The MOSIX Cluster Operating System for
High-Performance Computing on Linux Clusters,
Multi-Clusters and Clouds
A White Paper

A. Barak and A. Shiloh
http://www.MOSIX.org

OVERVIEW load-balancing, or to move processes from a disconnecting
cluster.

MOSIX* is a cluster operating system that provides usersin a MOSIX cluster, a priority method ensures that local
and applications with the impression of running on a sifyocesses and processes with a higher priority can always
gle computer with multiple processors (single-system i®)ag move in and force out guest (migrated) processes with a
without changing the interface and the run-time environmeger priority. The priority method can be used to guarantee
of their respective login nodes. For example, in @ MOSIXyjr access to users. It can also be used to support flexible
cluster users can run applications that create multiple pighnfigurations, where clusters can be shared (symmetricall
cesses, then let MOSIX seek resources and automaticgjlyasymmetrically) among users of different clusters. Eser
distribute processes among nodes, e.g., to improve th@lévefeed not know the details of the configuration nor the state of
performance, without changing the run-time environment @hy resource.
the migrated processes. As a result, users need not change @jther features of MOSIX include migratable sockets -
link applications with any special library, they need notdifp for direct communication between migrated processes; a se-
applications, login or copy files to remote nodes or even kngwre run-time environment (sandbox) that prevents guest pr
where their programs run. cesses from accessing local resources in hosting nodes: “li

MOSIX for Linux-2.2 and Linux-2.4 was originally de- queuing”, that preserves the full generic Linux environmen
veloped to manage a single cluster [4]. MOSIX for Linuxef queued jobs; gradual release of queued jobs, to prevent
2.6 and Linux-3 was extended with a comprehensive S@doding of any cluster as well as checkpoint and recovery.
of new features for managing clusters, multi-clusters,,e.g MOSIX is implemented as a set of utilities that provide
among different groups in an organization [6] and clouds. Fasers and applications with a distributed Linux-like rimet
example, one multi-cluster feature allows owners of cisste environment. MOSIX supports most Linux features that are
share their resources from time to time, while still presggv relevant to ordinary, non-threaded Linux applicationsrsat
the autonomy of the owners to disconnect their clusters st Linux programs can run unchanged.
any time, without sacrificing running guest processes fromDue to networking and management overheads, MOSIX is
other clusters. Another feature, MOSIX Reach the Clougrticularly suited to run compute intensive and other iappl
(MOSRC), is a tool that allows applications to run in a hybridons with low to moderate amounts of 1/O. Tests of MOSIX
environment on remote clusters such as clouds [2], withostiow that the performance of several such applications @ver
the need to pre-copy files to these clusters, see Sec. IV fdgb/s campus backbone is nearly identical to that within the
details. MOSRC can run on both Linux and various MOSIXame cluster [6].
cluster configurations. MOSIX should be used in trusted environments over secure

MOSIX supports both interactive processes and batch joletworks, where only authorized nodes are allowed. These
It incorporates dynamic resource discovery and automatiruirements are standard within private clusters andh-intr
workload distribution, commonly found on single computergrganizational clouds, but usually not elsewhere. Othanth
with multiple processors. The resource discovery algoriththese requirements, MOSIX could be used in any configuration
provides each node with the latest information about resoumwith multiple computers.
availability and the state of the nodes. Based on this inferm A production campus multi-cluster, with 18
tion and subject to priorities, the process migration atgors MOSIX clusters (about 1000 CPUs) can be seen at
can initiate reallocation of processes among nodes, @g., http://www.MOSIX.org/webmon. Most clusters are private,

belonging to research groups in various departments. The

IMOSIX® s a registered trademark of A. Barak and A. Shiloh. rest are shared clusters that are made of workstations in
Copyright © A. Barak 2011. All rights reserved. student labs. The features of MOSIX allow better utilizatio

of resources, including idle workstations in student lalg, B. Processes

users who nee_d to run HPC applications but cannot affordy,og|x recognizes two types of processes: Linux processes
such a large private cluster. and MOSIX processes. Linux processes are not affected by
Il. BUILDING BLOCKS MOSIX - they run in native Linux mode and cannot be

