
52

Succinct Indexes for Strings, Binary Relations and Multilabeled Trees

JÉRÉMY BARBAY, University of Chile
MENG HE and J. IAN MUNRO, University of Waterloo
SRINIVASA RAO SATTI, Seoul National University

We define and design succinct indexes for several abstract data types (ADTs). The concept is to design
auxiliary data structures that ideally occupy asymptotically less space than the information-theoretic lower
bound on the space required to encode the given data, and support an extended set of operations using
the basic operators defined in the ADT. The main advantage of succinct indexes as opposed to succinct
(integrated data/index) encodings is that we make assumptions only on the ADT through which the main
data is accessed, rather than the way in which the data is encoded. This allows more freedom in the encoding
of the main data. In this article, we present succinct indexes for various data types, namely strings, binary
relations and multilabeled trees. Given the support for the interface of the ADTs of these data types, we can
support various useful operations efficiently by constructing succinct indexes for them. When the operators
in the ADTs are supported in constant time, our results are comparable to previous results, while allowing
more flexibility in the encoding of the given data.

Using our techniques, we design a succinct encoding that represents a string of length nover an alphabet of
size σ using nHk(S)+lg σ ·o(n)+O(n lg σ/lg lg lg σ) bits to support access/rank/select operations in o((lg lg σ)1+ε)
time, for any fixed constant ε > 0. We also design a succinct text index using nH0(S) + O(n lg σ/lg lg σ) bits
that supports finding all the occ occurrences of a given pattern of length m in O(mlg lg σ + occ lg n/ lgε σ)
time, for any fixed constant 0 < ε < 1. Previous results on these two problems either have a lg σ factor
instead of lg lg σ in the running time, or are not compressed. Finally, we present succinct encodings of binary
relations and multi-labeled trees that are more compact than previous structures.

Categories and Subject Descriptors: E.1 [Data]: Data Structures—Arrays and trees; E.2 [Data]: Data Stor-
age Representations; E.4 [Data]: Coding and Information Theory—Data compaction and compression; F.2.2
[Analysis of Algorithms and Problem Complexity]: Nonnumerical Algorithms and Problems—Compu-
tations on discrete structures; H.3.1 [Information Storage and Retrieval]: Content Analysis and Index-
ing—Indexing methods

General Terms: Algorithms, Design, Theory

Additional Key Words and Phrases: Succinct data structures, succinct indexes, strings, binary relations,
trees, labeled trees, multilabeled trees, text indexing, compressed text indexes

M. He is currently affiliated with the Faculty of Computer Science, Dalhousie University, 6050 University
Avenue, Halifax NS, B3H 4R2 Canada.
The preliminary version of this article was published in Proceedings of the 18th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA’07), 680-689.
This work was supported by NSERC of Canada and the Canada Research Chairs program.
This work was done when J. Barbay was in the Cheriton School of Computer Science, University of
Waterloo, Canada, and S. Rao Satti was in the Computational Logic and Algorithms group, IT University of
Copenhagen, Denmark.
Authors’ addresses: J. Barbay, Department of Computer Science (DCC), University of Chile, Avenida Blanco
Encalada 2120, Tercer Piso, Santiago, C.P. 827-0459, Chile; email: jeremy.barbay@dcc.uchile.cl; M. He and
J. I. Munro, Cheriton School of Computer Science, University of Waterloo, 200 University Avenue West,
Waterloo, Ont., N2L 3G1, Canada; email: imunro@uwaterloo.ca, mehe@cs.dal.ca; S. Rao Satti, School of
Computer Science and Engineering, Seoul National University, 599 Gwanakro, Gwanak-Gu, Seoul 151-744,
South Korea; email: ssaro@cse.snu.ac.kr.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2011 ACM 1549-6325/2011/09-ART52 $10.00

DOI 10.1145/2000807.2000820 http://doi.acm.org/10.1145/2000807.2000820

ACM Transactions on Algorithms, Vol. 7, No. 4, Article 52, Publication date: September 2011.

52:2 J. Barbay et al.

ACM Reference Format:
Barbay, J., He, M., Munro, J. I., and Rao Satti, S. 2011. Succinct indexes for strings, binary relations and
multilabeled trees. ACM Trans. Algor. 7, 4, Article 52 (September 2011), 27 pages.
DOI = 10.1145/2000807.2000820 http://doi.acm.org/10.1145/2000807.2000820

1. INTRODUCTION

The rapid growth of large sets of text and the need for efficient searches of these sets,
have led to a trend of succinct representation of text indexes as well as the text itself.
Succinct data structures were first proposed by Jacobson [1989] to encode bit vectors,
(unlabeled) trees and planar graphs in space close to the information-theoretic lower
bound, while supporting efficient navigational operations. This technique was success-
fully applied to various other abstract data types (ADTs), such as dictionaries [Raman
et al. 2007], strings [Grossi et al. 2003; Barbay et al. 2007], binary relations [Barbay
et al. 2007] and labeled trees [Geary et al. 2006; Ferragina et al. 2005b; Barbay et al.
2007]. In addition, succinct data structures have been proved to be very useful in prac-
tice. For example, Delpratt et al. [2006] engineered the implementation of succinct
trees and reported that their structure uses 3.12 to 3.81 bits per node to encode the
structures of XML trees that have 57K to 160M nodes. Such space cost is merely a
small percentage of that of an explicit, pointer-based tree representation.

In most of the previous work, researchers encode the given data (or assume that the
data is encoded) in a specific format, and further construct auxiliary data structures on
it. They then use both the encoded data and the auxiliary data structures to support
various operations, for example, Grossi et al. [2003], Geary et al. [2006], Ferragina
et al. [2004], He et al. [2005], and Barbay et al. [2007]. Usually in this type of design,
the auxiliary data structures do not work if the given data is encoded in a different
format, and therefore, the encoding of the given data and the design of the auxiliary
data structures are inseparable. We thus call this type of design succinct integrated
encoding of data structures.

A different line of research concentrates on reducing the size of the traditional text
indexes to allow fast text retrieval, without transforming the text (i.e., the given data)
to store it in specific formats. Therefore, in such research work, the representation of
the text indexes and the encodings of the text itself can be designed separately. For
example, Clark and Munro [1996] designed a compact PAT tree that takes much less
space than the standard representation of a suffix tree, and used it to facilitate text
retrieval.

The concept of separating the index and the given data was also used to prove
the lower bounds [Demaine and López-Ortiz 2003; Gál and Miltersen 2003; Miltersen
2005; Golynski 2007] and to analyze the upper bounds [Sadakane and Grossi 2006] on
the space required to encode some data structures. For example, Demaine and López-
Ortiz [2003] proved that any text index supporting pattern search in time linear in
the length of the pattern requires roughly the same amount of space as the text itself.
Miltersen [2005] proved a lower bound of the size of any index supporting rank/select
operations on bit vectors, and Golynski [2007] further improved his results. Sadakane
and Grossi [2006] analyzed the space cost of their data structure by proving that the
auxiliary data structures occupy asymptotically less space than the given data.

In this article, we formalize the distinction between the index and the raw data, and
apply it to the design of succinct data structures. Given an ADT, our goal is to design
auxiliary data structures (i.e., succinct indexes) that ideally occupy asymptotically less
space than the information-theoretic lower bound on the space required to encode
the given data, and support an extended set of operations using the basic operators
defined in the ADT. Although the key idea here is still separating the index and the
given data, our model differs from previous models. The index model or systematic data

ACM Transactions on Algorithms, Vol. 7, No. 4, Article 52, Publication date: September 2011.

Succinct Indexes for Strings, Binary Relations and Multilabeled Trees 52:3

structures used in previous work on proving lower bounds [Demaine and López-Ortiz
2003; Gál and Miltersen 2003; Miltersen 2005; Golynski 2007] and on reducing the size
of text indexes [Clark and Munro 1996] requires the raw data to be kept “verbatim”
(for example, a string must be stored physically as an array of characters in computer
memory), while our model does not make any assumptions on the format. The work
of Sadakane and Grossi [2006] focused on designing a compact storage scheme of data
that supports access operators, while we aim at supporting a richer set of operations,
and the access operators are often used as the basic operators defined in the ADT in
our model.

Succinct indexes and succinct integrated encodings are closely related, but they
are different concepts: succinct indexes make assumptions only on the ADT through
which the given data is accessed, while succinct integrated encodings represent data
in specific formats. Succinct indexes are also more difficult to design: raw data plus a
succinct index is a succinct integrated encoding, but it might not be possible to split a
succinct integrated encoding into raw data and a succinct index.

Although the concept of succinct indexes was previously adopted mainly to design
space efficient text indexes, and was also presented as a technical restriction to prove
lower/upper bounds, we argue that in fact succinct indexes are more appropriate to
the design of a library of succinct tools for multiple usages than succinct integrated
encodings, and that they are even directly required in certain applications. Some of the
advantages of succinct indexes over succinct integrated encodings are:

(1) A succinct integrated encoding requires the given data to be stored in a specific
format. However, a succinct index applies to any encoding of the given data that
supports the required ADT. Thus, when using succinct indexes, the given data can
be either stored to achieve maximal compression or to achieve optimal support of
the operations defined in the ADT.

(2) The existence of two succinct integrated encodings supporting different operations
over the same data type does not imply the existence of a single encoding supporting
the union of the two sets of operations without storing the given data twice, because
they may not store it in the same format. However, we can always combine two
different succinct indexes for the same ADT to yield a single succinct index that
supports the union of the two corresponding sets of operations in a straightforward
manner.

(3) In some cases, we need not store the data explicitly because it can be derived from
some other information in a manner that efficiently supports the operations defined
in the ADT. Hence, a succinct index is the only additional memory cost.

In this article, we design succinct indexes for strings, binary relations and multi-
labeled trees on the standard word RAM model with word size �(lg n), where n denotes
the problem size.1 Given the support for the interface of these ADTs, we can support
an extended set of operations efficiently. The succinct indexes occupy small amounts
of space compared to the information-theoretic lower bound for representing the given
data. Our indexes for strings, binary relations and multi-labeled trees are presented
in Sections 2.2, 3.2, and 4.2, respectively, and the background knowledge required to
introduce these indexes are in Sections 2.1, 3.1, and 4.1.

Based on the succinct index for strings, we design (in Section 2.3.1) a succinct inte-
grated encoding that represents a string of length n over an alphabet of size σ using
nHk(S) + lg σ · o(n) + O(n lg σ/lg lg lg σ) bits, which supports access/rank/select opera-
tions in o((lg lg σ)1+ε) time, for any fixed constant ε > 0. Here, Hk denotes the kth order
empirical entropy of a given string. We also design (in Section 2.3.2) a succinct text

1We use log2 x to denote the logarithmic base 2 and lg x to denote �log2 x�. Occasionally, this matters.

ACM Transactions on Algorithms, Vol. 7, No. 4, Article 52, Publication date: September 2011.

52:4 J. Barbay et al.

index using nH0(S) + O(n lg σ/lg lg σ) bits that supports finding all the occ occurrences
of a given pattern of length m in O(mlg lg σ +occ lg n/ lgε

σ) time, for any fixed constant
0 < ε < 1. Our succinct integrated encodings of binary relations (in Section 3.3) and
multilabeled trees (in Section 4.3) occupy space close to the information-theoretic lower
bounds.

2. STRINGS

We first design succinct indexes for a given string S of length n over alphabet [σ].2

2.1. Background

Here we outline the design of succinct data structures for several data types and
introduce other background knowledge. We cite the results that we use in the design
of succinct indexes for strings, and those upon which we improve.

2.1.1. Bit Vectors. A key structure for many succinct data structures, and for the re-
search work in this paper, is a bit vector B of length n that supports rank and select
operations. We assume that the positions in B are numbered 1, 2, . . . , n. For α ∈ {0, 1},
we consider the following operations:

—bin rankB(α, x), the number of occurrences of α in B[1..x];
—bin selectB(α, r), the position of the rth α in B.

We omit the subscript B when it is clear from the context. Lemma 2.1 addresses the
problem of succinctly representing bit vectors, in which part (a) is from Jacobson [1989]
and Clark and Munro [1996], while part (b) is from Raman et al. [2007].

LEMMA 2.1. A bit vector B of length n with v 1s can be represented using either:
(a) n + o(n) bits, or (b) lg (n

v) + O(n lg lg n/ lg n) bits, to support the access to each bit,
bin rank and bin select in O(1) time.

Although part (b) of Lemma 2.1 implies part (a), we cite both results here as using
part (a) directly can simplify the space analysis in some proofs in this article.

