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tThe in
reased use of untrusted, externally-developed program 
ode is reshaping our notions of priva
y and or-ganizational boundaries. The use of su
h publi
 domain and 
ommer
ial off-the-shelf (COTS) 
omponents offers anorganization several advantages, su
h as de
reased development time and in
reased �exibility during implementation.However, their rash deployment poses two 
riti
al risks. First, COTS 
omponents may 
ontain or enable vulnera-bilities that 
an be su

essfully exploited by mali
ious atta
kers. Se
ond, COTS 
omponents may a

identally ordeliberately leak sensitive information. Vulnerability analysis and information-�ow analysis address these two risksrespe
tively. In the WiSA proje
t at the University of Wis
onsin�Madison, we are developing analysis te
hniques toaddress these risks.1 Introdu
tionThe in
reased use of untrusted, externally-developed program 
ode is reshaping our notion of priva
y and organi-zational boundaries. The use of su
h publi
 domain and 
ommer
ial off-the-shelf (COTS) 
omponents has obviousadvantages, su
h as redu
ed development time. However, COTS 
omponents expose an organization to risks. A 
om-ponent should be given enough a

ess to do its job, but no more (this is known as the prin
iple of least privilege).Moreover, organizations that deal with sensitive information should prote
t this information: organizations should
reate an information en
lave that enfor
es priva
y poli
ies. In a 
losed software pro
ess, it is possible to enfor
e theprin
iple of least privilege and the poli
ies of an information en
lave through stri
t 
ode inspe
tion and 
oding pra
-ti
es. However, COTS 
omponents are by de�nition developed by other groups, and therefore the organization thatuses these 
omponents has no 
ontrol over the 
oding pra
ti
es of the developers. Therefore, there is a need for anal-ysis tools to s
rutinize COTS 
omponents to ensure that they do not 
ontain harmful vulnerabilities or leak sensitiveinformation. There are two 
lasses of analysis te
hniques: vulnerability analysis and information-�ow analysis.The Wis
onsin Safety Analysis (WiSA) proje
t lead by S. Jha, B. Miller, and T. Reps is developing analysis te
h-niques espe
ially suited for COTS 
omponents.1 First, we identify requirements for the task of analyzing COTS
omponents. These requirements drive our te
hni
al approa
hes. Our te
hniques are designed to be multi-lingual (
a-pable of handling multiple languages), handle a wide range of se
urity and priva
y poli
ies, and balan
e a

ura
y ands
alability. We a
hieve these goals by 
ombining te
hniques from stati
 analysis (su
h as program sli
ing, shape anal-ysis, and alias analysis), model 
he
king, spe
i�
ations for expressing se
urity poli
ies (su
h as se
urity automata),and formalisms for expressing information �ow (su
h as se
ure �ow typing and de
entralized labels). Combinations ofthese te
hniques are required to address the 
hallenges posed by vulnerability and information �ow analysis of COTS
omponents. These analysis te
hniques provide a 
omprehensive analysis of COTS 
omponents and thus redu
e therisk due to COTS deployment.
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The basi
 goals of the WiSA proje
t are:
• Multi-lingual analysisCOTS 
omponents, by de�nition, are developed by remote organizations. Therefore, analysis te
hniques 
annotassume that all COTS 
omponents will be written in one programming language. Hen
e, te
hniques for analyz-ing COTS 
omponents should be multi-lingual, i.e., 
apable of working with several different languages. Wea
hieve this goal by analyzing binary 
ode dire
tly or by 
ompiling untrusted sour
e 
ode into an intermediateform whi
h is then analyzed.
• Balan
e a

ura
y and s
alabilityThe analysis te
hniques should be able to handle COTS 
omponents of realisti
 size. We have designed te
h-niques that balan
e a

ura
y with s
alability. A

ura
y is a
hieved by 
ombining several sophisti
ated programanalysis te
hniques, su
h as shape analysis, aliasing analysis, and type inferen
ing. S
alability is addressed byusing te
hniques for handling 
omposition of 
omponents and targeting the analysis to any properties of interest.
• Support a wide range of safety and priva
y poli
iesSe
urity requirements of COTS 
omponents depend on the 
ontext of their use. As part of this proje
t we planto develop spe
i�
ation languages that 
an express safety and priva
y related poli
ies. Spe
i�
ations related tosafety express dis
retionary a

