Analysis of COTS for Security Vulnerability Remediation

Gogul Balakrishnan Mihai Christodorescu Vinod Ganapathy
Jonathon T. Giffin Shai Rubin Hao Wang
Somesh Jha* Barton P. Millerf Thomas Reps?

Computer Sciences Department, University of Wisconsin
1210 West Dayton Street, Madison, Wisconsin 53706

Abstract

The increased use of untrusted, externally-developed program code is reshaping our notions of privacy and or-
ganizational boundaries. The use of such public domain and commercial off-the-shelf (COTS) components offers an
organization several advantages, such as decreased development time and increased flexibility during implementation.
However, their rash deployment poses two critical risks. First, COTS components may contain or enable vulnera-
bilities that can be successfully exploited by malicious attackers. Second, COTS components may accidentally or
deliberately leak sensitive information. Vulnerability analysis and information-flow analysis address these two risks
respectively. In the WiSA project at the University of Wisconsin—-Madison, we are developing analysis techniques to
address these risks.

1 Introduction

The increased use of untrusted, externally-developed program code is reshaping our notion of privacy and organi-
zational boundaries. The use of such public domain and commercial off-the-shelf (COTS) components has obvious
advantages, such as reduced development time. However, COTS components expose an organization to risks. A com-
ponent should be given enough access to do its job, but no more (this is known as the principle of least privilege).
Moreover, organizations that deal with sensitive information should protect this information: organizations should
create an information enclave that enforces privacy policies. In a closed software process, it is possible to enforce the
principle of least privilege and the policies of an information enclave through strict code inspection and coding prac-
tices. However, COTS components are by definition developed by other groups, and therefore the organization that
uses these components has no control over the coding practices of the developers. Therefore, there is a need for anal-
ysis tools to scrutinize COTS components to ensure that they do not contain harmful vulnerabilities or leak sensitive
information. There are two classes of analysis techniques: vulnerability analysis and information-flow analysis.

The Wisconsin Safety Analysis (WiSA) project lead by S. Jha, B. Miller, and T. Reps is developing analysis tech-
niques especially suited for COTS components.' First, we identify requirements for the task of analyzing COTS
components. These requirements drive our technical approaches. Our techniques are designed to be multi-lingual (ca-
pable of handling multiple languages), handle a wide range of security and privacy policies, and balance accuracy and
scalability. We achieve these goals by combining techniques from static analysis (such as program slicing, shape anal-
ysis, and alias analysis), model checking, specifications for expressing security policies (such as security automata),
and formalisms for expressing information flow (such as secure flow typing and decentralized labels). Combinations of
these techniques are required to address the challenges posed by vulnerability and information flow analysis of COTS
components. These analysis techniques provide a comprehensive analysis of COTS components and thus reduce the
risk due to COTS deployment.

*jha@cs.wisc.edu

Thart@cs.wisc.edu

ireps@cs.wisc.edu

IDetailed information about WiSA can be found at http://www.cs.wisc.edu/wisa.

The basic goals of the WiSA project are:

e Multi-lingual analysis
COTS components, by definition, are developed by remote organizations. Therefore, analysis techniques cannot
assume that all COTS components will be written in one programming language. Hence, techniques for analyz-
ing COTS components should be multi-lingual, i.e., capable of working with several different languages. We
achieve this goal by analyzing binary code directly or by compiling untrusted source code into an intermediate
form which is then analyzed.

e Balance accuracy and scalability
The analysis techniques should be able to handle COTS components of realistic size. We have designed tech-
niques that balance accuracy with scalability. Accuracy is achieved by combining several sophisticated program
analysis techniques, such as shape analysis, aliasing analysis, and type inferencing. Scalability is addressed by
using techniques for handling composition of components and targeting the analysis to any properties of interest.

e Support a wide range of safety and privacy policies
Security requirements of COTS components depend on the context of their use. As part of this project we plan
to develop specification languages that can express safety and privacy related policies. Specifications related to
safety express discretionary access control policies. Mandatory access control policies control flows of sensitive
information and can also be expressed in our specification language. Hence, an analyst can express a variety of
properties in our specification language.

e Potential for analyzing composition of components
Most real systems are composed of several components. We plan to develop a framework so that components
can be analyzed separately and then the analysis results can be integrated. For this purpose, we will base our
methodology on rely-guarantee reasoning. Rely-guarantee reasoning has been used in software engineering and
verification of concurrent systems exactly for this purpose. This will also address the scalability issue.

