TLS 1.0, are believed to be cur-
rently vulnerable to this attack6.

Initialization Vectors Our attack relies on the fact
that SSL currently mandates the use of a weak vari-
ant of the cipher block chaining (CBC) mode of en-
cryption (KPS02, Chap. 4). CBC mode requires a
one-block initialization vector (IV) for each message
that is encrypted. In “standard” cryptographic usage
of CBC, a fresh, random IV is chosen for each mes-
sage. In SSL, however, only theinitial IV is chosen in
a (pseudo)random manner; IVs for subsequent mes-
sages are simply taken to be the final block of the ci-
phertext corresponding to the immediately-preceding
message. (This process is called “chaining the IVs.”)
In particular, an attacker may knowin advancethe
IV that is going to be used to encrypt the next mes-
sage. We show that this enables an attacker mounting
a chosen-plaintext attack to validate a guess as to the
value of a particular plaintext block.

Consequences Since the adversary can validate a
guess as to the value of a particular plaintext block,

4The success probability is stated to be equivalent to
waiting for a collision on approximately 25 bits. See the
last sentence of Section 3 of (BKN02).

5See (KPS02, Chap. 19) for an excellent overview of
SSL.

6Personal E-mails with E. Rescorla, co-author of the
TLS 1.0, 1.1, and 1.2 RFCs (DA99) (DR05) (DR06)

this attack violates the theoretical standard of Left-
Or-Right Indistinguishability, whereby no polyno-
mial time adversary can be able to distinguish be-
tween the encryption of two messages of his/her own
choice, given the ciphertext, (with non-negligible ad-
vantage) (GM84) (BDJR97). On the more practical
side, it possibly allows an attacker to determine a low-
entropy string by repeatedly guessing all possible val-
ues for this string until the correct one is identified.
Examples of such low-entropy information (2–1000
choices) include names of stocks, cities, users, or even
PINs that have been previously encrypted (or, for ex-
ample, knowing if a stock order is buy, sell, or stop-
loss could be valuable information by itself). Given
the use of SSL for transmitting exactly this sort of
data, we believe this represents a potentially serious
(but challenging) attack which should be addressed
by any security group selecting an SSL implementa-
tion.

1.1 Related Work

Essentially this method has been used previously to
attack SSH (BKN02) (Dai02). In fact, the flaw at-
tacked there is identical to the flaw attacked here
(namely, setting IVs in a predictable way). Little dis-
cussion of feasibility or point-of-entry was given, and
the probability of success was very low as already
stated. On the other hand, that discovery gave birth
to the blockwise-adaptive chosen-plaintext world.

Due to the similar structure of SSL and SSH, the
related vulnerability in SSL was discovered soon af-
ter, independently by Moeller (Moe) and the author of
this paper, in late 2002—8 months after the publica-
tions of the two original blockwise papers. Moeller’s
work identifies the attack but does not show how it
could be exploited. Moreover, our paper elaborates
upon the attack by showing how low-entropy data,
in particular, is easy to recover, and provides mech-
anisms by which to execute the attack. The author of
this paper, in 2004, wrote of a similar BACPA attack
against SSL but via a much more difficult and com-
plex point-of-entry (Bar04).

The changes to TLS between versions 1.0 and 1.1
were made partially in response to this class of vul-
nerability7, as well as that of Vaudenay8 (DR05).

7Attack denoted CBCATT in some TLS documentation
(Moe), see also Section 6.2.3.2 of (DA99) (DR05).

8Another interesting attack on the use of CBC in SSL,
discovered by Vaudenay, relates to the padding of messages,
and is unrelated to the vulnerability in this paper (Vau01).

2 High-Level Outline

We begin by briefly highlighting the minimal aspects
of SSL needed to understand our attack at a high level.
A more detailed treatment of the attack (and hence of
SSL) is given in Section 3. A good survey of the SSL
protocol is given in (KPS02, Chap. 19).

The SSL protocol begins with a handshaking stage
during which the parties agree on a protocol version,
select cryptographic and (optionally) compression al-
gorithms, perform optional authentication steps, and
use public-key mechanisms to share secrets. The
shared secrets, which include distinct symmetric keys
and IVs for each direction of communication, can
then be used for symmetric-key encryption and mes-
sage authentication. While messages may optionally
be compressed before encryption, few SSL imple-
mentations do so (KPS02, Chap. 19), (FKK96).

The SSL standard allows for symmetric-key en-
cryption using either block ciphers or stream ciphers.
Most implementations utilize block ciphers, and the
vulnerability in this paper applies only when block
ciphers are used. A block cipher is a keyed, invertible
permutation over strings of some fixed length called
blocks; DES, for example, operates on 64-bit blocks.
We write Fsk(X) to represent the application of a
block cipher using keysk to block X . To encrypt
messages longer than one block in length, amode of
encryptionmust be used. SSL mandates the cipher
block chaining (CBC) mode, which encrypts a mes-
sageP = P1, . . . , Pℓ (where the length of eachPi is
the block-length of the cipher) as follows: given some
IV denotedC0, computeC1, . . . , Cℓ sequentially via:

Ci = Fsk(Pi ⊕ Ci−1).