ess 
ontrol poli
ies. Mandatory a

ess 
ontrol poli
ies 
ontrol �ows of sensitiveinformation and 
an also be expressed in our spe
i�
ation language. Hen
e, an analyst 
an express a variety ofproperties in our spe
i�
ation language.
• Potential for analyzing 
omposition of 
omponentsMost real systems are 
omposed of several 
omponents. We plan to develop a framework so that 
omponents
an be analyzed separately and then the analysis results 
an be integrated. For this purpose, we will base ourmethodology on rely-guarantee reasoning. Rely-guarantee reasoning has been used in software engineering andveri�
ation of 
on
urrent systems exa
tly for this purpose. This will also address the s
alability issue.We have made partial progress towards some of these goals. We have developed a stati
-analysis and rewritinginfrastru
ture for x86 binaries. This infrastru
ture 
an be used for a variety of tasks, su
h as model-based intrusiondete
tion, testing malware dete
tors, and semanti
s-aware malware dete
tion. A short des
ription of this infrastru
tureappears in the following se
tion.2 Binary Analysis Infrastru
tureA 
onsiderable amount of re
ent resear
h a
tivity [2�4, 7, 8, 11, 12, 17℄ has developed analysis tools to �nd bugs andse
urity vulnerabilities in sour
e 
ode. When attempting to apply su
h analysis te
hniques to exe
utables, investi-gators already en
ounter a 
hallenging program-analysis problem. The model-
he
king 
ommunity would 
onsiderthe problem to be that of model extra
tion: the tools need to extra
t a suitable model from the exe
utable. Fromthe perspe
tive of the 
ompiler 
ommunity, the problem is one of IR re
overy: tools need to re
over IntermediateRepresentations (IR) from the exe
utable that are similar to those that would be available from sour
e 
ode analysis.Su

essful analysis of binary 
ode requires new solutions to this problem. The 
ommer
ial disassembler IDAProis a start: IDAPro provides an initial estimate of the IR. However, the IR that IDAPro 
onstru
ts is in
omplete in
riti
al ways that limits its ability to serve as a foundation for further analysis.
• Binary programs frequently transfer 
ontrol via indire
t jumps whose targets are not 
omputed until programrun time. IDAPro uses heuristi
s to resolve indire
t jumps. Consequently, it may not resolve all indire
t jumps
orre
tly, i.e., it may not �nd all possible targets of an indire
t jump and it even o

asionally identi�es in
orre
ttargets. Therefore, the 
ontrol-�ow graph 
onstru
ted by IDAPro is frequently in
omplete or outright in
orre
t.Similar problems o

ur with IDAPro's resolution of indire
t 
alls; therefore, the 
all graph is also often in
om-plete or in
orre
t. Call graphs and 
ontrol-�ow graphs form the basis of further program analysis. In
orre
tnessin these graphs will propagate through the analysis and produ
e bad results.
• IDAPro does not provide a safe estimate of what memory lo
ations are used or modi�ed by ea
h instru
tion inthe exe
utable. Su
h information is important for tools that aid in program understanding or bug �nding; itsomission limits the su

ess of these tools. 2
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Figure 1: Ar
hite
ture.Hen
e, IDAPro 
annot produ
e a suitable IR for automated program analysis.We have been developing a stati
 analysis algorithm 
alled value-set analysis (VSA) that augments and 
orre
tsthe information provided by IDAPro in a safe way [1℄. Spe
i�
ally, VSA provides the following information:
• Complete, 
orre
t 
ontrol-�ow graphs with indire
t jumps resolved safely.
• A 
all graph with indire
t 
alls resolved safely.
• A set of variable-like entities 
alled a-lo
s.
• Values for pointer variables.
• Used, killed, and possibly-killed variables for nodes in 
ontrol-�ow graphs.This information is emitted in a format that is suitable for subsequent program analysis appli
ations su
h as the
ommer
ial tool CodeSurfer.VSA is a �ow-sensitive, 
ontext-sensitive, abstra
t-interpretation algorithm parameterized by 
all-string length[15℄ that determines a safe over-approximationof the set of numeri
 values and addresses that memory lo
ations hold atea
h program point. A key feature of VSA is that it tra
ks integer-valued and address-valued quantities simultaneously.This is 
ru
ial for analyzing exe
utables be
ause numeri
 values and addresses are indistinguishable in an exe
utable.VSA has similarities with the pointer-analysis problem that has been studied in great detail for programs written inhigh-level languages. For ea
h variable v, pointer analysis determines an over-approximation of the set of variableswhose addresses v 
an hold. Similarly, VSA determines an over-approximation of the set of addresses that ea
h a-lo