A less powerful version of bin rank(1, x), denoted by bin rank′(1, x), returns the
number of 1s in B[1..x] if B[x] = 1, and ∞ otherwise.

LEMMA 2.2 [RAMAN ET AL. 2007]. A bit vector B of length n with v 1s can be repre-
sented using lg (n

v) + o(v) + O(lg lg n) bits to support the access to each bit, bin rank′(1, x)
and bin select(1, r) in O(1) time.

2.1.2. Strings. One can generalize the bin rank and bin select operators to a string
(or a sequence) S of length n over an alphabet of arbitrary size σ , and the operations
include:

—string rankS(α, x), the number of occurrences of character α in S[1..x];
—string selectS(α, r), the position of the rth occurrence of character α in the string;
—string accessS(x), the character at position x in the string.

The subscript S is omitted when it is clear from the context.
Grossi et al. [2003] designed a data structure called wavelet tree that encodes a string

using nH0 +o(n) · lg σ bits to support string access, string rank and string select in
O(lg σ) time. To design a succinct integrated encoding for strings over large alphabets,
Golynski et al. [2006] gave another encoding that uses n lg σ + O(n lg σ/lg lg σ) bits
and supports string rank and string access in O(lg lg σ) time, and string select
in constant time. The lg lg σ factor in the above running time is more scalable for

2We use [i] to denote the set {1, 2, . . . , i}.

ACM Transactions on Algorithms, Vol. 7, No. 4, Article 52, Publication date: September 2011.

Succinct Indexes for Strings, Binary Relations and Multilabeled Trees 52:5

large alphabets than the lg σ factor of wavelet trees. However, their encoding is not
compressed.

These operations on strings have a number of applications [Grossi et al. 2003;
Ferragina et al. 2004; He et al. 2005; Golynski et al. 2006; Barbay et al. 2007], and hence
supporting them efficiently is a fundamental problem in the design of succinct data
structures. Thus, we design succinct indexes for strings to support these operations in
Sections 2.2.

2.1.3. Permutations. One important data structure we use is a succinct representation
of a permutation on [n] that supports the efficient computations of the permutation
and its inverse. It is fairly straightforward to represent a permutation π using (1 +
1/s)n lg n+ O(n) bits to support π () and π−1() in O(s) time for any parameter s > 0. We
simply store the forward permutation and an auxiliary structure that stores for every
sth position in every cycle of length greater than s, the element s positions earlier
in that cycle. Munro et al. [2003] investigated this problem and trimmed the space
required to (1 + 1/s)n log2 n + O(n lg lg n/ lg n) bits.

To achieve this result, they explicitly encode the sequence π (1), π (2), ..., π (n) in
n log2 n + o(n) bits, but only use the operator π () to access the given data. Thus, this
result can be rewritten in the form of designing succinct indexes:

LEMMA 2.3 [MUNRO ET AL. 2003]. Given support for π () (or π−1()) in g(n) time on a
permutation on [n], there is a succinct index using (n lg n)/s + O(n lg lg n/ lg n) bits that
supports π−1() (or π ()) in O(s · g(n)) time for any parameter s > 0.

2.1.4. y-fast Tries. Another important data structure we use is a y-fast trie, proposed by
Willard [1983] to encode a set E that consists of v distinct integers in the universe [n] in
O(v lg n) bits. It is an improvement in terms of space upon the stratified tree proposed
by Van Emde Boas et al. [1977]. Given an integer x, the y-fast trie can be used to
retrieve the largest integer in the set E that is less than or equal to x in O(lg lg n) time.
This operation is often called the predecessor query.

If we treat the universe [n] as a bit vector B of length n, and the v integers in the set
as the positions of the 1s in B, the y-fast trie can encode B in O(v lg n) bits to support
the retrieval of the position of the last 1 in B[1..x] in O(lg lg n) time. As the integers
in the set E are stored in the leaves of a y-fast trie, if we store their ranks explicitly in
the leaf nodes, we can augment the y-fast trie to support bin rankB(1, x) in O(lg lg n)
time using additional v lg n bits. More precisely, to compute bin rankB(1, x), we first
locate the last 1 in B[1..x] using the y-fast trie in O(lg lg n) time, and then retrieve the
rank stored in the corresponding leaf of the y-fast trie in constant time. Thus:

LEMMA 2.4 [WILLARD 1983]. A bit vector B of length n with v 1s can be encoded using
O(v lg n) bits to support bin rankB(1, x) in O(lg lg n) time.

2.2. Succinct Indexes

In this section and the rest of this article, we introduce succinct indexes in two steps:
we first define the ADTs and then design succinct indexes for these ADTs.

In the case of strings, we adopt the common assumption that σ ≤ n (otherwise, we
can reduce the alphabet size to the number of characters that occur in the string at
the cost of the space required to enumerate the characters used). We define the ADT
of a string through the string access operator that returns the character at any given
position of the string.

To generalize the operators on strings defined in Section 2.1.2 to include “negative”
searches, we define a literal as either a character, α ∈ [σ], or its negation, ᾱ ∈ [σ] − {α}
(we use the array notation for strings to refer to its characters and substrings):

ACM Transactions on Algorithms, Vol. 7, No. 4, Article 52, Publication date: September 2011.

52:6 J. Barbay et al.

Definition 2.5. Consider a string S[1..n] over the alphabet [σ]. A position x ∈ [n]
matches literal α ∈ [σ] if S[x] = α. A position x ∈ [n] matches literal ᾱ if S[x] �= α. For
simplicity, we define [σ̄] to be the set {1, . . . , σ }.

With this definition, we can use string rank and string select to perform negative
searches. For example, given the string bbaaacdd, we have string rank(a, 7) = 4, as
there are 4 characters that are not a in the string up to position 7. We also have
string select(a, 3) = 6, as position 6 is the 3rd position whose character is not a. It
is clear that string rank(α, x) = x − string rank(α, x) for α ∈ [σ]. In this article, we
only provide support for the string select(α, x) operator for the special case in which
x ∈ [σ], while providing efficient support for string select(α, x) when x ∈ [σ̄] is left as
an open problem.

We also consider the following operations on strings in addition to the three primary
operations introduced in Section 2.1.2:

Definition 2.6. Consider a string S ∈ [σ]n, a literal α ∈ [σ] ∪ [σ̄] and a position
x ∈ [n] in S. The α-predecessor of position x, denoted by string pred(α, x), is the last
position matching α before (and not including) position x, if it exists. Similarly, the
α-successor of position x, denoted by string succ(α, x), is the first position matching α
after (and not including) position x, if it exists.

To illustrate these two operations, consider the string bbaaacdd. We have that
string pred(a, 7) = 5, as position 5 is the last position in the string before position
7 whose character is a. We also have string pred(a, 5) = 2, as position 2 is the last
position before position 5 whose character is not a. By allowing α to be possibly a lit-
eral in the set [σ̄], the α-predecessor/successor queries in fact generalize the colored
predecessor/successor queries defined by Mortensen [2003, 2006].

We now design a succinct index to support rank/select operations on strings. We have
the following result.

LEMMA 2.7. Given support for string access in f (n, σ) time on a string S ∈ [σ]n,
there is a succinct index using O(n lg σ/lg lg lg σ) bits that supports string rank for any
literal α ∈ [σ] ∪ [σ̄] in O((lg lg lg σ)2(f (n, σ) + lg lg σ)) time, and string select for any
character α ∈ [σ] in O(lg lg lg σ (f (n, σ) + lg lg σ)) time.

PROOF. As string rank(α, x) = x − string rank(α, x) for α ∈ [σ], we need only show
how to support string rank and string select for α ∈ [σ].

First we conceptually treat the given string S and portions of S in several ways. We
treat S as an n× σ table E with rows indexed by 1, 2, . . . , σ and columns by 1, 2, . . . , n.
For any α ∈ [σ] and x ∈ [n], entry E[α][x] = 1 if S[x] = α, and E[α][x] = 0 otherwise.
Reading E in row major order yields a conceptual bit vector A of length σn with exactly
n 1s. We divide A into blocks of size σ . The cardinality of a block is the number of 1s
in it. A chunk of S is a substring of length σ (we assume that n is divisible by σ for
simplicity), so that for the ith chunk C, we have C[j] = S[(i − 1)σ + j], where i ∈ [n/σ]
and j ∈ [σ]. Hence, a chunk corresponds to a σ × σ segment of E, or σ equally spaced
substrings of A. We denote the block corresponding to the αth row of the segment of E
corresponding to a chunk C by Cα, where α ∈ [σ]. Figure 1 illustrates these concepts.
In this example, let C be the 4th chunk. Then, we have C2 = 0011.

We first construct a bit vector B which stores the cardinalities of all the blocks in
unary (i.e., a block of cardinality l is stored as l 1s followed by a 0), in the order
they appear in A, so that B = 1l101l20 . . . 1ln0, where li is the cardinality of the ith
block of A. The length of B is 2n, as there are exactly n 1s in A, and n blocks. We
store it using Part (a) of Lemma 2.1 in 2n + o(n) bits. For the example in Figure 1,
B = 11100110101010101100101000110010.

ACM Transactions on Algorithms, Vol. 7, No. 4, Article 52, Publication date: September 2011.

Succinct Indexes for Strings, Binary Relations and Multilabeled Trees 52:7

S =

E =

a b a a d c b d b c a a a d b b

1 0 1 1 0 0 0 0 0 0 1 1 1 0 0 0
0 1 0 0 0 0 1 0 1 0 0 0 0 0 1 1
0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0

1st chunk 2nd chunk 3rd chunk 4th chunk

Fig. 1. A sample string for the proof of Lemma 2.7.

Using this bit vector B, the support for string rank and string select operations on
S can be reduced, in constant time, to supporting these operations on a given chunk as
suggested by Golynski et al. [2006]. To be specific, to compute string rankS(α, x), let C
be the chunk that position x is in (i.e. C is the uth chunk, where u = �x/σ�). Since the
number of occurrences of α in S[1..x] is equal to the sum of the number of occurrences
of α in the first u − 1 chunks and the number of occurrences of α in C[1..x mod σ], we
have string rankS(α, x) = string rankS(α, (u − 1)σ) + string rankC(α, x mod σ). The
first item on the right side of this equation can be computed using B as follows: Let a1
and a2 be the positions of the 0s in B that correspond to the last block in the (α − 1)st
row of E, and the last block before block Cα in the αth row of E, respectively. Then,
a1 = bin selectB(0, n(α − 1)/σ) and a2 = bin selectB(0, n(α − 1)/σ + u − 1). Since the
number of occurrences of α in the first u− 1 chunks is equal to the number of 1s before
block Cα in the αth row of E, the following equation holds: string rankS(α, (u− 1)σ) =
bin rankB(1, a2)−bin rankB(1, a1). Therefore, we need only compute string rankC(α, x
mod σ).

To compute string selectS(α, r), we first compute the position, v, of the 1 in B that
corresponds to the rth α in S. Let the number of 1s in B[1..v] be q. As there are
bin rankB(1, a1) 1s in the top (α − 1) rows of E, we have q = bin rankB(1, a1) + r. We
can compute v in constant time using the equation v = bin selectB(1, q). Let the block
containing the qth 1 in A be the yth block in E in the row major order, and the chunk,
C ′, containing the rth α be the wth chunk of the string S. Then y = bin rankB(0, v) + 1
and w = y − (α − 1)n/σ . Thus we have string selectS(α, r) = string selectC ′ (α, q −
bin rankB(1, bin selectB(0, y−1)))+(w−1)σ . Hence, we need only show how to support
string rank and string select on a given chunk C.

We store the following data structures for each chunk C.

—We construct a bit vector X that stores the cardinalities of the blocks in C in unary
from top to bottom, that is, X = 1l101l20 · · · 1lσ 0, where lα is the number of 1s in the
block Cα. There are σ 1s in X, each corresponding to a character of the chunk, and σ
0s, each corresponding to a block of the chunk. Hence the length of X is 2σ . We store
it in 2σ + o(σ) bits using Part (a) of Lemma 2.1.

—We construct an array R such that R[j] = bin rankD(1, j) mod k, where D is the
block CC[j], and k is a parameter which we fix later. Each element of R is an integer
in the range [0..k − 1], so R can be stored in σ lg k bits.

—We construct a conceptual permutation π on [σ], defined later in the proof. We store
an auxiliary structure P that takes O(σ lg σ/s +σ lg lg σ/ lg σ) bits using Lemma 2.3,
where s is a parameter which we fix later, and supports access to π in O(s · g(n, σ))
time, given O(g(n, σ))-time access to π−1.