In the general case of CBC, the resulting ciphertext is
usually taken to beC0, . . . , Cℓ although if the receiver
already knowsC0 then it need not be transmitted. To
decrypt, the receiver computesPi for i = 1 to ℓ via:

Pi = F−1

sk (Ci) ⊕ Ci−1.

We note that it is considered “standard” security prac-
tice to choose a new, random IV for every message
that is encrypted. However, the above definition of
CBC does not force this to be the case. As we have
mentioned already, SSL chooses all but the initial IV
by setting it equal to the final ciphertext block of the
preceding encrypted message; this is referred to as
“chaining IVs across messages”. (Thus, continuing
the above example, the IV used for the next message
would simply beCℓ.) SSL chooses the initial IV in a
pseudorandom fashion which is not important for the
purposes of the present attack.

The attack. Suppose an adversary who can mount
a chosen-plaintext attack wants to verify a guess
as to whether some plaintext block has a particular

value. Specifically (continuing the above example),
suppose an adversary who has observed the cipher-
text C0, . . . , Cℓ wants to determine whether plain-
text block Pj is equal toP ∗. Note that the adver-
sary knows the IV (i.e.,Cℓ) that will be used when
encrypting the next message. Consider now what
happens if the adversary causes the sender to en-
crypt a messageP ′ whose initial blockP ′

1 is equal
to Cj−1 ⊕ Cℓ ⊕ P ∗. The first ciphertext blockC′

1 is
then:

C′

1 = Fsk(P ′

1 ⊕ Cℓ)

= Fsk((Cj−1 ⊕ Cℓ ⊕ P ∗) ⊕ Cℓ)

= Fsk(P ∗ ⊕ Cj−1).

However, we also know thatCj = Fsk(Pj ⊕ Cj−1).
This implies thatC′

1 = Cj if and only if Pj = P ∗,
sinceFsk is a permutation. In this way, an adversary
can verify a guessP ∗ for the value of any plaintext
block Pj . In particular, if the adversary knows that
Pj is one of two possible values then the adversary
can determine the actual value by executing the above
attack a single time. Similarly, if the attacker knows
thatPj is one ofN possible values then by repeating
the above attackN/2 times (on average) the adversary
can determine the actual value ofPj . This already
violates the standard notions of security for encryp-
tion (in terms of Left-Or-Right Indistinguishability,
as mentioned in the Introduction on page 3 (GM84)
(BDJR97)). Moreover, this implies that an attack of
this form can be used to determine the value of a low-
entropy string in its entirety. (Note that, in practice,
the block of plaintext containing the user’s data also
likely contains additional information such as head-
ers, etc. However, it is also likely that this additional
information is known to the attacker; for example, if
the information is fixed padding, then an adversary
can learn the format of this data from the web-page
source code. We discuss this further in Section 4.)

Attack requirements. Focusing specifically on the
case of an adversary trying to recover a user’s tar-
geted low-entropy data, we briefly highlight the re-
quirements needed for the above-described attack to
succeed; in Section 4 we discuss in more detail how
these requirements are typically met in practice. First,
the attacker must know which plaintext blockj con-
tains the desired information. All this means is that
the adversary knows the format of the HTTPS trans-
mission being targeted. Second, the adversary must
know Cj−1. However, since the ciphertext travels
over the Internet (in the clear!), this is not expected
to be difficult. (In fact, if it is assumed difficult to
obtain this information then there is little reason to
use encryption in the first place.) Third, the adver-
sary must know the value of the IV that is going to be
used for the next message. However, we have noted

already that because of the way SSL computes IVs, an
attacker would actually obtain this information from
the last ciphertext block of the previous message. Fi-
nally, the adversary must be able to insert a plaintext
block of its choice into the first block of the next mes-
sage to be transmitted. This is the most challenging
part of the above attack.

The scenario. The mechanism by which the adver-
sary executes the attack is summarized as follows.
First, we assume that the user is connected to an
HTTP-proxy, web anonymizing service, or virtual
private network. This guarantees that all Internet traf-
fic will be routed over one SSL tunnel with a single
secret key. Second, we assume the attacker can setup
a site under his/her control, and create an applet for
the user to open. In particular, applets have features,
which will be described below in Section 4, that make
them desirable for use. Third, a “reflector” or mech-
anism for observing the target’s ciphertexts is set up.
This is needed in all forms of cryptanalysis, so we
presume it is available. Fourth, we assume that the
user can be induced into opening the applet. This can
be in the form of an inviting email which persuades
the user to go to the site, or perhaps an email that sim-
ply causes the applet to be opened upon viewing, via
HTML encoded requests for the applet in the email
body, using the<APPLET> tag. We fully acknowl-
edge that these assumptions are non-trivial but they
demonstrate that a chosen-plaintext attack is feasible.