This section describes the two building blocks of MOS'Xr:mg.rated. MOSIX processes can be mlgrlaFed. ,

configurations and processes. Linux processes usually_ include ad_mml'_stranve tasks and
processes that are not suitable for migration. Anothersclas
A. Configurations of Linux processes is those created by the “mosrun -E”

A MOSIX clusteis a set of connected computers (includingommand. These processes can be assigned by the “-b” option
servers and workstations), called “nodes”, which are agminof “mosrun” to the least loaded nodes in the cluster (but not
trated by a single owner and run the same version of MOSI¥ nodes in other clusters, for which the MOSRC tool can be
In a MOSIX cluster, each node maintains information aboutsed, see Sec. IV for details).
availability and the state of the resources of all the nodes, = MOSIX processes are usually user applications that are
Sec.llI-A for details. suitable and can benefit from migration. All MOSIX processes

A MOSIX multi-clustealso called “an intra-organizationalare created by the “mosrun” command. MOSIX processes
multi-cluster”) is a collection of private MOSIX clusterhdt are started from standard Linux executables, but run in an
run the same version of MOSIX and are configured to wodnvironment that allows each process to migrate from one
together. node to another. Each MOSIX process has a unique home-

A MOSIX multi-cluster usually belongs to the same organode, which is usually the node in which the process was
nization, but each cluster may be administrated by a differecreated [4]. Child processes of MOSIX processes remainmunde
owner or belongs to a different group. the MOSIX discipline (with the exception of thative utility,

The cluster-owners are willing to share their computinghat allows programs, mainly shells, already running under
resources at least some of the time, but are still allowed tteosrun, to spawn children in native Linux mode). Below, all
disconnect their clusters from the multi-cluster at anyetim references to processes mean MOSIX processes.

In a MOSIX multi-cluster, each node maintains information
about availability and the state of the resources of all tdes 1. UNIQUE FEATURES OFMOSIX
in all the connected clusters. Different clusters may (oy ma The unique features of MOSIX are intended to provide users
not) have a shared environment such as a common NFS féed applications with the impression of running on a single
system. Nevertheless, MOSIX processes can run in remotemputer with multiple processors.
clusters while still using the environment provided by thei))
respective private home clusters. From the user’s peiigpect”: Automatic Resource Discovery
MOSIX transforms such a multi-cluster into a single cluster Resource discovery is performed by an on-line informa-
by preserving the user’s local run-time environment. tion dissemination algorithm, providing each node in a# th

In MOSIX multi-clusters there is usually a high degreelusters with the latest information about availabilitydathe
of trust, i.e., a guarantee that applications are not viewsthte of system-wide resources [1]. The algorithm is based
or tampered with when running in remote clusters. Othen a randomized gossip dissemination, in which each node
possible safety requirements are a secure network andrtlyat aegularly monitors the state of its resources, including th
authorized nodes, with identifiable IP addresses, aredecdu CPU speed, current load, free and used memory, etc. This

A MOSIX cloudis a collection of entities such as MOSIXinformation, along with similar information that has been
clusters; MOSIX multi-clusters; Linux clusters (such as eecently received by that node is routinely sent to randomly
group of Linux servers); individual workstations and Vatu chosen nodes. A higher probability is given to choosingdarg
Machines (VM). Each entity may possibly run a differenbhodes in the local cluster.
version of Linux or MOSIX. Information about newly available resources, e.g., hoalas t

In a MOSIX cloud, different entities are usually adminishave just joined, is gradually disseminated across theveacti
trated by different owners and rarely share any file systemedes, while information about disconnected nodes is dyick
(such as NFS). In this cloud, nodes in each entity are awgrieased out. In [1] we presented bounds for the age properties
of one or more nodes in other entities, including their IPand the rates of propagation of the above algorithm.
addresses and services they are willing to provide, buettser o
no on-going automatic flow of information between entitiesB: Process Migration