an hold at ea
h program point. On the other hand, VSA also has some of the �avor of numeri
 stati
 analyses, like
onstant propagation and interval analysis, where the goal is to over-approximate the integer values that ea
h variable
an hold. In addition to information about addresses, VSA determines an over-approximation of the set of integervalues that ea
h a-lo
 
an hold at ea
h program point. The result is a safe and 
orre
t IR that enables further stati
program analyses to produ
e meaningful results for binary programs.Figure 1 shows how VSA and IDAPro 
ooperate to produ
e a base that stati
 analysis appli
ation 
an use toanalyze binary programs. IDAPro �rst pro
esses a binary exe
utable, produ
ing the initial IR that may be in
ompleteor in
orre
t. VSA then exe
utes as part of a tool 
alled the 
onne
tor, as it 
onne
ts IDAPro with stati
 analysis toolsin a safe way. The 
omplete, 
orre
t IR produ
ed by VSA 
an then be used by appli
ations performing stati
 programanalysis, su
h as the 
ommer
ial tool CodeSurfer or resear
h te
hniques dete
ting mali
ious 
ode in exe
utables orbuilding models of expe
ted exe
ution for programs. We will 
onsider these last two appli
ations momentarily.Alternatively, the IR 
an be used for binary rewriting, a pro
ess that 
hanges the binary 
ode of a program toprodu
e a new exe
utable with altered behavior. Our tool, 
alled BREW, alters the IR in the 
onne
tor and regeneratesbinary 
ode for the modi�ed program. Binary rewriting applies to tools su
h as 
ode obfus
ators that 
hange program
ode to in
rease the dif�
ulty of reverse engineering, and to binary pat
hing tools that repair program bugs withoutrequiring re
ompilation of sour
e 
ode. 3



2.1 Appli
ationsMalware dete
tors, su
h as virus s
anners, identify mali
ious 
ode hiddenwithin off-the-shelf 
ode and in 
ode sharedover 
ommuni
ations networks. Despite the importan
e of malware dete
tors, there is a dearth of testing te
hniques toevaluate them. We introdu
ed a te
hnique based on program obfus
ation to generate tests for malware dete
tors [5℄.Our te
hnique is geared towards evaluating the resilien
e of malware dete
tors to various obfus
ation transformations
ommonly used by ha
kers to disguise malware. We also demonstrated that a ha
ker 
an leverage a malware dete
tor'sweakness in handling obfus
ation transformations and 
an extra
t the signature used by a dete
tor for a spe
i�
malware. We evaluated three widely-used 
ommer
ial virus s
anners using our te
hniques and dis
overed that theresilien
e of these s
anners to various obfus
ations is very poor.The fundamental de�
ien
y of these 
ommer
ial virus s
anners is their use of pattern-mat
hing approa
hes to mal-ware dete
tion: these approa
hes are purely synta
ti
 and ignore the semanti
s of binary instru
tions. We developed amalware-dete
tion algorithm that addressed this de�
ien
y by using instru
tion semanti
s to dete
t mali
ious programtraits [6℄. Experimental evaluation demonstrated that, with a relatively low run-time overhead, our malware-dete
tionalgorithm 
an dete
t variants of malware embedded within COTS 
ode. Moreover, our semanti
s-aware malwaredete
tion algorithm is resilient to 
ommon obfus
ations used by ha
kers.Just as a misuse dete
tor identi�es atta
ks 
ontained in program 
ode, a network intrusion dete
tion system (NIDS)dete
ts atta
ks 
ontained in network traf�
. Using network-level obfus
ation transformations, we used bla
k-boxtesting to evaluate the ability of COTS misuse-NIDS produ
ts to dete
t atta
ks and se
ure an organization's networks.A misuse-NIDS de�nes penetration via a table of mali
ious signatures: if the network traf�
 mat
hes a signature in thetable, an alarm is raised. Both resear
hers and industry professionals a