Note that untrusted Java applets have very few priv-
ileges (GJSB05), but one of those privileges is to
open a TCP socket to the server from whence it came
(L9̈7). They cannot, for example, simply read all of
the user’s keystrokes and export them to the adver-
sary, as explained before. Since all outgoing traffic,
in the case of a web anonymizer, HTTP-proxy, or vir-
tual private network, travels over the same SSL link,
this permits the applet to send and receive arbitrary
data—which will become the chosen plaintexts of the
attack.

3 Attacking SSL

Here, we simply note that there is nothing in the struc-
ture of SSL (such as extraneous headers or formatting
information) which prevents the attack of the previous
section from succeeding.

SSL sits between the Application and Transport
layers, and so acts like a Session Layer in the OSI
model. As such, SSL receives plaintext from the Ap-
plication Layer as raw data. This plaintext is frag-
mented into blocks of length less than or equal to214

bytes. These blocks are optionally (but rarely) com-

pressed9 and are then processed and sent as follows:

• Unencrypted Portion:

– message type (8 bits);

– major/minor version number (16
bits);

– length counter (16 bits);

• Encrypted Portion:

– plaintext fragment (≤ 217 bits);

– message authentication code
(typically 160 bits);

– padding (0--56 bits; ensures
plaintext length is a multiple of
block length);

– padding length (8 bits);

We stress thatthe first block of the plaintext is in-
deed the first block to be encrypted. In particular, the
header information that is prepended to the eventual
transmission (i.e., the message type, major/minor ver-
sion number, etc. . .). isnot encrypted. Thus, as long
as the adversary can set the first block of the plaintext
fragment to some desired value (as discussed in the
previous section), that block will be encrypted first
and the attack will succeed.

We note that in SSH, some header data is
prepended to the plaintextbeforeencryption. This
makes an attack such as the one outlined here more
difficult in the context of SSH (BKN02) (Dai02),
since the adversary no longer has control over the first
block of the plaintext that is eventually encrypted. Al-
though it may be possible to work around these con-
straints (see (BKN02)), the attack is more difficult
against SSH than it is against SSL (demonstrated by
a success rate of2−12.5 as compared to rates as high
as 100% under certain circumstances).

4 Feasibility

Several challenges must be surmounted before an ad-
versary can successfully perform the attack that has
been outlined here. The necessary steps to meet these
challenges are listed below.

Using one common key.First and foremost, the data
to be learned and the test cases must be encrypted
with the same key. Furthermore, since the key for the
block cipher is chosen at random each time an SSL
socket is created, the data to be learned and the test
cases must be transmitted through the same tunnel,
and in the same direction. Luckily enough, when a
web-tunneling service like an HTTP-proxy, or a VPN
is used, all the out-going data travels over one SSL

9Our attacks do not apply when compression is used;
however, we note that it is rarely used.

link, regardless of destination, and thus is encrypted
with the same secret key.

Learning the plaintext format. Despite the length
of a plaintext message, there are times when only a
very small sequence of bytes is of critical importance.
For example, a stock choice, a destination city for a
geospatial inquiry, a user name, or something where
only 2–1000 choices are considered likely, and known
in advance (i.e., a “low-entropy string” in our termi-
nology).

We have mentioned earlier that the adversary must
somehow know which block of the plaintext contains
the data of interest. Note, however, this is easily done
by reading the source files for the pages that are used
in sending the data. Discerning the format merely re-
quires knowledge of HTTP, HTML, and CGI, and per-
haps Javascript. Commonly available browsers have
a “show page source” command, which displays the
page’s HTML source code. Both the “form elements”
which compile the user’s data, as well as the optional
Javascript code which would verify its format, would
thus be available to an attacker. While Javascript can
alter HTML code, for example, to add hidden form el-
ements, these would be visible in the Javascript code.
The attacker need only read this code and the format
is trivially derived.

Ensuring that the adversary’s chosen plaintext
block is encrypted first. It is essential that the chosen
plaintext, namelyPi = P ∗ ⊕ Cℓ ⊕ Cj−1, be the first
encrypted block of the SSL datagram inside which it
is found. However, this is easy, as we argue now.

Data is submitted to the SSL layer in the form of
application-level messages, which are first aggregated
into blocks of (at most)214 bytes in length. SSL does
not respect message boundaries. If more than214

bytes are submitted, additional blocks are created; if
several application level messages are submitted, they
are concatenated in the buffer. However, in the ab-
sence of these two conditions, the data is encrypted
and transmitted to the TCP layer immediately. There-
fore, short messages would be encrypted and trans-
mitted immediately. The structure of SSL packets
guarantees, in the absence of concatenation, that the
first block of the application message will be the first
encrypted block of the SSL datagram.