—For each block Cα in a chunk C, let Fα be a “sparsified” bit vector for Cα, in which
only every kth 1 of Cα is present (i.e. Fα[j] = 1 iff Cα[j] = 1 and bin rank(1, j)
on Cα is divisible by k). We encode Fα using Lemma 2.4 in O(lg σ × lα/k) bits to

ACM Transactions on Algorithms, Vol. 7, No. 4, Article 52, Publication date: September 2011.

52:8 J. Barbay et al.

support bin rankFα
(1, i) in O(lg lg σ) time. All the Fα ’s in a given chunk thus occupy

O((σ lg σ)/k) bits in total.

We first show how to support bin rank′(1, j) on block D = CC[j] (note that D[j] = 1;
hence, bin rank′(1, j) is equivalent to bin rank(1, j)). For this, we first compute C[j] us-
ing string access in f (n, σ) time. Then, we compute bin rank(1, j) on FC[j] in O(lg lg σ)
time, which is equal to
bin rank′

D(1, j)/k�. We also retrieve R[j] in constant time,
which is equal to bin rank′

D(1, j) mod k. Since bin rank′
D(1, j) = k
bin rank′

D(1, j)/k�+
bin rank′

D(1, j) mod k, we can compute bin rank′
D(1, j) in O(f (n, σ) + lg lg σ) time.

The permutation π for a chunk C is obtained by writing down the positions (relative
to the starting position of the chunk) of all the occurrences of each character α in
increasing order, if α appears in C, for α = 1, 2, . . . , σ . For example, in Figure 1, let C be
the 4th chunk. Then, π = 1, 3, 4, 2. Using π−1 to denote the inverse of π (in the previous
example, π−1 = 1, 4, 2, 3), we see that π−1(j) is equal to the sum of the following two
values: the number of characters smaller than C[j] in C, and bin rank′(1, j) on block
D = CC[j]. The first value can be computed using X in constant time, as it is equal
to bin rankX(bin selectX(0, α − 1)), and we have already shown how to compute the
second value in O(f (n, σ) + lg lg σ) time in the previous paragraph. Therefore, we can
compute any element of π−1 in O(f (n, σ)+lg lg σ) time. We can further use P to compute
any element of π in O((f (n, σ) + lg lg σ)s) time (note that the f (n, σ) + lg lg σ term here
comes from the time required to retrieve a given element of π−1).

Golynski et al. [2006] showed how to support the string select operation on a
chunk C by a single access to π plus a few constant-time operations. This is achiev-
able because π stores the positions of the occurrences of characters that appear in C.
More precisely, to compute string selectC(α, r), we first compute the number, lα, of
occurrences of α in C. This can be computed by performing rank/select operations on
X, since X encodes all the lα ’s in unary, that is, lα = bin rankX(1, bin selectX(0, α)) −
bin rankX(1, bin selectX(0, α−1)). We return ∞ if lα < r. Otherwise, we locate the 1 bit
in X corresponding to the rth occurrence of α in C, and then retrieve the result from C.
More precisely, we have that string selectC(α, r) = π (bin rankX(1, bin selectX(0, α −
1)) + r). When combined with our approach, we can support string select for any
character α ∈ [σ] in O((f (n, σ) + lg lg σ)s) time.

Golynski et al. [2006] also showed how to compute string rank by calling
string select O(lg k) times. To be specific, to compute string rankC(α, x), let r1 =
k
string rankC(α, x)/k� and r2 = r1 + k − 1. We can compute r1 and r2 in O(lg lg σ)
time, as
string rankC(α, x)/k� is equal to bin rank(1, x) on Fα (i.e., the “sparsified”
bit vector for the block Cα). As r1 ≤ string rankC(α, x) ≤ r2, we then perform a binary
search in the range [r1..r2]. In each phase of the loop, we use string select to check
whether we have found the answer. Thus, we can support operator string rank in
O(s lg k(f (n, σ) + lg lg σ)) time.

As there are n/σ chunks, the sum of the space costs of the auxiliary structures
constructed for all the chunks is clearly O(n lg k + n lg σ (1/s + 1/k)) bits. Choosing
s = lg lg lg σ and k = lg lg σ makes the overall space cost of all the auxiliary structures
O(n lg σ/lg lg lg σ) bits. The query times for string rank and string select become
O((lg lg lg σ)2(f (n, σ) + lg lg σ)) and O(lg lg lg σ (f (n, σ) + lg lg σ)), respectively.

We now extend our succinct indexes to support α-predecessor and α-successor
queries.

LEMMA 2.8. Using n+o(n) additional bits, the succinct index of Lemma 2.7 also sup-
ports string pred and string succ for any character α ∈ [σ] in O((lg lg lg σ)2(f (n, σ) +
lg lg σ)) time, and these two operators for any literal α ∈ [σ̄] in O(f (n, σ)) time.

ACM Transactions on Algorithms, Vol. 7, No. 4, Article 52, Publication date: September 2011.

Succinct Indexes for Strings, Binary Relations and Multilabeled Trees 52:9

PROOF. We only show how to support string pred; string succ can be sup-
ported similarly. For any character α ∈ [σ], it is clear that string pred(α, x) =
string select(α, string rank(α, x) − 1). Thus, the operators string pred and
string succ can be supported for any character α ∈ [σ] in O((lg lg lg σ)2(f (n, σ)+lg lg σ))
time. Hence, we need only show how to support string pred(α, x) when α ∈ [σ̄].

For this, we require another auxiliary structure. We construct a bit vector, U , of
length n, in which U [i] = 1 iff S[i] �= S[i − 1] (we set U [1] = 1). We store U using Part
(a) of Lemma 2.1 in n + o(n) bits.

To support string pred(α, x) for α ∈ [σ̄], let c be the character such that α = c. We
first retrieve S[x − 1] using string access in f (n, σ) time. If S[x − 1] �= c, then we
return x − 1. Otherwise, let j = bin selectU (1, bin rankU (1, x − 1)). By the definition
of U , we have S[j − 1] �= S[j] = S[j + 1] = · · · = S[x − 1] = c. Therefore, j − 1 is the
answer, and it can be computed in O(f (n, σ)) time.

Combining Lemmas 2.7 and 2.8, we have our first main result:

THEOREM 2.9. Given support for string access in f (n, σ) time on a string S ∈ [σ]n,
there is a succinct index using O(n lg σ/lg lg lg σ) bits that supports:

—string rank for any literal α ∈ [σ] ∪ [σ̄] in O((lg lg lg σ)2(f (n, σ) + lg lg σ)) time;
—string select for any character α ∈ [σ] in O(lg lg lg σ (f (n, σ) + lg lg σ)) time;
—string pred and string succ for any character α ∈ [σ] in O((lg lg lg σ)2(f (n, σ) +

lg lg σ)) time, and these two operations for α ∈ [σ̄] in O(f (n, σ)) time.

We can alternatively define the ADT of a string through the string select(α, r) oper-
ator, where α ∈ [σ]. Although this definition seems unusual, it has a useful application
in Section 2.3.2. With this definition, we have:

THEOREM 2.10. Given support for string select (for any character α ∈ [σ]) in
f (n, σ) time on a string S ∈ [σ]n, there is a succinct index using O(n lg σ/lg lg σ) bits
that supports string rank, string pred and string succ for any literal α ∈ [σ] ∪ [σ̄],
as well as string access, in O(lg lg σ f (n, σ)) time.

PROOF. As in the proof of Lemma 2.7, we divide string S and its corresponding
conceptual table E into chunks and blocks, and construct bit vector B for the entire
string, and bit vector X and the auxiliary structure P for each chunk. We also store
the set of “sparsified” bit vectors, Fα ’s, for each chunk. With the f (n, σ)-time support
for string select on S, using the method described in the proof of Lemma 2.7, we can
support string rank on S in O(lg lg σ + lg kf (n, σ)) time.

Now we provide support for string access. We first design the data structures sup-
porting the access to π and π−1 for any chunk C (see the proof of Lemma 2.7 for the
definition of π and π−1). We assume that C is the ith chunk of S. From the definition
of π , we observe that if the rth occurrence of α in C corresponds to the jth 1 in X, then
π (j) is equal to bin select(1, r) on the block Cα. Since X essentially stores the number
of occurrence of each character in C in unary, we can compute α and r in O(1) time by
performing rank/select operations on X. More precisely, we can use the identities α =
bin rankX(0, bin selectX(1, j)) + 1, and r = bin selectX(1, j) − bin selectX(0, α − 1).
As bin selectCα

(1, r) = string select(α, r + z), where z is the number of 1s in the
αth row of E up to position (i − 1)σ , we need only show how to compute z. Since B
stores the cardinalities of the blocks in E, z can be computed by performing rank/select
operations on B as follows: Let a1 and a2 be the positions of the 0s in B that corre-
spond to the last block in the (α − 1)th row of E, and the block in the αth row of E
that ends at position (i − 1)σ , respectively. Then, a1 = bin selectB(0, (α − 1)n/σ) and
a2 = bin selectB(0, (α − 1)n/σ + i − 1). As z = bin rankB(1, a2) − bin rankB(1, a1), we
can compute z in constant time. Thus, we can compute π (j) in f (n, σ) time. With the

ACM Transactions on Algorithms, Vol. 7, No. 4, Article 52, Publication date: September 2011.

52:10 J. Barbay et al.

auxiliary structure P, we can further compute any element of π−1 in O(sf (n, σ)) time
by Lemma 2.3.

With the support for the access to π−1(), we can now use the method of Golynski et al.
[2006] to compute C[j] as follows. We first compute π−1(j) in O(sf (n, σ)) time. By the
definition of π−1, we observe that the (π−1(j))th 1 in X corresponds to C[j]. Thus,
C[j] = bin rankX(0, bin selectX(1, π−1(j))) + 1. Therefore, we can compute C[j] in
O(sf (n, σ)) time. Finally, by the identity C[j] = S[(i − 1)σ + j] for the ith chunk of S,
string access can be supported in O(sf (n, σ)) time.

To analyze the space cost of the auxiliary data structures used to support the op-
erations string rank and string access (B, X, y-fast tries, and P), we observe that
the same data structures are defined in the proof of Lemma 2.9. Thus, they occupy
O(n lg σ (1/s + 1/k)) bits. Choosing s = lg lg σ and k = lg σ makes the overall space cost
of all the auxiliary structures O(n lg σ/lg lg σ) bits. The query time for string rank and
string access becomes O(lg lg σ f (n, σ)).

The approach in the proof of Lemma 2.8 can be directly used to support the operations
string pred and string succ in O(lg lg σ f (n, σ)) time with n + o(n) additional bits.

2.3. Applications

2.3.1. High-Order Entropy-Compressed Succinct Encodings for Strings. Given a string S of
length n over alphabet [σ], we now design a high-order entropy-compressed succinct
encoding for it that supports string access, string rank, and string select efficiently.
Golynski et al. [2006] considered the problem and suggested a method with space
requirements proportional to the kth order entropy of a different but related string.
Here we solve the problem in its original form.

In our solution, we make use of the result of Sadakane and Grossi [2006], who
investigated the problem of encoding a string in its compressed form, while at the
same time allowing efficient access to the string. Their main result is described in the
following lemma.

LEMMA 2.11 [SADAKANE AND GROSSI 2006]. A string S ∈ [σ]n can be encoded using
nHk(S)+ O(n(k lg σ + lg lg n)/ logα n) bits.3 When k = o(logσ n), this space cost is nHk(S)+
lg σ · o(n) bits. This encoding can be used to retrieve any O(lg n) consecutive bits of the
binary encoding of the string in O(1) time.

The problem addressed by Lemma 2.11 can be considered as a restricted version of
the problem considered in this section. We now combine Lemma 2.11 with our succinct
index for strings to solve the more general problem for which we provide support for
rank/select operations in addition to random access to the string.

THEOREM 2.12. A string S of length n over alphabet [σ] can be represented using
nHk(S) + lg σ · o(n) + O(n lg σ/lg lg lg σ) bits for any k = o(logσ n), to support:

—string access in O(1) time;
—string rank for any literal α ∈ [σ] ∪ [σ̄] in O(lg lg σ (lg lg lg σ)2) time;
—string select for any character α ∈ [σ] O(lg lg σ lg lg lg σ) time;
—string pred and string succ for any literal α ∈ [σ] in O(lg lg σ (lg lg lg σ)2) time, and

these two operations for any literal α ∈ [σ̄] in O(1) time.

When σ = O(lg n/ lg lg n), S can be represented using nHk(S) + lg σ · o(n) + O(n) bits to
support the above operations in O(1) time.