In a MOSIX cloud, users can launch applications from their MOSIX supports (preemptive) process migration [4] among
workstations or a private home-cluster, on target nodestro nodes in a cluster and in a multi-cluster. Process migrat#m
entities. These applications have access to files on nodedeftriggered either automatically or manually. The mignati
these entities, while still allowing the applications tocess itself amounts to copying the memory image of the process
files on their launching node. This is accomplished by thend setting its run-time environment. To reduce networkuecc
MOSIX Reach Clouds (MOSRC), described in Sec. IV, whichancy, the memory image is often compressed using LZOP [9].
allows applications to run in remote nodes, without the needAutomatic migrations are supervised by on-line algorithms
to copy files to/from remote clusters. that continuously attempt to improve the performance, by.

load-balancing; by migrating processes that requestece mor 3) As a migrated MOSIX process to a node irremote
than available free memory (assuming that there is another cluster, located about 1 Km away.
node with sufficient free memory); or by migrating processes The results (averaged over 5 runs) are shown in Table I.
from slower to faster nodes. These algorithms are partigulaThe first four rows show theinux run-times (Sec.), the total
useful for applications with unpredictable or changingiese amounts of/O (MB), the 1/Oblock size (KB) and the number
requirements and when several users run simultaneously. of system-calls performed by each program. The next two
Automatic migration decisions are based on (run-timepws list the run-times of migrated MOSIX processes and the
process profiling and the latest information on availapilitsiowdowns (vs. the Linux times) in treame cluster. The last

of resources, as provided by the information disseminati®fo rows show the run-times and the slowdowns inrttmote
algorithm. Process profiling is performed by continuouslyuster across campus.

collecting information about its characteristics, e.gesrates

of system-calls, volume of IPC and I/0. This information is TABLE |

then used by competitive on-line algorithms [7] to deterenin LOCAL vS. REMOTE RUN-TIMES (SEC.)
the best location for the process. These algorithms take int

account the respective speed and current load of the nodes, | [RC] SWT JEL [BLAT |

the size of the migrated process vs. the free memory availabl Linux 7234 | 6279 | 6012 | 6116

in different nodes, and the characteristics of the prosesse ;gagl'/?(('_"B) 0 32}?; 322}?5 64‘:35

. . OCK Size -

This way, when the proflle_of a process (_:hanges or vyhen Syscalls 3050 1 16,700 7200 | 7,800

new resources become available, the algorithm automigtical Same dusier 7257 | 6371 | 6082 | 6201

responds by considering reassignment of processes ta bette Slowdown 0.32% | 1.47% | 1.16% | 1.39%

locations. Remote dluster | 7270 | 6395 | 6083 | 6218
Slowdown 0.50% | 1.85% | 1.18% | 1.67%

C. The Run-Time Environment

MOSIX is implemented as a software layer that allows Table | shows that with a 1Gb/s Ethernet, the average
applications to run in remote nodes, away from their respect slowdown (vs. the Linux times) of all the tested programs
home-nodes. This is accomplished by intercepting all systewas 1.085% in the same cluster, and 1.3% across campus, an
calls, then if the process was migrated, most of its systalts-c increase of only 0.215%. These results confirm the claim that
are forwarded to its home-node, where they are performed M®SIX is suitable to run compute bound and applications
behalf of the process as if it was running in the home-nod#jth moderate amounts of 1/O over fast networks.
then the results are sent back to the process. 2) Migratable socketsMigratable sockets allow processes

In MOSIX, applications run in an environment where evetdo exchange messages by direct communication, bypassing
migrated processes seem to be running in their home-nodbsir respective home-nodes. For example, if process X ehos
As a result, users do not need to know where their progratmeme-node is A and runs on node B wishes to send a message
run, they need not modify applications, link applicationighw over a socket to process Y whose home-node is C and runs
any library, login or copy files to remote nodes. Furthermoren node D, then without a migratable socket, the message has
file and data consistency, as well as most traditional IRG pass over the network from B to A to C to D. Using direct
mechanisms such as signals, semaphores and processdD’€ammunication, the message will pass directly from B to D.
intact. Moreover, if X and Y run on the same node, then the network

The outcome is a run-time environment where each user geffl not be used at all.
the impression of running on a single computer. The drawbackTo facilitate migratable sockets, each MOSIX process can
of this approach is increased overheads, including managemown a “mailbox”. MOSIX Processes can send messages to
of migrated processes and networking. mailboxes of other processes anywhere in other clusteas (th

1) Overhead of migrated processe3he following four are willing to accept them).
real-life applications, each with a different amount of /O Migratable sockets make the location of processes transpar
illustrate the overhead of running migrated processes. Tégt, so the senders do not need to know where the receivers
first application, RC, is an intensive CPU (satisfiability) run, but only to identify them by their home-node and proeess
program. The second applicatioBW (proteins sequences),|D (PID) in their home-node.
uses a small amount of 1/O. The third progradtLlium Migratable sockets guarantee that the order of messages per

(molecular dynamics), uses a larger amount of 1/O. Finalljeceiver is preserved, even when the sender(s) and receiver
BLAT (bioinformatics) uses a moderate amount of I/O. migrate several times.