Concatenation only occurs when two messages ar-
rive at the SSL layer simultaneously. However, since
the packet source (the applet or game) is under the
control of the adversary, the timing could be adjusted
to guarantee that two packets never arrive during the
required interval. Of course, packets could arrive
from some other user activity or application. These
timing failures can be avoided probabilistically by re-
peating each guess several times. Finally it should be
noted that in the event concatenation does occur, if
the game packet is the first packet, with other packets

appended, no disadvantage is caused for the attack.
Nonetheless, we acknowledge the timing difficulties.

Encrypting Chosen Plaintext. The attacker must
force the encryption of particular data in any chosen
plaintext attack, in this case based upon the previous
ciphertext block, the guess of the targeted plaintext,
and the ciphertext previous to the data to be guessed.
Once this block is calculated, it must be inserted into
the “plaintext stream.”

Since our scenario of a user connecting via an
HTTP-proxy or a VPN involvesall network traffic
flowing to/from the target machine being encrypted
by the same SSL connection,with a distinct key for
each direction, the attacker need only cause the cho-
sen plaintext data to appear in an application-level
datagram, traveling in the same direction as the tar-
geted plaintext. However, there are other considera-
tions.
• The data must start the datagram. Once the

immediately previous ciphertext block is known,
the very next plaintext block must contain the at-
tacker’s plaintext. There must be no blocks in be-
tween, otherwise our previous formulas fail. There-
fore, it is essential that the test block (first block of
new plaintext) be the first block of the datagram.

• The data must be tolerated.The data must not re-
sult in a crashed application, a dropped connection
or error messages that would alert the user. Send-
ing arbitrary bytes to an application via a datagram
would almost surely violate that application pro-
tocol’s datagram formatting rules. The data must
“blend in” to the data that would have been other-
wise sent.10 For example, if the application has a
header for each datagram, then its unlikely that the
cryptanalysis blocks, being the first blocks of the
datagram, will conform to that header’s definition.

• The application must anticipate many data-
grams. Since only one guess can be validated per
packet, the application must anticipate a moderate
number of packets (on the order of 1–500 for a
guess among a set of 2–1000 choices).

• Background Traffic The attack will also be less
likely detected if there is background traffic to/from
the applet when the attack is not running.

Given these four requirements, it seems desirable to
write one’s own application for the attack, rather than
find an application that can tolerate the above. In par-
ticular, if the applet is programmed to search for a
128-bit “magic number” in each datagram, then it can
discard all the data before and including that number.
This way the cryptanalysis blocks can be safely ig-
nored. The chances of the magic number occurring
accidently are almost infinitesimal.

10Special thanks to an anonymous referee for pointing
out several challenges in this regard.

Providing feedback to the Applet.Note that the ad-
versary needs feedback from the reflector to the applet
site (in particular, to inform it of the ciphertext blocks
Cj−1, Cj , Cℓ) in order to perform the attack. It is not
expected to be difficult for an adversary’s reflector to
obtain these ciphertexts (after all, they are traveling
on the Internet), but the information must somehow
be communicated to the applet site.

There are two principal avenues through which this
communication could occur. First, if the attack is
being performed in a wireless environment, setting
a wireless device to promiscuous mode is attractive.
However, many systems use WEP (Wired Equivalent
Privacy) though certainly not all (including, for exam-
ple, the University of Maryland and American Uni-
versity campus networks, which are unencrypted).

Alternatively, if the adversary has access to the
same Ethernet network on his/her own machine that
the user is connected to, then the following can be
executed. Perhaps a subordinate employee will use
his/her private laptop with tcpdump and a special
feedback script acting as a reflector, to capture his/her
employer’s SSL traffic. The game applet’s server
would only need to know where the feedback dae-
mon is, receive the ciphertexts, and use it to compute
new plaintexts. The search for the daemon could be
through the use of a throw-away DNS address, or by
hard-coding the IP address.

On the one hand this could be detected by an In-
trusion Detection System as unauthorized traffic, but
on the other, steganography could be used to embed
the data in legitimate communications. Alternatively,
since few Intrusion Detection Systems would be this
sensitive, the reflector could simply pass the packets
back in the clear.

Synchronization. The demands of synchronization
are important since there can be no transmitted data
between the “last ciphertext block” and the encrypted
attacking plaintext. There may be many ways to
achieve this, but the game/applet server could signal
that it is ready by sending a special packet. The re-
flector responds with the most recently transmitted ci-
phertext, which hopefully travels with minimal delay
to the applet. Upon receipt of this, the applet trans-
mits a packet, with or without game data. The first 8
or 16 bytes of the packets (one encrypted word) is not
game data, but the chosen-plaintext. If no data (from
any application) was transmitted on the tunnel in this
time, then this stage of the attack succeeds and one
guess can be checked. If data was transmitted on the
tunnel in this time, then the plaintext loses its meaning
in this context, but no harm is done and the attack can
be attempted again. Since the Poisson Distribution
is known to be a good model of user packet gener-
ation during web-browsing and other non-streaming
Internet tasks, large gaps between packets will be ex-

pected. This is especially true if the game is interest-
ing and the user is not surfing other sites while playing
it.