ept that the effe
tiveness of 
urrent off-the-shelf NIDS is questionable. Current NIDS generate many false alarms, and worse (although not always publi
ized),they miss many real atta
ks. Our resear
h strives to bring us 
loser to an effe
tive NIDS: an intrusion dete
tion systemthat dete
ts the atta
ks we spe
ify and only those atta
ks. In our resear
h, we developed formal models and tools that
an in
rease our 
on�den
e in NIDS. In the last two years, we have addressed two fundamental problems of NIDSeffe
tiveness: NIDS testing and signature 
onstru
tion.We formulated a 
omputational model that des
ribes how atta
kers 
an generate atta
k instan
es that evade aNIDS. Based on this model, we implemented a testing tool that automati
ally generated new atta
k instan
es fromknown ones [13℄. We used this tool to �nd atta
k instan
es that evaded two well-known COTS NIDS: Snort, whi
h isa popular NIDS publi
ly available from Sour
eFire, and UnityOne, whi
h is a 
ommer
ial NIDS from TippingPointused by highly se
ured sites su
h as the Los Alamos National Lab. In both 
ases, we exposed vulnerabilities thatwould have enabled atta
kers to evade these systems for any TCP-based atta
k. In response to our �ndings, bothSour
e�re and TippingPoint issued pat
hes to �x their systems.The signatures that a NIDS uses determine its ability to re
ognize atta
ks. We developed a method to systemati
ally
onstru
t and evaluate signatures [14℄. First, we formally de�ned the ability of atta
kers to obfus
ate atta
ks. Then,we 
ombined this formal model with language-based te
hniques to �nd loopholes in signatures. To the best of ourknowledge, this was the �rst method that enabled NIDS developers to systemati
ally �debug� the signatures theydeveloped. We showed that, under 
ertain assumptions, the signatures produ
ed are loophole free.As a 
omplement to network-based intrusion dete
tion, host-based intrusion dete
tion systems identify attempts toexploit program vulnerabilities, frequently bymonitoring the program's exe
ution. Amodel-based or behavioral-basedanomaly dete
tor restri
ts exe
ution to a pre
omputed model of expe
ted behavior. An exe
ution monitor veri�es astream of system 
alls generated by the exe
uting program and reje
ts any 
all sequen
es deviating from the model.Constru
ting a model via stati
 binary program analysis that balan
es the 
ompeting needs of dete
tion ability andef�
ien
y is a 
hallenging task. Non-deterministi
 �nite automaton (NFA) models are ef�
ient to operate, but failto dete
t atta
ks be
ause they do not model the 
all-return semanti
s of the program. Pushdown automaton (PDA)models dete
t more atta
ks by additionally modeling the program's 
all sta
k, but they are inef�
ient to operate. Newmodels of 
orre
t program exe
ution are needed.We developed a new formalmodel 
alled theDy
k model that preserves the 
orre
tness of PDAmodels but operateswith ef�
ien
y 
lose to that of NFA models [10, 16℄. Our model determinizes previously 
ostly PDA operationsmodeling the program's 
all sta
k [9℄. Te
hniques for determinizing the PDAmodels essentially in
orporate additionalprogram state, su
h as the program 
ounter and sta
k a
tivity, into the model. Our results showed that the Dy
k modelenabled 
onstru
tion of pre
ise program models with performan
e suitable for online se
urity monitoring. Theseresults vindi
ated 
ontext sensitive models, showing that reasonable ef�
ien
y needs not be sa
ri�
ed for modelpre
ision. 4



3 Con
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e the 
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ture. Information-�ow analysis also remains an important goal whi
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