We used identical Xeon 3.06GHz servers that were C0n-3) A secure run-time environmentThe MOSIX software

nected by a 1Gb/s Ethernet and ran each program in thigger guarantees that a migrated (guest) process canndfymod
different ways: or even access local resources other than CPU and memory in
1) As a local (non-migrated)inux process. a remote (hosting) node. Due care is taken to ensure that thos
2) As a migrated MOSIX process to another node in tHew system-calls that are performed locally, cannot access
same cluster. resources in the hosting node, while the majority are fodedr

to the home-node of the process. The net result is a secure rilnat guest processes can be migrated to any available node in
time environment (sandbox), protecting the host from strayOSIX clusters - not necessarily to their respective home-
guest processes. nodes. It is therefore recommended that users do not login
o and/or initiate processes from remote MOSIX clusters,esinc
D. The Priority Method if they did so, then their processes would have nowhere to

The priority method ensures that local processes and preturn.
cesses with a higher priority can always move in and pushl) Time to disconnect a clusteithis test shows the times
out all processes with a lower priority. The priority methodo move out guest processes from a hosting cluster in order
allows flexible use of nodes within and among groups. By disconnect it from a multi-cluster. Two MOSIX clusters,
default, guest processes are automatically moved out wienewith identical Xeon 3.06GHz servers that were connected by
processes of the cluster's owner or other more privileged1Gb/s Ethernet were used: cluster A with 14 nodes and
processes are moved in. cluster B with 20 nodes.

Owners of clusters can determine from which other clusterFirst, a given set of identical CPU-bound processes were
they are willing to accept processes and which clusters started on cluster A and were forced to migrate to cluster B.
block. Processes from unrecognized clusters are not allowEhe test started by aluster-disconnectommand on cluster
to move in. Note that the priority applies to the home-node &, that forced all the guest processes out. The test ended whe
each process rather than to where it happens to arrive frorall the processes returned to cluster A.

By proper setting of the priority, two or more private cluste TABLE ||
can be shared (symmetrically or asymmetrically) amongsuser TIMES TO DISCONNECT A20 NODE CLUSTER
of each cluster. Public clusters can also be set to be shared
among users of private clusters.

No. of Process Migration
E. Flood Control Processes Size Time | Rate
. 40 512 MB | 198 Sec| 103 MB/Sec
Flooding can occur when a user creates a large number 70 1024 MB | 397 Sec| 103 MB/Sec
of processes, either unintentionally or with the hope that 30 556 MB | 192 Sec| 106 MB/Sec
somehow the system will run it. Flooding can also occur when 30 512 MB | 388 Sec| 105 MB/Sec

other clusters are disconnected or reclaimed, causingga lar
number of processes to migrate back to their respective home
clusters. The results are presented in Table II. The first two columns
MOSIX has several built-in features to prevent floodindiSt the number of guest processes and the size of each groces
For example, the load-balancing algorithm does not pernglumn 3 shows the average (over 4 runs) of the migration

migration of a process to a node with insufficient free memorfmes and Column 4 shows the migration rates.
Another example is the ability to limit the number of guest The results show that MOSIX can migrate a set of processes

processes per node. at an average (weighted over all cases) rate of 102.6 MB/s,
To prevent flooding by a large number of processes, iMthich is about 93% of the maximal TCP/IP rate over a 1Gb/s