3González and Navarro [2006] noted that the term (k lg σ + lg lg n) appears erroneously as (k + lg logσ n)
in Sadakane and Grossi [2006].

ACM Transactions on Algorithms, Vol. 7, No. 4, Article 52, Publication date: September 2011.

Succinct Indexes for Strings, Binary Relations and Multilabeled Trees 52:11

PROOF. We use Lemma 2.11 to store S in nHk(S) + O(n(k lg σ + lg lg n)/ logα n) bits.
When k = o(logσ n), this space cost is Hk(S) + lg σ · o(n). This representation allows us
to retrieve any O(lg n) consecutive bits of the string in O(1) time. Thus, we can use it
to retrieve S[i] in O(1) time (i.e., string access can be supported in O(1) time).

We store a succinct index for S using Theorem 2.9, and the support for the operations
string rank, string select, string pred and string succ for arbitrary σ immediately
follows. The overall space in bits is nHk(S) + lg σ · o(n) + O(n lg σ/lg lg lg σ).

When σ = O(lg n/ lg lg n), instead of constructing the entire succinct index for S,
we construct the following auxiliary structures. We conceptually divide the string into
chunks and blocks, and construct the bit vector B as in the proof of Lemma 2.7. This
reduces the support for string rank and string select on S, to the support for these
two operations on any given chunk C (see the proof of Lemma 2.7).

Let l =
log2 n/(2 log2 σ)�. We construct a table L, in which for each character α ∈ [σ],
each integer i ∈ [l], and each possible string D ∈ [σ]l, we store the results of queries
string rankD(α, i) and string selectD(α, i) (i.e., L[D, α, i] stores string rankD(α, i) and
string selectD(α, i)). There are σ l ≤ σ log2 n/(2 log2 σ) = σ

1
2 logσ n = √

n different strings of
length l over alphabet [σ]. We can store the result of each query above in lg(l + 1) bits.
Thus, the table L occupies O(σ × l × √

n × lg(l + 1)) = O(lg n/ lg lg n × √
n × l lg l) =

O(
√

n lg2 n) = o(n) bits. Using the table L, we can answer queries string rank(α, i)
and string select(α, i) on any string D ∈ [σ]l in constant time by performing a table
lookup on L (as L[D, α, i] stores the answers). We can also support string rank and
string select on any string G whose length, h, is less than l. This can be done by
first appending the string with the first character till its length is l (on a word RAM,
this step can be performed using a left shift of the binary encoding of G in constant
time), and then use the resulting string, F, as a parameter to perform table lookups.
Finally, as string rankG(α, i) = string rankF(α, i) for i ≤ h, and string selectG(α, i) =
string selectF(α, i) if string selectF(α, i) ≤ h (string selectG(α, i) = ∞, otherwise),
we can support string rank and string select on G in constant time.

To support string rank and string select on any chunk C, we observe that l =
�(lg n/ lg lg n). Therefore, the length of a chunk is either shorter than l, or can be divided
into a constant number of substrings of length l and a substring of length at most l. To
handle the latter case (the first case is already supported in the previous paragraph),
when answering string rankC(α, i), we use table L to compute the number of α’s in the
substrings that appear before position i, and to compute string rank(α, i mod l) on
the substring that contains position i. The sum of these values is the result. To compute
string selectC(α, i), we computer the number of occurrences of α in each substring
from left to right, and compute the prefix sum, till we locate the substring that contains
the result. We then use table lookup to retrieve the result.

To support string pred and string succ for α ∈ [σ̄], we construct the bit vector U
using n+ o(n) bits as in the proof of Lemma 2.8, and use the same algorithm to support
string pred and string succ in constant time. The support for these two operators for
α ∈ [σ] is straightforward.

The auxiliary data structures B, L and U occupy O(n) bits in total, so the overall
space cost is nHk(S) + lg σ · o(n) + O(n) bits.

2.3.2. High-Order Entropy-Compressed Text Indexes for Large Alphabets. As a result of the
growth of the textual data in databases, the World Wide Web and applications such as
bioinformatics, various indexing techniques have been developed to facilitate full text
searching. More formally, given a text string T of length n and a pattern string P of
length m, whose symbols are drawn from the same fixed alphabet [σ], the goal is to look
for the occurrences of P in T . We consider three types of queries: existential queries,
cardinality queries, and listing queries. An existential query returns a Boolean value

ACM Transactions on Algorithms, Vol. 7, No. 4, Article 52, Publication date: September 2011.

52:12 J. Barbay et al.

that indicates whether P is contained in T . A cardinality query returns the number,
occ, of occurrences of P in T . A listing query lists all the positions of occurrences of P
in T . We define pattern searching to be the process of answering all the above three
types of queries for a given pattern string.

A suffix array [Manber and Myers 1993; Gonnet et al. 1992] is a popular type of text
index. The idea is to organize the offsets of all the suffixes of the text in a sorted list
using the suffixes as sort keys, which takes exactly n lg n bits. With a suffix array, one
can answer existential and cardinality queries in O(mlg n) time, and listing queries in
O(occ) extra time. Additional information about the lengths of the (longest) common
prefixes of pairs of suffixes of the text can be stored to speed up pattern search. By pre-
computing and storing such information for 2n−1 pairs of suffixes (see Gusfield [1997]
for a detailed description of such pairs), one can answer existential and cardinality
queries in O(m + lg n) time, and listing queries in O(occ) extra time. Unfortunately,
straightforward representation of such prefix length data takes (2n − 1) lg n bits. Per-
haps as a consequence, suffix arrays are less popular for large text collections. Other
traditional text indexes have similar problems.

Researchers thus designed various succinct text indexes [Ferragina et al. 2004;
Ferragina and Manzini 2005; Grossi and Vitter 2005; He et al. 2005; Golynski et al.
2006]. In this section, we apply our succinct indexes for strings to improve previous
results. In particular, we design a high-order entropy-compressed text index.

We first present the following lemma to encode strings in zeroth order entropy while
supporting rank and select:

LEMMA 2.13. A string S of length n over alphabet [σ] can be represented using
nH0(S) + O(n lg σ/lg lg σ) bits to support string access and string rank for any literal
α ∈ [σ]∪ [σ̄] in O(lg lg σ) time, and string select for any character α ∈ [σ] in O(1) time.

PROOF. As in the proof of Theorem 2.9, we consider the conceptual table E for string
S. Each row of E is a bit vector, and we denote the αth row by E[α] for α ∈ [σ].
For each α ∈ [σ], we store E[α] using Lemma 2.2 in lg (n

nα) + o(nα) + O(lg lg n) bits,
where nα is the number of occurrences of α in S. To analyze the space cost of all the
E[α]’s, we make use of Stirling’s formula: n! = √

2πn(n
e)n(1 + O(1

n)). With this, we have
log2 n! = n log2 n − n log2 e + 1

2 log2 n + O(1). We thus have:

lg
(

n
nα

)
< log2

(
n
nα

)
+ 1

= log2 n! − log2 nα! − log2(n − nα)! + 1
= n log2 n − n log2 e − nα log2 nα + nα log2 e − (n − nα) log2(n − nα)

+ (n − nα) log2 e + 1
2

(log2 n − log2 nα − log2(n − nα)) + O(1)

= n log2 n − nα log2 nα − (n − nα) log2(n − nα) + O(1)
= (n − nα) log2 n + nα log2 n − nα log2 nα − (n − nα) log2(n − nα) + O(1)

= nα log2
n
nα

+ (n − nα) log2
n

n − nα

+ O(1) (1)

To analyze the second term of Eq. (1), we rewrite it into nα log2((1 + nα

n−nα
)

n−nα
nα). As

(1 + x)1/x approaches e from below when x goes to 0, this term is at most nα log2 e. With
Eq. (1), we have:

lg
(

n
nα

)
< nα log2

en
nα

+ O(1). (2)

ACM Transactions on Algorithms, Vol. 7, No. 4, Article 52, Publication date: September 2011.

Succinct Indexes for Strings, Binary Relations and Multilabeled Trees 52:13

Note that Eq. (2) is true even for the special case when nα = 0, if we follow the
interpretation that 0 log2 0 = 1 (this is used to define zeroth order entropy) to compute
nα log2(en/nα) = −nα log2(nα/(en)). Therefore, the space cost of E[α] in bits is less than
nα log2(en/nα) + o(nα) + O(lg lg n). Using this to sum the space cost of all the E[α]’s for
α ∈ [σ], the last two terms sum to O(n) + O(σ lg lg n) = O(n lg lg σ) (as σ ≤ n), while the
first term on the right-hand side sums to nH0(S)+n lg e. Therefore, the total space cost
is at most n(H0(S) + O(lg lg σ)) bits.

With the table E stored as shown, string select can be supported in O(1) time, as
string select(α, i) = bin selectE[α](1, i), for α ∈ [σ]. With the constant-time support
for string select on S, we can construct a succinct index using Theorem 2.10 to
support string rank and string access in O(lg lg n) time. This index uses n lg σ/ lg lg σ
bits according to the proof of Theorem 2.10, so the overall space cost is n(H0(S) +
O(lg σ/ lg lg σ)) bits.

Compared with Theorem 2.12, Lemma 2.13 compresses the string to zeroth order
entropy instead of high-order entropy, but it supports navigational operations more
efficiently. We will use this lemma to prove Theorem 2.15, which is our theorem on
succinct text indexes.

Another tool we use to design our succinct text index is compression boosting
[Giancarlo and Sciortino 2003; Ferragina et al. 2005a]. The concept of compression
boosting was proposed to design BWT-based compression algorithms to achieve good
guaranteed compression performance. Given a compression algorithm that can store
a string using space proportional to its zeroth order entropy, a compression booster
can use it to compress the string in space proportional to its kth order entropy. This
is based on the claim that compressing a string, T , up to its kth order entropy can be
achieved by optimally partitioning its Burrows-Wheeler transformed string, T BWT, and
using a zeroth-order compressor to compress each partition [Giancarlo and Sciortino
2003]. One variant of the compression boosting technique that we use was proposed by
Ferragina et al. [2004]:

LEMMA 2.14 [FERRAGINA ET AL. 2004]. Consider a compression algorithm A that can
store any string S of length p in less than pH0(S) + f (p) bits, where f (p) is a non-
decreasing concave function. Given a text string T of length n drawn from alphabet [σ],
there is a partition, S1, S2, . . . , Sz, of T BWT, such that, for any k ≤ 0, we have

z∑
i=1

(A(Si)) ≤ nHk(T) + σ k f (n/σ k),

where A(Si) is the space (in bits) required to store Si using algorithm A.
This partition can be computed in O(n) time.

With these results, we can now prove our theorem.

THEOREM 2.15. A text string T of length n over alphabet [σ] can be stored using
nHk(T) + O(n lg σ/lg lg σ) bits for any k ≤ β logσ n− 1 and 0 < β < 1. Given a pattern P
of length m, this encoding can answer existential and cardinality queries in O(mlg lg σ)
time, list each occurrence in O(lg n/ lgε

σ) time for any ε where 0 < ε < 1, and output a
substring of length l in O(l lg lg σ + lg n/ lgε

σ) time.

PROOF. As shown in Ferragina et al. [2004] and He et al. [2005], we can represent
suffix arrays by encoding the Burrows-Wheeler transformed string, T BWT, of the raw
text appropriately (see Sections 4.5, 4.6, and 4.7.2 in He [2007] for a detailed description

ACM Transactions on Algorithms, Vol. 7, No. 4, Article 52, Publication date: September 2011.

52:14 J. Barbay et al.

of these techniques). Ferragina et al. [2004] also presented how to design a high-order
entropy-compressed text index given an encoding of T BWT that occupies nH0(T BWT) bits
plus an appropriate lower-order term. Here we borrow these ideas, and combine them
with our results to prove this theorem.

We use Lemma 2.14 to partition T BWT into a set of strings S1, S2, . . . , Sz. We use
Lemma 2.13 to encode each string. We construct a bit vector B of length n, in which
B[i] = 1 iff there exists a string Sj , whose starting position is position i of T BWT.
We encode B using part (b) of Lemma 2.1. We construct a two-dimensional array
M[1..z][1..σ], where M[i][α] stores the total number of occurrences of character α in
strings S1, S2, . . . , Si−1. In addition, we construct an array N of size σ such that for
each alphabet symbol α, N[α] stores the number of characters in the text that lexico-
graphically precede it.