If the user will play for as little as 15 minutes, many
packets can make the round trip in this time. Since the
“go signal”, the reflector’s “last seen ciphertext”, and
the “guess” must all be exchanged, naturally with ac-
knowledgments (since we are using TCP), six round-
trip times are required. Rarely is a round-trip more
than 250 ms, so each “guess” takes 1.5 seconds, or
40 guesses can be made per minute. This comes to
600 guesses per short 15 minute game. Some of these
guesses will be clobbered by traffic from other sock-
ets, but others should succeed. Even if only one-third
of the packets get through (which is very pessimistic),
a choice from a list of 200 options will be found with
absolute certainty, and a choice from a list of 10,000
options (e.g. a four digit PIN number) will be found
with a probability of 2%.

Summary The requirements listed in this section
are non-trivial. The timing and other network packet
structure considerations will result in some guesses
failing to serve their purpose. But we believe that we
have demonstrated the potential feasibility of this sort
of attack. This further demonstrates that BACPA is of
more than purely theoretical interest.

5 Recovering PIN’s

Here we show how even a moderately small entropy
string (≤10,000 choices) can be easy to recover due to
segmentation that occurs when the target data falls on
a block boundary. (We assume throughout this sec-
tion that the data surrounding the target information
is known; see above). Since it is now demonstrated
that the adversary has the ability to verify guesses of
plaintext blocks, one can imagine that an adversary
can attempt to guess the value of a valuable target
low-entropy string either by exhaustive search (in the
case of Personal Identification Numbers or PINs) or
by more efficient context-specific schemes (using dic-
tionary based attacks versus passwords, for example).

If we assume for simplicity that the data is cho-
sen uniformly from a space of sizeS, then the ex-
pected number of guesses needed before determining
the string isS/2. (Note that in the case of passwords
chosen by a user, the entropy is likely to be much
lower than would be indicated by the length of the
password alone. In particular, an 8-character pass-
word model typically has entropy much lower than 64
bits). For example, a 4-digit PIN can be determined
with (on average) 5,000 guesses. If only 100 guesses
can be made, the probability of success is 1%, which
is low, but certainly represents a feasible attack.

Block Cipher Choices: Recall that AES was not
in existence when SSL 3.0 was originally specified
(1996), nor was it finalized when TLS 1.0 was re-
leased (1999). Both SSL 3.0 and TLS 1.0, the stan-
dardized versions now available, do not include AES
in their specification (FKK96) (DA99). Likewise,
TLS 1.1 does not have AES as a built-in option, but
it is available via some extension documents (e.g.,
(MR06)). Finally TLS 1.2 will have AES built in, as
this was one of two principle changes between 1.1 and
1.2, the other relating to the choice of hash functions
(DR06). Therefore, essentially all SSL/TLS transac-
tions at this time use DES or 3-DES, both with a 64-
bit plaintext and ciphertext block length (though with
an effective key size of 56 or 112 bits).

Split Target Data: However, assume 3-DES is be-
ing used as the block-cipher in the SSL transaction.
Then the plaintext blocks are 64 bits or 8 bytes. There
is a 12.5% probability that the four bytes of pin-
data will be divided exactly in the middle of a block
boundary.11 Since each block can be guessed inde-
pendently, 50 guesses are required for the 100 options
on the left, and 50 guesses are required for the 100 op-
tions on the right. This use of 100 guesses results in
a 25% chance of success, since both halves must be
correct—rather than a mere 2% above. Alternatively,
fewer guesses can be made if a lower probability of
success is tolerated. Even a 3-1 or 1-3 split results in
a major distortion of the number of required guesses.
And there is a 37.5% chance that such a split (1-3,
2-2 or 3-1) will occur. See the Appendix, in the full
version of this paper, for a discussion of applying this
technique to passwords.

One should be careful to distinguish forms where
passwords are entered all at once, and then submitted
via SSL, from the normal SSH method where pass-
words are entered one keystroke at a time. In the lat-
ter case, this trick of breaking up the password would
not work—a single byte is never broken up12.

6 Solutions

It has been noted that TLS 1.1 and OpenSSL (after
0.9.6d) are not vulnerable to this attack, for reasons
detailed below.

TLS 1.1 and Explicit IVs The TLS 1.1 protocol
(DR05) fixes this vulnerability by using explicit IVs.

11One must assume that enough traffic has gone by that
the “indentation” or “offset” within the stream of the valu-
able data is unpredictable, and therefore can be treated as a
uniformly distributed random variable.

12Personal E-mails with E. Rescorla, co-author of the
TLS 1.0, 1.1, and 1.2 RFCs (DA99) (DR05) (DR06)

That is to say, each message has one more ciphertext
block than plaintext blocks. This first ciphertext block
is the IV, determined as a (pseudo)random number.
As we have stated several times already, this is the ac-
cepted way to encrypt using CBC. Since the attacker
does not know this value in advance, this attack can-
not be executed. Using the formula for CBC, it is easy
to see that having an Explicit IV is identical to adding
an additional plaintext block of all zeroes to the start
of each message, which the receiver knows to discard,
and chaining the IVs from message to message (Moe).