cluding returning processes, each node can set a limit Bthernet.) _ _
the number of local processes of certain classes. When thi€) Long-running processesThe process migration, the
limit is reached, additional processes of those classes H&fZiNg and the gradual reactivation mechanisms provide
automatically frozen and their memory images are stored §HPPOIt to applications that need to run for a long time,, e.g.
secondary storage. This method ensures that a large nunflR¥S OF even weeks, in different clusters. As explained @pov
of processes can be handled without exhausting the CPU &fiore @ MOSIX cluster is disconnected, all guest processes
memory. are moved out. These processes are frozen in their respectiv
Frozen processes are reactivated in a circular fashion,'fgme-nodes and are gradually reactivated when system-wide
allow some work to be done without overloading the owner¥OSIX nodes become available again. For example, long
nodes. Later, as more resources become available, the Ig¥@Cesses from one department migrate at night to unused

balancing algorithm migrates running processes away, tHides in another department. During the day most of these
allowing reactivation of more frozen processes. processes are frozen in their home-cluster until the next

evening.

F. Disruptive Configurations G. Dynamic Queuing

In a multi-cluster configuration, authorized administratof The number and type of jobs that are released by the

each physical cluster can connect (disconnect) it to (frém) \o5)x queuing system depends on the current availability
pool at any time. If the cluster is a Linux cluster then all €y the cluster/multi-cluster resources.

connections to other clusters are closed, which may resulti _

losing running jobs. In the case of a MOSIX cluster, all gue$t- Live Queuing

processes (if any) are moved out and all local processes thatnlike other queuing systems, MOSIX uses “live-queuing”
were migrated to other MOSIX clusters are brought back. Natieat allows queued jobs to preserve their full connectioti wi

their Linux environment, such as the controlling terminalA. Checkpoint and Recovery
parent-process, signals, pipes, sockets, shared fileioless,

otc Checkpoint and recovery are supported for most computa-

tional MOSIX processes. When a process is checkpointed, its
IV. MOSIX REACH THE CLOUDS image is saved to a file. If necessary, the application canm lat

MOSIX Reach the Clouds (MOSRC) is a tool that allow8€ recovered from that file and continue to run from the point
applications to run in remote computers in any MOSIX clouti Was last checkpoint. Checkpoints can be triggered by the
entity (see Sec2?), without pre-copying files to these computrogram itself, by a manual request or can automatically be
ers. MOSRC users launch applications from their workstatiéaken periodically.

(or private home-cluster) on target nodes of other entities SOme processes may not be checkpoint and other processes
MOSRC applications run in a hybrid environment, where sonfidy not run correctly after recovery. For example, for siégur

of their files are on their launching node and the rest are 6@asons checkpoint of processes with setuid/setgid pgies
target nodes. As a result, MOSRC can be used in diverse w10t permitted. In general, checkpoint and recovery ate no
to promote different modes of file-sharing among differegupported for processes that depend heavily on their Linux
computers and users. environment, such as processes with open pipes or sockets.

MOSRC can run on both Linux computers and MOSIX Processes that can be checkpointed but may not run cor-
clusters. The hybrid environment on target nodes can be usedtly after being recovered include processes that rely on
for remote file access; file-sharing among different comyguteprocess-ID’s of either themselves or other processesgpses
and users (even more than two computers when MOSRCtlgt rely on parent-child relations; processes that relyesn
used recursively); and for running applications that nesd minal job-control; processes that coordinate their inputut
use both private and shared data. Standard I/0O remains onMliid other running processes; processes that rely on timers
launching computer. All “mosrun” features can be used dnd alarms; processes that cannot afford to lose signals; an
clouds running MOSIX. processes that use system-V semaphores and messages.

The rationale behind MOSRC is to harness resources in
remote entities without copying data files there. As suchk; Queuing

MOSRC can be useful to users that need to run applicationsvos|X incorporates a First-Come-First-Serve (FCFS) dy-

but do not wish to store data on commercial clouds [2], ¢famic queuing that allows users to dispatch a large number of
that cannot determine in advance which files (OI’ fl|e—parﬂ§) WjObS, to run once sufficient resources are available.

be needed. MOSRC provides consistent access to files, evefihe MOSIX queuing system includes tools for tracing

among multiple MOSRC jobs that run on different targets. Dugeued jobs, changing their priorities or the order of ekieau

to network latencies, MOSRC is more suited to run compuig,q for running parallel, e.g., MPI jobs.