With these data structures, we can compute string rankT BWT (α, i) as follows. Since
the bit vector B records the starting positions of the strings Sj ’s, we can first locate the
string Sj that position i is in using the identity j = bin rankB(1, i). We also have po-
sition i of T BWT is the qth position of Sj , where q = i − bin selectB(1, j) + 1. By the
definition of M[α][j], we have string rankT BWT (α, i) = M[α][j] + string rankSj

(α, q). As
string rankSj

is supported in O(lg lg σ) time, we can compute string rankT BWT (α, i)
in O(lg lg σ) time. We can also compute string accessT BWT (i) in O(lg lg σ) time, as
T BWT[i] = string accessSj

(q).
With these operations supported, we now show how to answer queries. The main

idea is to use the algorithms in He et al. [2005] and He [2007] directly (the parameters
of auxiliary structures are slightly changed to achieve the desired results), and the
more efficient support for string rank and string access operations on T BWT allows us
to provide faster support for pattern matching. More precisely, to answer existential
and cardinality queries, we directly apply the backward search algorithm as in He
et al. [2005] and He [2007]. At the ith phase of the algorithm, we compute the range
of the suffix array, SA, of T , in which all the corresponding suffixes are prefixed with
P[i..m]. Each phase consists of string rank and string access operations on T BWT

plus some operations that take constant time. Therefore, existential and cardinality
queries can be answered in O(mlg lg σ) time. To answer listing queries, note that the
backward search algorithm returns the range of SA in which all the corresponding
suffixes are prefixed with P. Thus, it suffices to support the following operation: given
a position in SA, compute the offset of the suffix of T that corresponds to it. For
this, we mark every (lg n/(lgε

σ lg lg σ))th position of T and store the offsets of these
positions in an array I, sorted by lexicographic order of the suffixes starting at these
positions. This occupies lg n × n/(lg n/(lgε

σ lg lg σ)) = n lgε
σ lg lg σ bits. We use an

additional bit vector F of length n to indicate whether a given entry in SA points to
a position that is stored in S, and store F using Part (b) of Lemma 2.1 in o(n) bits
(as there are n lgε

σ lg lg σ/ lg n < n lg lg n/ lg1−ε n 1s in F). With these data structures
and the support of the operations stated in the previous paragraph, we can use the
algorithm of He et al. [2005, 2007] to list each occurrence of P in O(lg n/ lgε

σ) time.
Finally, to output a substring of length l starting at a given position, we store for every
(lg n/(lgε

σ lg lg σ))th position in T , the index of its corresponding entry in SA. This
auxiliary data structure of n lgε

σ lg lg σ bits allows us to directly apply the techniques
of He et al. [2005, 2007] to output a substring of length l in O(l lg lg σ + lg n/ lgε

σ)
time.

To analyze the space cost of all the data structures designed, the encodings of Sj ’s
occupy

∑z
i=1(|Si|H0(Si) + O(lg |Si| lg σ/ lg lg σ)) bits in total. The encoding of B occupies

lg (n
z)+o(n) bits. Array M occupies zσ lg n bits. Array N occupies σ lg n bits. All the other

data structures occupy O(n lgε
σ lg lg σ) bits in total. Therefore, the total space cost in

ACM Transactions on Algorithms, Vol. 7, No. 4, Article 52, Publication date: September 2011.

Succinct Indexes for Strings, Binary Relations and Multilabeled Trees 52:15

bits is:
z∑

i=1

(|Si|H0(Si) + O(lg |Si| lg σ/ lg lg σ)) + zσ lg n + lg
(

n
z

)
+ o(n)

+ σ lg n + O(n lgε
σ lg lg σ)

<

z∑
i=1

(|Si|H0(Si) + O(lg |Si| lg σ/ lg lg σ)) + z(σ + 1) lg n + σ lg n

+ O(n lgε
σ lg lg σ)

=
z∑

i=1

(|Si|H0(Si) + (σ + 1) lg n) +
z∑

i=1

O(lg |Si| lg σ/ lg lg σ) + σ lg n

+ O(n lgε
σ lg lg σ)

=
z∑

i=1

(|Si|H0(Si) + (σ + 1) lg n) + O(n lg σ/ lg lg σ) + σ lg n + O(n lgε
σ lg lg σ).

We then apply Lemma 2.14 to bound this value by:

nHk(T) + O(σ k+1 lg n) + O(n lg σ/ lg lg σ) + O(n lgε
σ lg lg σ)

= nHk(T) + O(σ k+1 lg n) + O(n lg σ/ lg lg σ).
(3)

When k ≤ β logσ n − 1 for 0 < β < 1, we have σ k+1 ≤ nβ . In this case, the second item
in Eq. (3) is bounded by o(n), so Eq. (3) is bounded by nHk(T) + O(n lg σ/lg lg σ).

Grossi et al. [2003] designed a text index that uses nHk +o(n) · lg σ bits, and supports
existential and cardinality queries in O(mlg σ + polylog(n)) time. Golynski et al. [2006]
reduced the lg σ factor in the query time to a lg lg σ , but their index is not compressed.
Our text index has the advantages of both these indexes.

3. BINARY RELATIONS

3.1. Background

Barbay et al. [2007] extended the problem of the encoding of strings to binary relations.
Consider a binary relation R between a set of objects, [n], and a set of labels, [σ], under
which each object can be associated with zero or more labels. Let t denote the number
of object-label pairs. Thus, R can be treated as t pairs from [n]×[σ]. They considered
the following operations:

—label rankR(α, x), the number of objects labeled α up to (and including) object x;
—label selectR(α, r), the position of the rth object labeled α;
—label accessR(x, α), whether object x is associated with label α;
—label nbR(α), the number of objects associated with label α;
—object rankR(x, α), the number of labels associated with object x up to (and including)

label α;
—object selectR(x, r), the rth label associated with object x;
—object nbR(x), the number of labels associated with object x.

As before, the subscript R is omitted when it is clear from the context. Based on a reduc-
tion from the support of rank/select on binary relations to that on strings, Barbay et al.
[2007] proposed an encoding of binary relations using t(lg σ + o(lg σ)) bits to support
the operators label rank and label access in O(lg lg σ) time, and label select in con-
stant time. Their encoding supports the operators label nb and object nb in O(1) time,

ACM Transactions on Algorithms, Vol. 7, No. 4, Article 52, Publication date: September 2011.

52:16 J. Barbay et al.

0 1 0 1 0
0 0 0 1 0
1 0 1 1 0
1 1 0 0 1

E=
ROWS = 3, 4, 1, 4, 3, 1, 2, 3, 4
COLUMNS = 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0

Fig. 2. An example of the encoding of a binary relation.

object rank in O((lg lg σ)2) time, and object select in O(lg lg σ) time. They gave an-
other encoding also using t(lg σ+o(lg σ)) bits that supports label nb, object select and
object nb in constant time, label select, object rank and label access in O(lg lg σ)
time, and label rank in O(lg lg σ lg lg lg σ) time.

3.2. Succinct Indexes

We consider a binary relation R, relating an object set [n] and a label set [σ], and
containing t pairs. We assume that each object is associated with at least one label
(thus t ≥ n), and n ≥ σ (the converse is symmetric). We show how to extend the results
to other cases by simple techniques after the proof of each theorem. We define the
interface of the ADT of a binary relation through the operator object select defined
in Section 2.1.2 that can be used to obtain the labels associated with a given object.

We generalize the definition of literals to binary relations:

Definition 3.1. Consider a binary relation formed by t pairs from an object set [n]
and a label set [σ]. An object x ∈ [n] matches literal α ∈ [σ] if x is associated with α. An
object x ∈ [n] matches literal ᾱ ∈ [σ̄] if x is not associated with α.

We also generalize the definition of α-predecessor and α-successor to binary relations.

Definition 3.2. Consider a binary relation formed by t pairs from an object set [n]
and a label set [σ], a literal α ∈ [σ]∪[σ̄] and an object x ∈ [n]. The α-predecessor of object
x, denoted by label pred(α, x), is the last object matching α before (and not including)
object x, if it exists. Similarly, the α-successor of object x, denoted by label succ(α, x),
is the first object matching α after (and not including) object x, if it exists.

We have the following theorem:

THEOREM 3.3. Given support for object select in f (n, σ, t) time on a binary relation
R formed by t pairs from an object set [n] and a label set [σ], there is a succinct index
using O(t lg σ/lg lg lg σ) bits that supports:

—label rank for any literal α ∈ [σ] ∪ [σ̄] in O((lg lg lg σ)2(f (n, σ, t) + lg lg σ)) time;
—label select for any label α ∈ [σ] in O((lg lg lg σ)(f (n, σ, t) + lg lg σ)) time;
—label pred and label succ for any label α ∈ [σ] in O((lg lg lg σ)2(f (n, σ, t) + lg lg σ))

time, and these two operations for any literal α ∈ [σ̄] in O(f (n, σ, t)) time;
—object rank and label access for any literal α ∈ [σ] ∪ [σ̄] in O((lg lg lg σ) f (n, σ, t) +

lg lg σ) time;
—label nb for any literal α ∈ [σ] ∪ [σ̄] and object nb in O(1) time.

PROOF. As with strings, we also conceptually treat a binary relation as an n×σ table
E, and entry E[α][x] = 1 iff object x is associated with label α. A binary relation on t
pairs from [n] × [σ] can be stored as follows [Barbay et al. 2007] (See Figure 2 for an
example):

—a string ROWS of length t drawn from alphabet [σ], such that the ith label of ROWS is
the label of the ith pair in the column-major order traversal of E;

—a bit vector COLUMNS of length n + t encoding the number of labels associated with
each object in unary.

ACM Transactions on Algorithms, Vol. 7, No. 4, Article 52, Publication date: September 2011.

Succinct Indexes for Strings, Binary Relations and Multilabeled Trees 52:17

To design a succinct index for binary relations, we explicitly store the bit vector
COLUMNS using Part (a) of Lemma 2.1 in n + t + o(n + t) bits. We now show how to
support string access on ROWS using object select. To compute the ith character
in ROWS, we need compute the corresponding object, x, and the rank, r, of the corre-
sponding label among all the labels associated with x. The position of the 1 in COLUMNS
corresponding to the ith character in ROWS is l = bin selectCOLUMNS(1, i). Therefore, x =
bin rankCOLUMNS(0, l) + 1, and r = l − bin selectCOLUMNS(0, x − 1) if x > 1 (r = l otherwise).
Thus, with these additional operations, we can support string access in O(f (n, σ, t))
time using one call to object select in addition to some constant-time operations.

We store a succinct index for ROWS using Theorem 2.9 in O(t lg σ/lg lg lg σ) bits. As
we can support string access on ROWS using object access, the index can support
string rank for any literal α ∈ [σ]∪ [σ̄], string pred and string succ for any character
α ∈ [σ] in O((lg lg lg σ)2(f (n, σ) + lg lg σ)) time, string pred and string succ for any
literal α ∈ [σ̄] in O(f (n, σ)) time, and string select for any character α ∈ [σ] in
O(lg lg lg σ (f (n, σ) + lg lg σ)) time. With this, we can use the approach of Barbay et al.
[2007] to support label rank, label select and label access operations on binary
relations using rank/select on ROWS and COLUMNS as follows.

To compute label rank(α, x), we observe that the position of the 0 in COLUMNS that
corresponds to the xth column of E is j = bin selectCOLUMNS(0, x). Since each 1 stored in
COLUMNS corresponds to a character of ROWS, the position of the last label associated with
object x in ROWS is k = bin rankCOLUMNS(1, j). As label rank(α, x) = string rankROWS(α, k),
we can support operation label rank in O((lg lg lg σ)2(f (n, σ, t) + lg lg σ)) time.

To compute label select(α, r), we first observe that the position of the rth occur-
rence of α in ROWS is u = string selectROWS(α, r). The position of the 1 that corresponds
to this character in COLUMNS is v = bin selectCOLUMNS(1, u), which corresponds to object
bin rankCOLUMNS(0, v)+1. This object is the answer. Thus label select can be supported
in O(lg lg lg σ (f (n, σ, t) + lg lg σ)) time.

To compute object nb(x), we observe that the result is the xth number encoded
in COLUMNS in unary. Thus object nb(x) = bin rankCOLUMNS(1, bin selectCOLUMNS(0, x)) −
bin rankCOLUMNS(1, bin selectCOLUMNS(0, x − 1)), so we can support object nb in constant
time. We can support label nb for α ∈ [σ] in the same manner by encoding the number
of objects associated with each label in unary in another bit vector W , which occupies
n + t + o(n + t) bits. For the example in Figure 2, W = 1101011101110. To support
label nb for α ∈ [σ̄], we use the equation label nb(c̄) = n − label nb(c) for c ∈ [σ].