If generating truly random bits is a concern (say, for
reasons of efficiency), it is easy to generate a pseudo-
random IV in any of a number of ways. For example,
instead of simply usingCℓ (i.e., the last block of the
preceding ciphertext) as the IV, the protocol could use
H(Cℓ|sk) wheresk is the shared secret key used for
encryption andH is a cryptographic hash function.

Single Block Nonces This solution is mentioned
because it can be used in other applications that use
CBC, to protect them from BACPA, and helps to ex-
plain the solution used by the OpenSSL community.
As was noted previously, the adversary’s guess must
be the first block of each message. Introducing a one
block nonce—which would always be discarded be-
fore reading the message—would make this impos-
sible. The nonce does not even need to be random.
Suppose the nonce was always the all-zero string, and
the previous message ended on blockCi. Then the ad-
versary will submit a blockPi+2 based on a guessG
for blockg. This will be output in blocki + 2, where
i + 1 is the nonce. Therefore the submitted plaintext,
from the attack formula given previously would be

Pi+2 = Ci+1 ⊕ Cg−1 ⊕ G

But Ci+1 has not been transmitted yet. It equals

Ci+1 = Fsk(Ci ⊕ 0000 · · ·0)

Therefore,Ci+1 can only be determined ifFsk(Ci)
has been calculated before, or the adversary guesses
the Fsk(Ci). SinceFsk(·) is a function family be-
lieved to be pseudorandom, this guess will be correct
with negligible probability. Likewise, since the space
of all possible ciphertexts is264 or 2128, the proba-
bility of a repetition is low. As mentioned earlier, in
the case of the all zero plaintext, this is identical to
explicit IVs. The TLS specification for version 1.1 al-
lows for this solution, in addition to Explicit IVs, but
recommends that the nonce be pseudorandom, gener-
ated for each message independently (DR05).

OpenSSL and the Empty Message A slight vari-
ation of the above is used by OpenSSL after version
0.9.6d (Var). An empty message, which consists of no
plaintext, but only padding and a hash, is prepended

to each set of messages before encryption. The “extra
parts”, namely the padding and hash, are encrypted,
and so form the throw-away blocks similar to the
nonce above. Since the adversary’s chosen blocks are
no longer the first to be encrypted, this attack becomes
impossible. What is interesting about this solution is
that it does not require any major changes at all to
the SSL standard, and fulfills the present definition
of SSL as written. (This implies only sites, not cus-
tomers, need change their software). The only point to
mention is that some SSL clients will declare an error
if an empty message is received. This error message
need only be suppressed, which is a minor change.

Compression Note that an immediate way to pre-
vent the attack suggested here is to turn compres-
sion on (as we have noted, an attack of the sort sug-
gested here is much more difficult — if not impos-
sible — if compression is used). However, this re-
quires that peers only communicate with others who
also use compression (or else an adversary connecting
to the honest party could mount a “chosen-protocol
attack” in which they claim to be unable to use com-
pression). On the other hand, blocking users not con-
figured for compression would limit inter-operability
with deployed versions of SSL.

7 Conclusions

The attack presented here is not so easy that it can
be done on the spur of the moment by the typical
hacker. However, while the attack is challenging to
carry out, the success probability and relatively low
numbers of datagrams required should be sufficient to
motivate the SSL community to migrate away from
TLS 1.0 and SSL, to OpenSSL after 0.9.6d, or TLS
1.1/1.2 when they are finally released. Moreover, by
demonstrating the existence of this attack on a real-
world protocol, which corresponds to the theoretical
definition of blockwise-adaptive chosen-plaintext at-
tack, we prove that the BACPA model is not sterile,
but is useful for modeling adversarial capabilities.

Moreover it is hoped that this work will take a step
toward opening the dialog between protocol designers
and theoretical cryptographers, and stimulate discus-
sion between these two camps which are otherwise in-
dependent. Finally, there are other uses of CBC sim-
ilar to that of SSL, and this attack shows that those
applications should also use explicit IVs or another
solution listed here (e.g. Datagram Transport Layer
Security or DTLS (MR04)).

8 Acknowledgments

Thanks to Prof. Jonathan Katz for suggesting the
problem, for helpful discussions, and for substantial
help editing this document. Thanks also to Rug-
gero Morselli, Patrick Studdard, Radostina Koleva,
Zhongchao Yu, Susan Schmoyer and Prof. Lawrence
Washington (all of the University of Maryland), for
proofreading early versions of this paper. Valuable
feedback was received from Daniel Brown of Certi-
Com, Eran Tromer of the Weizmann Institute, Prof.
Bodo Moeller of UC Berkeley, and Jack Lloyd of ran-
dombit.net, about an earlier paper outlining a different
attack on this same SSL vulnerability (Bar04). Most
importantly we would like to thank Eric Rescorla, co-
author of the TLS RFCs (DA99) (DR05), (DR06), for
his extended correspondences via email that helped
this work immensely.