intensive and other applications with low to moderate an®un |, addition to the unique dynamic and live-queuing, de-

of I/O. _ _ scribed in the previous section, MOSIX also supports fair-
MOSRC consists of two parts: a launching program that caf e urgent and out-of-order jobs.

send jobs from a head-node to designated target nodes, anij) Fair-share: An optional fair-share policy allows the

a run-time environment that provides file services to rugniqnt

) erleaving of queued-jobs among users, thus protecsegsu
jobs on target computers. The head-node could be the usﬁrg%\inst the possibility that other users that came firstceffe

workstation and any computer that has access to the US§R, 4o not allow their jobs to start at all. Fine-tuning ang
files, possibly even a virtual machine in a commercial cloug,Sers of the fair-share policy is also available

if the user’s files are stored there. Note that the head-node2
) .) Urgent jobs: Despite the FCFS queuing policy, MOSIX
should not be confused with the MOSIX home-node, whic flows to assign an additional number of “urgent’ jobs to

in the case of using MOSRC to launch MOSIX processes, ljﬁn, regardless of the available resources and other tigniis

the target node rather than the head-node. Obviously, there are restrictions on who is allowed to use th

The head-node and the_ target nodes can run Linux tion and which jobs should be considered as “urgent”. It is
MOSIX. If the target node is part of a MOSIX cluster, the . - .
he sys-admin’s responsibility to ensure that at any giuae t

MOSRC jobs can benefit from all the MOSIX features. In . .
even when running the maximum allowed number of those

particular, MOSIX processes generated by MOSRC jobs can ... w ; o)
be automatically dispersed among the nodes of that clusﬁardltlonal urgent”jobs, there will be sufficient memoryizp

:) ace to proceed reasonably.
or even among other MOSIX clusters in a multi-cluster. If a P Y

target node runs Linux (not MOSIX), then MOSRC jobs can 3) Out-of-order jobs:MOSIX can be configured to guar-
: : ; antee a minimal (usually small) number of jobs per user to
only run there as native Linux jobs.

Launching a job (from the head-node) is done by the “mr art out o;‘ ordltlar, even wh(;:n resouhrcets.atr)e mil_Jlfflmems,le
command, see the mrc manual for details. for example, allows USers to run short Jobs while very long
jobs of other users are already running or are placed in the
V. OTHER SERVICES queue.
This section describes additional services that are peavid The only restriction on out-of-order jobs is that there must
to MOSIX processes. be sufficient free memory, so that jobs that require much

memory are not started. Jobs (per user) above this number VIl. How To OBTAIN A COPY

and jobs that require more memory, are queued. Subject to the MOSIX software license agreement, a copy of
C. Batch Jobs MOSIX is available via the MOSIX web [5]. Distributions are

MOSIX supports batch jobs that can be sent to any noBéOVided for use with native Lir_1ux,_ as RPMs for openSUSE
in the local cluster (as opposed to interactive jobs thatiireq and as a pre-lnstal!ed virtual-disk image that can be u_sed o
the specific environment of their dispatching node). create a MOSIX virtual cluster on Windows and/or Linux

There are two types of batch jobs: Linux and MOSIX. LinugOMputers.
batch processes do not migrate, while MOSIX batgh processes VIIl. CONCLUSIONS
can migrate, although their home-node can be different thanMOSIX is an operating svstem-like management svstem
their dispatching node. MOSIX can assist both types by. (ﬁ?at consists of ap com g3eh)(/ensive set of to%ls for s%arin
Queuing the job until resources are available (using “mmosry . prene : 9

Fomputatlonal resources in Linux clusters, multi-clustand

mosrun -S” or both); and (b) Selecting the best initia .
. : clouds. Its main features are geared for ease of use by
assignment for the job.