To support object rank, we construct, for each object y, a bit vector Gy of length
σ , in which Gy[β] = 1 iff object y is associated with label β and object rank(y, β)
is divisible by lg lg σ . We encode Gy using Lemma 2.4. Let lx be the number
of labels associated with x. Then the number of 1s in Gy is
lx/ lg lg σ�. Hence,
Gy occupies O(
lx/ lg lg σ� × lg σ) = O(lx lg σ/ lg lg σ) bits, and the total space
cost of all the Gy’s is O(t lg σ/ lg lg σ) bits. To compute object rank(x, α), let
r1 = lg lg σ
object rank(x, α)/ lg lg σ� and r2 = r1 + lg lg σ − 1. We can compute r1 and
r2 in O(lg lg σ) time, as
object rank(x, α)/ lg lg σ� is equal to bin rank(1, α) on Gx. As
r1 ≤ object rank(x, α) ≤ r2, we then perform a binary search in the range [r1..r2]. In
each phase of the loop, we use object select to check whether we have found the an-
swer. Thus, we can support operator object rank in O((lg lg lg σ) f (n, σ, t)+lg lg σ) time.

To compute label access(x, α), we make use of the fact that object x is labeled
α iff object rank(x, α) − object rank(x, α − 1) is 1. Therefore, label access can be
supported in O((lg lg lg σ) f (n, σ, t) + lg lg σ) time.

It now suffices to design algorithms to support label pred and label succ. We show
how to compute label pred(α, x); label succ can be supported similarly. The position of
the first label associated with x in ROWS is p = bin rankCOLUMNS(1, bin selectCOLUMNS(0, x −
1)) + 1. Thus, the position of the last occurrence of character α in ROWS[1..p − 1] is

ACM Transactions on Algorithms, Vol. 7, No. 4, Article 52, Publication date: September 2011.

52:18 J. Barbay et al.

q = string predROWS(α, p), and the object associated with the label corresponding to this
occurrence is bin rankCOLUMNS(0, bin selectCOLUMNS(1, q)) + 1. This object is the answer.
Hence, we can support label pred(α, x) for α ∈ [σ] in O((lg lg lg σ)2(f (n, σ, t) + lg lg σ))
time, and the same operation for α ∈ ¯[σ] in O(f (n, σ, t)) time.

The space of the index is the sum of space cost of storing COLUMNS, W , Gy’s and the
index for ROWS, which is at most n + t + o(n + t) + n + t + o(n + t) + t lg σ/ lg lg σ +
O(t lg σ/lg lg lg σ) = O(t lg σ/lg lg lg σ) bits.

Note that this approach also works without the assumption that each object is as-
sociated with at least one label, though we can not use the inequality t ≥ n to an-
alyze the space cost. Thus, without such an assumption, our succinct index occupies
O(t lg σ/lg lg lg σ + n) bits.

We compare our result with the information-theoretic lower bound of the represen-
tation of a binary relation. To compute the number of distinct binary relations formed
by t pairs from an object set [n] and a label set [σ], we observe that the set of these t
pairs is a subset of the set [n] × [σ]. Hence, there are

(nσ

t

)
such binary relations. Thus,

the information-theoretic lower bound of representing a binary relation is lg (nσ

t) bits.
Barbay et al. [2007] showed that when the average number of labels associated with
each object is small (more precisely, if t/n = σ o(1)), this lower bound is t(lg σ − o(lg σ))
bits. Therefore, the space cost of our succinct index is asymptotically smaller than the
information-theoretic minimum space, when t/n = σ o(1) and t ≥ n.

As we treat a binary relation as an n × σ Boolean matrix with t 1s in the proof of
Theorem 3.3, our result also applies to the problem of succinctly representing a Boolean
matrix to allow rank/select on rows and columns. By the analysis in the previous
paragraph, our solution is particularly space-efficient for sparse Boolean matrices.

3.3. Applications

We now apply our succinct indexes to design a succinct integrated encoding for binary
relations using space close to the information-theoretic lower bound.

THEOREM 3.4. A binary relation R formed by t pairs from an object set [n] and a
label set [σ] can be represented using lg (nσ

t) + O(t lg σ

lg lg lg σ
) bits to support:

—label rank for any literal α ∈ [σ] ∪ [σ̄] in O(lg lg σ (lg lg lg σ)2) time;
—label select for any label α ∈ [σ] in O(lg lg σ lg lg lg σ) time;
—label pred and label succ for any label α ∈ [σ] in O(lg lg σ (lg lg lg σ)2) time, and

these two operations for any literal α ∈ [σ̄] in O(1) time;
—object rank and label access for any literal α ∈ [σ] ∪ [σ̄] in O(lg lg σ) time;
—label nb for any literal α ∈ [σ] ∪ [σ̄], object select and object nb in O(1) time.

PROOF. We construct the bit vector COLUMNS as in the proof of Theorem 3.3 using
n + t + o(n + t) bits. We also construct another bit vector BR, which lists the bits of
the conceptual table E (see the proof of Theorem 3.3 for the definition of E) in the
column-major order. For the example in Figure 2, BR = 00111001001011100001. We
store BR using Lemma 2.2 in lg

(nσ

t

) + o(t) + O(lg lg(nσ)) bits.
To compute object select(x, r), we need locate the row that contains the rth 1 in

the xth column of E. The total number of 1s in columns 1, 2, ..., x − 1 of E is i =
bin rankCOLUMNS(1, bin selectCOLUMNS(0, x − 1)). Thus, the rth 1 in the xth column of E is
the (r + i)th 1 in BR, whose position in BR is j = bin selectBR(1, r + i), which is in the
(j − (x − 1)σ)th row of E. Hence, object select(x, r) = j − (x − 1)σ . Therefore, we can
support object select in constant time.

With the constant-time support for object select, we can construct a succinct index
for R using Theorem 3.3, and the support for the operations listed follows directly.

ACM Transactions on Algorithms, Vol. 7, No. 4, Article 52, Publication date: September 2011.

Succinct Indexes for Strings, Binary Relations and Multilabeled Trees 52:19

The overall space cost in bits is n + t + o(n + t) + lg
(nσ

t

) + o(t) + O(lg lg(nσ)) +
O(t lg σ/lg lg lg σ) = lg

(nσ

t

) + O(t lg σ/lg lg lg σ), as t ≥ n ≥ σ .

As with Theorem 3.3, this approach also works without the assumption that each
object is associated with at least one label, though we can not use the inequality t ≥ n to
analyze the space cost. Thus, without such an assumption, our succinct representation
occupies lg (nσ

t) + O((t lg σ/lg lg lg σ) + n) bits. This is close to the information-theoretic
minimum.

4. MULTILABELED TREES

4.1. Background

4.1.1. Ordinal Trees. An ordinal tree is a rooted tree in which the children of a node
are ordered and specified by their ranks. Preorder and postorder traversals of such
trees are well-known. We also use a different order for traversals, namely DFUDS (depth
first unary degree sequence) order. The DFUDS sequence represents a node of degree d
by d opening parentheses followed by a closing parenthesis. All the nodes are listed in
preorder (an extra opening parenthesis is added to the beginning of the sequence), and
each node is numbered by its opening parenthesis in its parent’s description (DFUDS
number). See Figure 3 in Section 4 for an example.

Various succinct data structures were designed to represent ordinal trees [Jacobson
1989; Munro and Raman 2001; Geary et al. 2006; Benoit et al. 2005; Jansson et al.
2007]. Benoit et al. [2005] proposed the DFUDS representation of an ordinal tree using
2n + o(n) bits to support various navigational operations, which is close to the lower
bound suggested by information theory (2n−�(lg n) bits). Jansson et al. [2007] extended
this representation to support a richer set of navigational operations. Some of the
operations supported in Benoit et al. [2005] and Jansson et al. [2007] are (we refer to
each node by its preorder number):

—child(x, i), the ith child of node x for i ≥ 1;
—child rank(x), the number of left siblings of node x;
—depth(x), the depth of node x, that is, the number of edges in the rooted path to x;
—level anc(x, i), the ith ancestor of node x for i ≥ 0 (given a node x at depth d, its ith

ancestor is the ancestor of x at depth d − i);
—desc nb(x), the number of descendants of node x;
—degree(x), the degree of node x, that is, the number of its children;
—LCA(x, y), the lowest common ancestor of nodes x and y.

4.1.2. Labeled and Multilabeled Trees. A labeled tree is a tree in which each node is
associated with a label from a given alphabet [σ], while in a multilabeled tree, each node
is associated with at least one label, that is, each node is associated with an nonempty
subset of [n]. We use n to denote the number of nodes in a labeled/multilabeled tree,
and t to denote the total number of node-label pairs in a multilabeled tree. We assume
that labeled/multilabeled trees are ordinal trees.

Geary et al. [2006] defined labeled extensions of the first six operators defined in
Section 4.1.1. Their data structures support those operators in constant time using
simple auxiliary data structures to store label information in addition to their succinct
ordinal tree representation [Geary et al. 2006]. However, the overall space required
is 2n + n lg σ + O(σ lg lg lg n/ lg lg n) bits, which is much more than the information-
theoretic lower bound of n log2 σ + 2n − O(lg n) bits.

Ferragina et al. [2005b] proposed another structure based on the xbw transform of
a labeled tree, which conceptually builds a compressed suffix array for all the labeled
rooted paths in the tree. It supports locating the first child of a given node x labeled α in

ACM Transactions on Algorithms, Vol. 7, No. 4, Article 52, Publication date: September 2011.

52:20 J. Barbay et al.

constant time, and finding all the children of x labeled α in constant time per child. But
it does not efficiently support the retrieval of the ancestors or descendants by labels.
Also it uses 2n lg σ + O(n) bits, which is about twice the minimum space required to
encode the tree. Ferragina et al. [2005b] also showed how to use a wavelet tree to
reduce the size to n lg σ + O(n) bits, but each of the above operations then takes O(lg σ)
time. This structure can be further compressed to nHk + O(n) bits, where Hk is the
kth order entropy of labeled trees they defined based on the context of upward paths
of the nodes. Another interesting operation supported by this representation is the
subpath query, which returns the number of nodes whose upward paths are prefixed
with a given pattern. Given a pattern of length p, this representation can answer the
subpath query in O(p lg σ) time.

Based on the succinct integrated encoding for binary relations, Barbay et al. [2007]
gave an encoding for labeled trees using n

(
lg σ + o(lg σ)

)
bits to support the retrieval

of the descendants or (closest) ancestors by labels in O(lg lg σ) time per node. It also
supports the computation of the number of descendants (of a given node) associated
with a given label in O(lg lg σ) time. The same technique is generalized to represent
multilabeled trees in t

(
lg σ + o(lg σ)

)
bits and support the same operations.

4.1.3. Balanced Parentheses. One key structure used in many succinct tree represen-
tations is a balanced parenthesis sequence. Munro and Raman [2001] showed how to
succinctly represent a balanced parenthesis sequence S of length 2n to support the
following operations:

—rank openS(i) (rank closeS(i)), the number of opening (closing) parenthesis in the
sequence up to (and including) position i;

—select openS(i) (select closeS(i)), the position of the ith opening (closing) paren-
thesis in the sequence;

—find closeS(i) (find openS(i)), the matching closing (opening) parenthesis for the
opening (closing) parenthesis at position i;

—excessS(i), the number of opening parentheses minus the number of closing paren-
theses in the sequence up to (and including) position i;

—encloseS(i), the closest enclosing (matching parenthesis) pair of a given matching
parenthesis pair whose opening parenthesis is at position i.

The subscript S is omitted when it is clear from the context. Their result is:

LEMMA 4.1 [MUNRO AND RAMAN 2001]. A sequence of balanced parentheses S of
length 2n can be represented using 2n + o(n) bits to support the operations rank open,
rank close, select open, select close, find close, find open, excess and enclose in
O(1) time.

4.2. Succinct Indexes

We now consider a multilabeled tree. Recall that n denotes the number of nodes in the
tree, [σ] denotes the label alphabet, and t denotes the total number of node-label pairs.
As with binary relations, we adopt the assumption that each node is associated with
at least one label (thus, t ≥ n), and that n ≥ σ . The results can be extended to other
cases by simple reductions shown in Section 3 for binary relations. To design succinct
indexes for multilabeled trees, we define the interface of the ADT of a multilabeled tree
through the following operator: node label(x, i), which returns the ith label associated
with node x in lexicographic order.