REFERENCES

G. Bard. The vulnerability of ssl to chosen-plaintext at-
tack. Cryptology ePrint Archive, Report 2004/111,
2004.http://eprint.iacr.org/ .

M. Bellare, A. Boldyreva, L. Knudsen, and C. Namprem-
pre. On-line ciphers and the hash-cbc construction.
In Lecture Notes in Computer Science. Advances in
Cryptology— CRYPTO’01, Springer-Verlag, 2001.

M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A
concrete security treatment of symmetric encryption:
Analysis of the des modes of operation. InSymposium
on the Foundations of Computer Science (FOCS’97).
IEEE, 1997.

M. Bellare, T. Kohno, and C. Namprempre. Provably fixing
the ssh binary packet protocol. InConference on Com-
puter and Communications Security (CCS’02). ACM,
2002.

M. Bellare and C. Namprempre. Authenticated encryption:
Relations among notions and analysis of the generic
composition paradigm. InLecture Notes in Computer
Science. Advances in Cryptology— ASIACRYPT’00,
Springer-Verlag, 2000.

A. Boldyreva and N. Taesombut. On-line encryption
schemes: New security notions and constructions. In
Cryptographer’s Track. RSA Conference, 2004.

T. Dierks and C. Allen. The tls protocol, version 1.0. Tech-
nical Report RFC 2246, Internet Engineering Task
Force, 1999.

W. Dai. An attack against ssh2 protocol. Email to the ietf-
ssh@netbsd.org email list, February 2002.

T. Dierks and E. Rescorla. The tls protocol, version 1.1.
Technical Report RFC 2246-bis-11, Internet Engi-
neering Task Force, 2005.

T. Dierks and E. Rescorla. The tls protocol, version 1.2.
Technical Report RFC 4346-bis-00, Internet Engi-
neering Task Force, 2006.

M. Dworkin. Recommendation for block cipher modes of
operation: Methods and techniques. Technical Report
NIST Special Publication 800-38A, National Institute
of Science and Technology, 2001.

M. Dworkin. Recommendation for block cipher modes of
operation: The rmac authentication mode, methods
and techniques. Technical Report NIST Special Pub-
lication 800-38B, National Institute of Science and
Technology, 2002.

P. Fouque, A. Joux, and G. Poupard. Blockwise adversar-
ial model for on-line ciphers and symmetric encryp-
tion schemes. InLecture Notes in Computer Science.
Advances in Cryptology— SAC’04, Springer-Verlag,
2004.

A. Freier, P. Karlton, and P. Kocher. The ssl protocol, ver-
sion 3.0. Technical report, Transport Layer Security
Working Group Internet Draft, 1996.

P. Fouque, G. Martinet, and G. Poupard. Practical sym-
metric on-line encryption. InLecture Notes in Com-
puter Science. Advances in Cryptology— FSE’03,
Springer-Verlag, 2003.

V. Gligor and P. Donescu. Fast encryption and authentica-
tion: Xcbc encryption and xecb authentication modes.
In 2nd NIST Workshop on AES Modes of Operation.
National Institute of Science and Technology, 2001.

J. Gosling, B. Joy, G. Steele, and G. Bracha.The Java(TM)
Language Specification. Addison-Wesley Profes-
sional, third edition, 2005.

S. Goldwasser and S. Micali. Probabilistic encryption.
Journal of Computer and System Sciences, 1984.

A. Joux, G. Martinet, and F. Valette. Blockwise-adaptive
attackers: Revisiting the (in)security of some prov-
ably secure encryption models: Cbc, gem, iacbc.
In Lecture Notes in Computer Science. Advances in
Cryptology— CRYPTO’02, Springer-Verlag, 2002.

L. Knudsen. Block chaining modes of operation. InSym-
metric Key Block Cipher Modes of Operation Work-
shop. National Institute of Science and Technology,
2000.

C. Kaufman, R. Perlman, and M. Speciner.Network Secu-
rity: Private Communication in a Public World. Pren-
tice Hall, second edition, 2002.

H. Krawczyk. The order of encryption and authentica-
tion for protecting communications (or: How secure
is ssl?). In Lecture Notes in Computer Science.
Advances in Cryptology— CRYPTO’01, Springer-
Verlag, 2001.

S. Löffler. Using flows for analysis and measurement
of internet traffic. Master’s thesis, Institute of
Communication Networks and Computer Engineer-
ing of the University of Stuttgart, 1997. http:
//www.mathematik.uni-stuttgart.de/
˜floeff/diplom/report/node62.htm%l .

H. Lipmaa, P. Rogaway, and D. Wagner. Comments to nist
concerning aes modes of operation: Ctr-mode encryp-
tion. In Symmetric Key Block Cipher Modes of Op-
eration Workshop. National Institute of Science and
Technology, 2000.