Batch jobs are started from binaries in another node a%owdmgthe Impression of running on a single computehwit

preserve only some of the caller’'s environment: they ra:ei\r/nUItlple processors. This is accomplished by preservireg th

the environment variables; they can read from their stahda'rnterface and the run-time environment of the login (home)

input and write to their standard output and error, but n&ode for applications that run in other nodes. As a result,

from/to other open files; they receive signals, but if thely~o > need not modify or link applications with any library,

fork, signals are delivered to the whole process-grouperath €y needlnot login or copy files to remote nodes or even know
where their programs run.

than just the parent,_ they cannqt communlcate with OtherThe unique features of MOSIX include automatic resource
processes on the calling node using pipes and sockets (other

than standard input/output/error), semaphores, messatges o_Ilscover)_/, Qynamlc workload distribution by process rmgra
. . tion, a priority method that allows processes to migrate rzgno
and can only receive signals, but not send them to processe X : :
. nodes in a multi-cluster, to take advantage of available re-
on the calling node.

The main advantage of batch jobs is that they save time ?gﬁ}“rce.s beyond the gllocated nodes in any p”""ﬂ?te. clustes. T
not needing to refer to the dispatching-node to perfor st | particularly useful in shared clusters or when it is neaeg

calls, and that temporary files can be created on the nodeewht(—?re 22%0356‘;"'3;9%2[;:;‘2? ?efvga(tjiﬁi ;?1 do?hee %rigruup’ tiS'eg(':’OLO
they start, preventing the dispatching node from becomi?@ y P P
0

a bottleneck. This approach is therefore recommended ura(';|_on prowst_mns F"(:W an o:dg_rly rlmgranon .Of Process
programs that perform a significant amount of I/O. om disconnecting ClUSIers, INciuding long running PISNes
when remote resources are no longer available. Other unique

D. Support for 64-bit features include live queuing and a tool to run applicatioms
The latest distribution of MOSIX supports only the x@ clouds, without the need to pre-copy files to these clusters.
architecture.

-q",

REFERENCES
E. Running in a Virtual Machine [1] Amar L., Barak A., Drezner Z. and Okun M., “Randomized Gips
MOSIX can run in native Linux mode or in a Virtual Ma- Algorithms for Maintaining a Distributed Bulletin Board thi Guar-

: : : : anteed Age Properties,Concurrency and Computation: Practice and
chine (VM). In native mode, performance is better [8], but it Experience Vol. 21, pp. 1907-1927, 2009.

requires some modifications to the base Linux kernel, wisereg] Armbrust M., et al, “Above the Clouds: A Berkeley View oflaid
a VM can run on top of any unmodified operating system that Computing,” Technical Report EECS-2009-28, 2009.

. _ . 3] Barak A., Guday G. and Wheeler R., The MOSIX Distributepe@ating
supports virtualization, including OS-X and Windows. System, Load Balancing for UNIX. LNCS Vol. 672, Springerde,

E. Monitors ISBN 0-387-56663-5, New York, May 1993.
) i)]] [4] Barak A., La’adan O. and Shiloh A., “Scalable Cluster Guring with
The monitormosmon provides information about resources ~ MOSIX for Linux,” Proc. 5th Annual Linux ExpoRaleigh, NC, pp.

in the cluster, e.g., CPU-speed, load, free vs. used memory, 95-100, 1999.

b f . d “heln” é http://www.MOSIX.org.
swap space, number of active nodes, etc. Type “help” to S garak A., Shiloh A. and Amar L., “ An Organizational Grid Bederated

the available options. MOSIX Clusters,” Proc. 5-th IEEE International Symposium on Cluster
Computing and the Grid (CCGridO5ardiff, 2005.
VI. DOCUMENTATION [7]1 Keren A., and Barak A., “Opportunity Cost Algorithms fBeduction of

: Ui : 1/0 and Interprocess Communication Overhead in a Comp@iogter,”
The MOSIX web includes a wiki, a list of frequently asked |\ cc¢ 1ran Parallel and Dist. System$4(1), pp. 3950, 2003.

questions (FAQ) and a list of selected MOSIX publicatioris [5 [8] Maoz T., Barak A. and Amar L., “Combining Virtual Machirdigration
The wiki includes installation and configuration instrocts, with Process Migration for HPC on Multi-Clusters and Grid®3roc.

pointers to the latest release and the change-log, to this useg, Liﬁimﬁ;s%?TS“k“ba’ 2008.

and the administrator’s guide and the MOSIX manuals, an

overview and tutorial presentations, a list of MOSIX rethte

publications, a reference to the MOSIX book [3] and descrip-

tion of the MOSIX history.