We store the tree structure as part of the index (as it takes negligible space), and
hence do not assume the support for any navigational operations in the ADT. Recall
that we refer to nodes by their preorder numbers (i.e., node x is the xth node in the

ACM Transactions on Algorithms, Vol. 7, No. 4, Article 52, Publication date: September 2011.

Succinct Indexes for Strings, Binary Relations and Multilabeled Trees 52:21

DFUDS: ((()((()))(()))((())))

6 1110954

2 3

1

87

Fig. 3. An ordinal tree (where each node is assigned its rank in DFUDS order) and its DFUDS representa-
tion [Benoit et al. 2005].

preorder traversal). To support the navigational operations on an ordinal tree, we have
the following lemma:

LEMMA 4.2. Using the DFUDS representation [Benoit et al. 2005; Jansson et al. 2007],
an ordinal tree with n nodes can be encoded in 2n + o(n) bits to support all the naviga-
tional operations defined in Section 4.1.1 and the following operations in O(1) time:

—find dfuds(x), the rank in DFUDS order of the xth node in preorder;
—find pre(r), the rank in preorder of the rth node in DFUDS order.

PROOF. As it is shown in Benoit et al. [2005] and Jansson et al. [2007] how to sup-
port all the navigational operations listed in the lemma except node rankDFUDS and
node selectDFUDS, we need only provide support for these two operations. We use the
operations supported by Lemma 4.1, as the DFUDS sequence is a balanced parenthesis
sequence encoded using this lemma [Benoit et al. 2005; Jansson et al. 2007].

In the balanced parentheses representation of the DFUDS sequence of the tree [Benoit
et al. 2005], each node corresponds to an opening parenthesis and a closing parenthesis,
though not necessarily a matching pair. In the sequence, the opening parentheses
correspond to nodes in DFUDS order, while the closing parentheses correspond to nodes
in preorder. For example, in Figure 3, the 6th node in DFUDS order (which is the 5th
node in preorder) corresponds to the 6th opening parenthesis, and the 5th closing
parenthesis.

With this observation, to compute find dfuds for the node x (recall that it corresponds
to the xth closing parenthesis), we need compute the rank of the corresponding opening
parenthesis among all the opening parentheses. To compute this value, we consider
the subsequence of the DFUDS representation of the tree that represents a node and
all its descendants. In this subsequence, the number of closing parentheses minus the
number of opening parentheses is equal to 1. Therefore, if x is the rth child of its
parent, then the closing parenthesis that comes before the DFUDS subsequence of node
x matches the opening parenthesis that is r positions before the closing parenthesis
in the DFUDS subsequence of x’s parent. To make use of this fact, we first find the
opening parenthesis that matches the closing parenthesis that comes before the DFUDS
subsequence of node x. Its position in the sequence is j = find open(select close(x −
1)). With j, we can compute the starting position of the subsequence of the parent
of x, which is p = select close(rank close(j)) + 1, and child rank(x), which is r =
select close(rank close(p) + 1) − j. Finally, rank open(p + r − 1) is the result.

The computation of find pre(r) is exactly the inverse of this process.

ACM Transactions on Algorithms, Vol. 7, No. 4, Article 52, Publication date: September 2011.

52:22 J. Barbay et al.

We now define permuted binary relations and present a related lemma that we use
to design succinct indexes for multilabeled trees.

Definition 4.3. Given a permutation π on [n] and a binary relation R ⊂ [n] × [σ],
the permuted binary relation π (R) is the relation such that (x, α) ∈ π (R) if and only if
(π−1(x), α) ∈ R.

LEMMA 4.4. Consider a permutation π on [n], such that the access to π (i) and π−1(i) is
supported in O(1) time. Given a binary relation R ⊂ [n]×[σ] of cardinality t, and support
for object select on R in f (n, σ, t) time, there is a succinct index using O(t lg σ/lg lg lg σ)
bits that supports on both R and π (R):

—label rank for any literal α ∈ [σ] ∪ [σ̄] in O((lg lg lg σ)2(f (n, σ, t) + lg lg σ)) time;
—label select for any label α ∈ [σ] in O((lg lg lg σ)(f (n, σ, t) + lg lg σ)) time;
—label pred and label succ for any character α ∈ [σ] in O((lg lg lg σ)2(f (n, σ, t) +

lg lg σ)) time, and these two operations for any literal α ∈ [σ̄] in O(f (n, σ, t)) time;
—object rank and label access for any literal α ∈ [σ] ∪ [σ̄] in O((lg lg lg σ) f (n, σ, t) +

lg lg σ) time;
—label nb for any literal α ∈ [σ] ∪ [σ̄] and object nb in O(1) time.

PROOF. As object selectπ(R)(x, r) = object selectR(π−1(x), r), we can support the
operator object select on π (R) in f (n, σ, t) time. Therefore, we can use Theorem 3.3
to construct succinct indexes for R and π (R) and use the combined data structure to
support these operations. The total space cost is thus O(t lg σ/lg lg lg σ) bits.

To efficiently find all the α-ancestors of any given node, for each node and for each
of its labels α we encode the number of α-ancestors of x. To measure the maximum
number of such ancestors, we define the recursivity of a node, motivated by the notion
of document recursion level of a given XML document [Zhang et al. 2006].

Definition 4.5. The recursivity ρα of a label α in a multilabeled tree is the maximum
number of occurrences of α on any rooted path of the tree. The average recursivity ρ of
a multilabeled tree is the average recursivity of the labels weighted by the number of
nodes associated with each label α (denoted by tα): ρ = 1

t

∑
α∈[σ](tαρα).

Note that ρ is usually small in practice, especially for XML trees. Zhang et al. [2006]
observed that in practice the document recursion level (when translated to our more
precise definition, it is the maximum value of all ραs minus one, which can be easily
used to bound ρ) is often very small: in their data sets, it was never larger than 10.

With this definition, we can now present our results:

THEOREM 4.6. Consider a multilabeled tree on n nodes and σ labels, associated in
t pairs, of average recursivity ρ. Given support for node label in f (n, σ, t) time, there
is a succinct index using O(t lg σ/lg lg σ) bits that supports (for a given node x) the
enumeration of:

—the set, D, of α-descendants of x in O(|D|(lg lg lg σ)2(f (n, σ, t) + lg lg σ)) time;
—the set, C, of α-children of x in O(|C|(lg lg lg σ)2(f (n, σ, t) + lg lg σ)) time;
—the set, A, of α-ancestors of x in O((lg lg lg σ)2(f (n, σ, t) + lg lg σ) + |A|(lg lg ρα +

lg lg lg σ (f (n, σ, t) + lg lg σ))) time using t lg ρ + O(t lg ρ/lg lg ρ) bits of extra space.

PROOF. We encode the underlying ordinal tree structure in 2n + o(n) bits using
Lemma 4.2. The sequence of nodes referred by their preorder (DFUDS order) numbers
and the associated label sets form a binary relation Rp (Rd). Operations find dfuds and
find pre provide constant-time conversions between the preorder numbers and the
DFUDS order numbers, and node label supports object access on Rp. By Lemma 4.4,

ACM Transactions on Algorithms, Vol. 7, No. 4, Article 52, Publication date: September 2011.

Succinct Indexes for Strings, Binary Relations and Multilabeled Trees 52:23

we can construct succinct indexes for Rp and Rd using O(t lg σ/lg lg σ) bits, and support
label rank, label select and label access operations on either of them efficiently.

Using the technique of Barbay et al. [2007], the succinct index for Rp enables us to
enumerate all the descendants of node x matching label α in O(|D|(lg lg lg σ)2(f (n, σ, t)+
lg lg σ)) time (we can alternatively use the succinct index for Rd to achieve the same
result). More precisely, we keep using label succ to retrieve the nodes after but not
including x that are associated with α, till we reach a node whose preorder number is
greater than or equal to (x+desc nb(x)). Similarly, the succinct index of Rd enables us to
enumerate all the children of node x matching α in O(|C|(lg lg lg σ)2(f (n, σ, t) + lg lg σ))
time, as the DFUDS order traversal lists the children of any given node consecutively.

As there is no order in which the ancestors of each node are consecutive, we store for
each label α of a node x the number of ancestors of x (including x) matching α. To be
specific, for each label α such that ρα > 1, we represent those numbers in one string
Sα ∈ [ρα]tα (see Definition 4.5 for the definitions of ρα and tα), where the ith number of
Sα corresponds to the ith node labeled α in preorder. The lengths of the strings Sαs are
implicitly encoded in Rp. We also encode for each label α its recursivity ρα in unary,
using at most t + σ + o(t + σ) bits, to provide constant-time access of each ρα. We use
the encoding of Golynski et al. [2006] (see Section 2.1.2) to encode each string Sα in
tα(lg ρα + O(lg ρα/ lg lg ρα)) bits to support string rank and string access in O(lg lg ρα)
time and string select in constant time. The total space used by these strings is∑

α∈[σ] tα(lg ρα + O(lg ρα/ lg lg ρα)) bits. By concavity of the logarithmic function and the
function g(n) = lg n/ lg lg n, this space cost is at most⎛

⎝ ∑
α∈[σ]

tα

⎞
⎠ (

lg
(∑

α∈[σ] tαρα∑
α∈[σ] tα

)
+ O

(
f
(∑

α∈[σ] tαρα∑
α∈[σ] tα

)))
= t lg ρ + O

(
t lg ρ

lg lg ρ

)
.

To support the enumeration of all the α-ancestors of a node x, we first find from Rp
the number, px, of nodes labeled α preceding x in preorder using label rank. Then, we
iterate over i starting from 1. In each iteration, we first find the position pi in Sα of
the occurrence of i immediately preceding position px: it corresponds to the pith node
labeled α in preorder (which can be located using label select on Rp). If this node is an
ancestor of x (this can be checked using depth and level anc in constant time), output
it, increment i and iterate, otherwise stop. Each iteration consists of a label select
operation on Rp and some rank and select operations on Sα, so each is performed in
O(lg lg ρα + (lg lg lg σ)(f (n, σ, t) + lg lg σ)) time. Hence, it takes O((lg lg lg σ)2(f (n, σ, t) +
lg lg σ) + |A|(lg lg ρα + (lg lg lg σ)(f (n, σ, t) + lg lg σ))) time to enumerate A.

We can also support the retrieval of the first α-descendant, child or ancestor of node
x that appears after node y in preorder.

COROLLARY 4.7. The structure of Theorem 4.6 also supports, for any two given nodes
x and y, the selection of:

—the first α-descendant of x after y in preorder in O((lg lg lg σ)2(f (n, σ, t)+ lg lg σ)) time;
—the first α-child of x after y in preorder in O((lg lg lg σ)2(f (n, σ, t) + lg lg σ)) time;
—the first α-ancestor of x after y in preorder in O((lg lg lg σ)2(f (n, σ, t)+lg lg σ)+lg lg ρα)

time.

PROOF. Using the index in Theorem 4.6, we can easily support the first operation;
it suffices to retrieve the first node labeled α after y using label succ on Rp and then
check whether it is a descendant of x. The support for the second operation is nontrivial
only when y is a descendant of x (otherwise, the result is either the first α-child of x
or ∞). In this case, we first locate the child, u, of x that is also an ancestor of y using

ACM Transactions on Algorithms, Vol. 7, No. 4, Article 52, Publication date: September 2011.

52:24 J. Barbay et al.

depth and level anc. Then, the problem is reduced to the selection of the first α-child
of x after u in preorder, which can be computed by performing label succ on Rd.

To support the search for the first α-ancestor of x after y, we return ∞ if x precedes y
in preorder. Otherwise, it suffices to consider the case when y is an ancestor of x, because
if not, the problem can be reduced to the search for the first α-ancestor of node x after
node LCA(x, y). Using label succ on the relation Rp and some navigational operators,
we can find the first α-descendant z of y in preorder in O((lg lg lg σ)2(f (n, σ, t) + lg lg σ))
time. Node z is not necessarily an ancestor of x, but it has the same number, i, of
α-ancestors as the node we are looking for. We can retrieve i from the string Sα in
O(lg lg ρα) time. Finally, the first α-ancestor of x after y is the α-node corresponding to
the value i immediately preceding the position corresponding to x in Sα, which can be
found in O((lg lg lg σ)2(f (n, σ, t) + lg lg σ) + lg lg ρα) time.

The operations on multilabeled trees are important for the support of XPath queries
for XML trees [Barbay et al. 2007; Barbay 2006]. The main idea of our algorithms is to
construct indexes for binary relations for different traversal orders of the trees. Note
that without succinct indexes, we would encode different binary relations separately
and thus waste a lot of space.

4.3. Applications

We now design a succinct integrated encoding of multilabeled trees.