B. Moeller. Security of cbc ciphersuites in ssl (tls prob-
lems and counter-measures. Posting on the Open SSL
Project’s website.http://www.openssl.org/
˜bodo/tls-cbc.txt .

N. Modadugu and E. Rescorla. The design and implemen-
tation of datagram tls. InNetwork Distributed System
Security Conference, 2004.

N. Modadugu and E. Rescorla. Aes counter mode cipher
suites for tls and dtls. Technical report, Internet Engi-
neering Task Force, 2006.

E. Rescorla. [ietf-tls] re: Rfc 2246-bis open is-
sues. Email to the ietf-tls@lists.certicom.com
email list, March 2002.http://www.imc.org/
ietf-tls/mail-archive/msg03341.html .

Various. Various documents at the Open SSL web-site.
http://www.openssl.org/ .

S. Vaudenay. Security flaw induced by cbc padding ap-
plications to ssl, ipsec, wtls, InLecture Notes
in Computer Science. Advances in Cryptology— EU-
ROCRYPT’02, Springer-Verlag, 2001.

A General Problems with CBC

The Cipher Block Chaining (CBC) mode of encryption
was first proposed as a mode for DES, the Data Encryp-
tion Standard (BDJR97). However, in the three decades
that have passed since that time, much research has taken
place in both adversarial modeling and modes of encryption
(BBKN01) (Dwo01) (Dwo02) (FMP03) (GD01) (Knu00)
(LRW00).

A mode of encryption is an algorithm for defining how
the block cipher will be used to produce ciphertexts when
the plaintext is of length longer than one block. For exam-
ple, CBC has the formulaCi = Fsk(Ci−1 ⊕ Pi) whereC0

is an initialization vector, and Counter Mode (CTR) has the
formulaCi = Fsk(i+ i0)⊕Pi, wherei0 is an initialization
vector (Knu00) (LRW00).

We note the following disadvantages of CBC.

• CBC is vulnerable to blockwise-adaptive chosen-
plaintext attack, while CTR is not.

• An error in one block of CBC renders unreadable the re-
mainder of the message, while an error in one block of
CTR only renders that block unreadable.

• CBC cannot be parallelized, as can CTR. In CBC each
block depends on the encryption of the block before it.
In CTR, each block is encrypted independently.

• CBC is subject to the padding attack of Vaudenay
(Vau01), but this is avoidable if one pads according to
the algorithm given in that paper. In CTR, one can pad
arbitrarily and have the padding length as an extra plain-
text block at the end.

• CBC offers no protection versus Chosen Ciphertext
Attack (CCA), as would HPCBC, XCBC, or OCB
(BBKN01) (GD01). However, Counter Mode also offers
no CCA protection.

• An initialization vector need only be calculated once in
CTR mode, not per message as in CBC. The counteri

can be statefully maintained, and so will not repeat until
264 or 2128 blocks.

• While this does not necessarily apply to SSL, theFsk(i+
i0) can be pre-computed, leaving only XOR operations
with the plaintext to compute the ciphertext. If data needs
to be transmitted only occasionally, but urgently when
ready, this can be an advantage.

Since SSL uses Message Authentication Code (MAC)
algorithms for the datagrams, the maliability attacks and
other CCA attacks that plague CTR mode are of no inter-
est. Therefore it is clear that CTR and not CBC would be a
better choice for future versions of TLS and SSL, as CTR
has advantages and no disadvantages over CBC (LRW00).

Other Problems with SSL’s Encryption: We note
that the mode of encryption should probably be changed
to address other concerns as well. For example, it is well-
known that applying a message authentication code to the
ciphertext itselfafter encryption is preferable to applying
it to the messagebeforeencryption (BN00) (Kra01). Cur-
rently, SSL does the latter rather than the former.

B The Application of Splitting
Blocks to Guessing Passwords

While the attack presented in this paper really can only
provide for up to about 1000 guesses at best (a long game
with little background traffic), under ideal conditions, other
chosen plaintext attacks might allow for several more.
Therefore it is interesting to point out the effect of split-
ting upon passwords. If the printable ASCII character set
of 95 choices is used, and the passwords are 8 bytes long,
and nearly randomly chosen (very generous assumptions),
then there are958 = 6.6 × 1015 = 252.6 possible pass-
words, and251.6

≈ 3.4 × 1015 guesses would be required
in expectation.

However, the probability of the password not being bro-
ken in two is 12.5%. Even with AES and 16-byte blocks,
7

16
= 43.8% will be broken into pieces. If divided down the

center, (regardless of 64-bit or 128-bit blocks) the number
of guesses expected would be

2
52.6

2 + 2
52.6

2

2
= 226.3 = 8.26 × 107

Since3.4×1015 guesses are expected in the unsplit case,
and8.3×107 in the split case, the attack becomes4.1×107

times faster when the password is split. While our present
attack scenario is not suited for anywhere near this num-
ber of guesses, there may be similar scenarios which can
tolerate a few tens of thousands guesses, and if a few thou-
sand users are targeted, then at least one password recovery
would be expected, if not more.