THEOREM 4.8. Consider a multilabeled tree on n nodes and σ labels, associated in t
pairs, of average recursivity ρ. It can be represented using lg (nσ

t)+O(t lg σ

lg lg σ
) bits to support

(for a given node x) the enumeration of:

—the set, D, of α-descendants of x in O(|D|(lg lg lg σ)2 lg lg σ) time;
—the set, C, of α-children of x in O(|C|(lg lg lg σ)2 lg lg σ) time;
—the set, A, of α-ancestors of x in O((lg lg lg σ)2 lg lg σ + |A|(lg lg ρα + lg lg σ lg lg lg σ))

time using t lg ρ + O(t lg ρ/lg lg ρ) bits of extra space.

It also supports (for any two given nodes x and y) the selection of:

—the first α-descendant of x after y in preorder in O((lg lg lg σ)2 lg lg σ) time;
—the first α-child of x after y in preorder in O((lg lg lg σ)2 lg lg σ) time;
—the first α-ancestor of x after y in preorder in O((lg lg lg σ)2 lg lg σ + lg lg ρα) time using

t lg ρ + O(t lg ρ/lg lg ρ) bits of extra space.

PROOF. In the proofs of Theorem 4.6 and Corollary 4.7, we use Theorem 3.4 to encode
the binary relation Rp, and construct a succinct index for Rd using Lemma 4.4. This
theorem immediately follows.

The discussions in Section 3.3 on the more general case of binary relations where
each object may be associated with zero or more labels (instead of at least one label)
also apply to the more general case for multilabeled trees where each node may be
associated with zero or more labels.

Using the approach in Section 2.3.1, we can also design succinct encodings for bi-
nary relations and multilabeled trees based on our succinct indexes, and compress the
underlying strings (recall that we reduce the operations on binary relations and multi-
labeled trees to rank/select on strings and bit vectors) to high-order entropies. Although
there is no standard definition for the entropy of binary relations or multi-labeled trees
so that we cannot measure the compression theoretically, we can still achieve much
compression in practice.

ACM Transactions on Algorithms, Vol. 7, No. 4, Article 52, Publication date: September 2011.

Succinct Indexes for Strings, Binary Relations and Multilabeled Trees 52:25

5. CONCLUSION

We have introduced the notion of succinct indexes for the design of data structures.
We have shown their advantages by presenting succinct indexes for strings, binary
relations, multilabeled trees and multilabeled graphs, and by applying them to various
applications.

Using our techniques, we have designed a succinct encoding that represents a string
of length n over an alphabet of size σ using nHk(S)+lg σ ·o(n)+O(n lg σ/lg lg lg σ) bits to
support access/rank/select operations in o((lg lg σ)1+ε) time, for any fixed constant ε > 0.
This is the first compressed representation of strings supporting rank/select operations
efficiently that occupies space proportional to the high-order entropies of strings. We
have further designed a succinct text index using nH0(S) + O(n lg σ/lg lg σ) bits that
supports pattern matching queries in O(mlg lg σ + occ lg n/ lgε

σ) time, for a given
pattern of length m. Previous results on this problem either have a lg σ factor instead
of lg lg σ in terms of running time [Grossi et al. 2003], or are not compressed [Golynski
et al. 2006]. We have also designed a succinct encoding that represents a binary relation
formed by t pairs between n objects and σ labels using lg (nσ

t) + O(t lg σ/lg lg lg σ) bits
to support various types of rank/select operations efficiently. This space cost is close to
the information-theoretic minimum. Our succinct representation of multi-labeled trees
supports label-based ancestor, child and descendant queries at the same time, while
previous results do not [Geary et al. 2006; Ferragina et al. 2005b; Barbay et al. 2007].

The concept of succinct indexes is of both theoretical and practical importance to the
design of data structures. In theory, the separation of the ADT and the index enables
one to design an encoding of the given data to achieve desired results or tradeoffs more
easily, as the encoding need only support the ADT. In addition, to support new oper-
ations, it suffices to design additional succinct indexes without redesigning the whole
structure. In practice, this concept allows developers to engineer the implementation
of ADTs and succinct indexes separately. The fact that multiple succinct indexes for
the same ADT can be easily combined to provide one succinct index makes it possible
to further divide the implementation of succinct indexes into several (possibly concur-
rent) steps. This is good software engineering practice, to allow separate testing and
concurrent development, and to facilitate the design of expandable software libraries.
Furthermore, succinct indexes provide a way to support efficient operations on implicit
data, which is common in both theory and practice. We thus expect that the concept of
succinct indexes will influence the design of succinct data structures.

There are some related open problems. First, it is not known whether the space
costs of our succinct indexes are optimal. Thus, one open problem is to prove tight
lower bounds of the space required by succinct indexes of strings and binary relations,
or to further improve the upper bounds. Second, the term t · o(lg σ) of representing a
binary relation in Theorem 3.4 is a second-order term only when t/n = σ o(1). Thus it
is an open problem to reduce this term. Finally, for multilabeled trees, as it requires
t lg ρ + O(t lg ρ/lg lg ρ) bits of extra space to support the efficient retrieval of the α-
ancestors of a given node, an open problem is to reduce this additional storage cost, or
to prove that it is necessary.

REFERENCES

BARBAY, J. 2006. Adaptive search algorithm for patterns, in succinctly encoded XML. Tech. rep. CS-2006-11,
University of Waterloo, Ontario, Canada.

BARBAY, J., GOLYNSKI, A., MUNRO, J. I., AND RAO, S. S. 2007. Adaptive searching in succinctly encoded binary
relations and tree-structured documents. Theoret. Comput. Sci. 387, 3, 284–297.

BARBAY, J., HE, M., MUNRO, J. I., AND RAO, S. S. 2007. Succinct indexes for strings, binary relations and
multi-labeled trees. In Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms.
680–689.

ACM Transactions on Algorithms, Vol. 7, No. 4, Article 52, Publication date: September 2011.

52:26 J. Barbay et al.

BENOIT, D., DEMAINE, E. D., MUNRO, J. I., RAMAN, R., RAMAN, V., AND RAO, S. S. 2005. Representing trees of
higher degree. Algorithmica 43, 4, 275–292.

CLARK, D. R. AND MUNRO, J. I. 1996. Efficient suffix trees on secondary storage. In Proceedings of the 7th
Annual ACM-SIAM Symposium on Discrete Algorithms. 383–391.

DELPRATT, O., RAHMAN, N., AND RAMAN, R. 2006. Engineering the LOUDS succinct tree representation. In
Proceedings of the 5th International Workshop on Experimental Algorithms. 134–145.

DEMAINE, E. D. AND LÓPEZ-ORTIZ, A. 2003. A linear lower bound on index size for text retrieval. J. Algor. 48, 1,
2–15.

FERRAGINA, P., GIANCARLO, R., MANZINI, G., AND SCIORTINO, M. 2005a. Boosting textual compression in optimal
linear time. J. ACM 52, 4, 688–713.

FERRAGINA, P., LUCCIO, F., MANZINI, G., AND MUTHUKRISHNAN, S. 2005b. Structuring labeled trees for optimal
succinctness, and beyond. In Proceedings of the 46th IEEE Symposium on Foundations of Computer
Science. 184–196.

FERRAGINA, P. AND MANZINI, G. 2005. Indexing compressed text. J. ACM 52, 4, 552–581.
FERRAGINA, P., MANZINI, G., MÄKINEN, V., AND NAVARRO, G. 2004. An alphabet-friendly FM-index. In Proceedings

of the 11th Symposium on String Processing and Information Retrieval. Lecture Notes in Computer
Science, vol. 3246. Springer-Verlag, 150–160.

GÁL, A. AND MILTERSEN, P. B. 2003. The cell probe complexity of succinct data structures. In Proceedings of
the 30th International Colloquium on Automata, Languages and Programming. 332–344.

GEARY, R. F., RAMAN, R., AND RAMAN, V. 2006. Succinct ordinal trees with level-ancestor queries. ACM Trans.
Algor. 2, 4, 510–534.

GIANCARLO, R. AND SCIORTINO, M. 2003. Optimal partitions of strings: A new class of Burrows-Wheeler com-
pression algorithms. In Proceedings of the 14th Annual Symposium on Combinatorial Pattern Matching.
129–143.

GOLYNSKI, A. 2007. Optimal lower bounds for rank and select indexes. Theoret. Comput. Sci. 387, 3, 348–359.
GOLYNSKI, A., MUNRO, J. I., AND RAO, S. S. 2006. Rank/select operations on large alphabets: A tool for

text indexing. In Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms.
368–373.

GONNET, G. H., BAEZA-YATES, R. A., AND SNIDER, T. 1992. New indices for text: PAT trees and PAT arrays. In
Information Retrieval: Data Structures & Algorithms. Prentice-Hall, Chapter 5, 66–82.

GONZÁLEZ, R. AND NAVARRO, G. 2006. Statistical encoding of succinct data structures. In Proceedings of the
17th Annual Symposium on Combinatorial Pattern Matching. 294–305.

GROSSI, R., GUPTA, A., AND VITTER, J. S. 2003. High-order entropy-compressed text indexes. In Proceedings of
the 14th Annual ACM-SIAM Symposium on Discrete Algorithms. 841–850.

GROSSI, R. AND VITTER, J. S. 2005. Compressed suffix arrays and suffix trees with applications to text indexing
and string matching. SIAM J. Comput. 35, 2, 378–407.

GUSFIELD, D. 1997. Algorithms on Strings, Trees, and Sequences: Computer Science and Computational Biol-
ogy. Cambridge University Press, Cambridge, UK.

HE, M. 2007. Succinct indexes. Ph.D. dissertation, University of Waterloo.
HE, M., MUNRO, J. I., AND RAO, S. S. 2005. A categorization theorem on suffix arrays with applications to space

efficient text indexes. In Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms.
23–32.

JACOBSON, G. 1989. Space-efficient static trees and graphs. In Proceedings of the 30th Annual IEEE Sympo-
sium on Foundations of Computer Science. 549–554.

JANSSON, J., SADAKANE, K., AND SUNG, W.-K. 2007. Ultra-succinct representation of ordered trees. In Proceedings
of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms.

MANBER, U. AND MYERS, E. W. 1993. Suffix arrays: a new method for on-line string searches. SIAM J. Com-
put. 22, 5, 935–948.

MILTERSEN, P. B. 2005. Lower bounds on the size of selection and rank indexes. In Proceedings of the 16th
Annual ACM-SIAM Symposium on Discrete Algorithms. 11–12.

MORTENSEN, C. W. 2003. Fully-dynamic two dimensional orthogonal range and line segment intersection
reporting in logarithmic time. In Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete
Algorithms. 618–627.

MORTENSEN, C. W. 2006. Fully dynamic orthogonal range reporting on RAM. SIAM J. Comput. 35, 6, 1494–
1525.

MUNRO, J. I., RAMAN, R., RAMAN, V., AND RAO, S. S. 2003. Succinct representations of permutations. In Proceed-
ings of the 30th International Colloquium on Automata, Languages and Programming. 345–356.

ACM Transactions on Algorithms, Vol. 7, No. 4, Article 52, Publication date: September 2011.

Succinct Indexes for Strings, Binary Relations and Multilabeled Trees 52:27

MUNRO, J. I. AND RAMAN, V. 2001. Succinct representation of balanced parentheses and static trees. SIAM J.
Comput. 31, 3, 762–776.

RAMAN, R., RAMAN, V., AND SATTI, S. R. 2007. Succinct indexable dictionaries with applications to encoding
k-ary trees, prefix sums and multisets. ACM Trans. Algor. 3, 4, 43.

SADAKANE, K. AND GROSSI, R. 2006. Squeezing succinct data structures into entropy bounds. In Proceedings of
the 17th annual ACM-SIAM Symposium on Discrete Algorithms. 1230–1239.

VAN EMDE BOAS, P., KAAS, R., AND ZIJLSTRA, E. 1977. Design and implementation of an efficient priority queue.
Math. Syst. Theory 10, 99–127.

WILLARD, D. E. 1983. Log-logarithmic worst-case range queries are possible in space �(N). Inf. Proc. Lett. 17, 2,
81–84.

ZHANG, N., ÖZSU, M. T., ABOULNAGA, A., AND ILYAS, I. F. 2006. XSEED: Accurate and fast cardinality estimation
for XPath queries. In Proceedings of the 22nd International Conference on Data Engineering. 61–72.

Received April 2008; revised January 2011; accepted February 2011

ACM Transactions on Algorithms, Vol. 7, No. 4, Article 52, Publication date: September 2011.