We have made partial progress towards some of these goals. We have developed a static-analysis and rewriting
infrastructure for X86 binaries. This infrastructure can be used for a variety of tasks, such as model-based intrusion
detection, testing malware detectors, and semantics-aware malware detection. A short description of this infrastructure
appears in the following section.

2 Binary Analysis Infrastructure

A considerable amount of recent research activity [2-4,7,8, 11,12, 17] has developed analysis tools to find bugs and
security vulnerabilities in source code. When attempting to apply such analysis techniques to executables, investi-
gators already encounter a challenging program-analysis problem. The model-checking community would consider
the problem to be that of model extraction: the tools need to extract a suitable model from the executable. From
the perspective of the compiler community, the problem is one of IR recovery: tools need to recover Intermediate
Representations (IR) from the executable that are similar to those that would be available from source code analysis.

Successful analysis of binary code requires new solutions to this problem. The commercial disassembler IDAPro
is a start: IDAPro provides an initial estimate of the IR. However, the IR that IDAPro constructs is incomplete in
critical ways that limits its ability to serve as a foundation for further analysis.

e Binary programs frequently transfer control via indirect jumps whose targets are not computed until program
run time. IDAPro uses heuristics to resolve indirect jumps. Consequently, it may not resolve all indirect jumps
correctly, i.e., it may not find all possible targets of an indirect jump and it even occasionally identifies incorrect
targets. Therefore, the control-flow graph constructed by IDAPro is frequently incomplete or outright incorrect.
Similar problems occur with IDAPro’s resolution of indirect calls; therefore, the call graph is also often incom-
plete or incorrect. Call graphs and control-flow graphs form the basis of further program analysis. Incorrectness
in these graphs will propagate through the analysis and produce bad results.

e IDAPro does not provide a safe estimate of what memory locations are used or modified by each instruction in
the executable. Such information is important for tools that aid in program understanding or bug finding; its
omission limits the success of these tools.

Applications

IDA Pro Detect
4 e
Sinary Parse Connector Malicious Code
Binary Value-Set Build Program
& Analysis Model
Build Control |
Flow Graphs BREW > CodeSurfer
> Rewrite
3 Code
E’ Obfuscation
Generate | |
Code
> Binary Patching

Figure 1: Architecture.

Hence, IDAPro cannot produce a suitable IR for automated program analysis.
We have been developing a static analysis algorithm called value-set analysis (VSA) that augments and corrects
the information provided by IDAPro in a safe way [1]. Specifically, VSA provides the following information:

e Complete, correct control-flow graphs with indirect jumps resolved safely.
e A call graph with indirect calls resolved safely.

e A set of variable-like entities called a-locs.

e Values for pointer variables.

e Used, killed, and possibly-killed variables for nodes in control-flow graphs.

This information is emitted in a format that is suitable for subsequent program analysis applications such as the
commercial tool CodeSurfer.

VSA is a flow-sensitive, context-sensitive, abstract-interpretation algorithm parameterized by call-string length
[15] that determines a safe over-approximation of the set of numeric values and addresses that memory locations hold at
each program point. A key feature of VSA is that it tracks integer-valued and address-valued quantities simultaneously.
This is crucial for analyzing executables because numeric values and addresses are indistinguishable in an executable.
VSA has similarities with the pointer-analysis problem that has been studied in great detail for programs written in
high-level languages. For each variable v, pointer analysis determines an over-approximation of the set of variables
whose addresses v can hold. Similarly, VSA determines an over-approximation of the set of addresses that each a-loc
can hold at each program point. On the other hand, VSA also has some of the flavor of numeric static analyses, like
constant propagation and interval analysis, where the goal is to over-approximate the integer values that each variable
can hold. In addition to information about addresses, VSA determines an over-approximation of the set of integer
values that each a-loc can hold at each program point. The result is a safe and correct IR that enables further static
program analyses to produce meaningful results for binary programs.

Figure 1 shows how VSA and IDAPro cooperate to produce a base that static analysis application can use to
analyze binary programs. IDAPro first processes a binary executable, producing the initial IR that may be incomplete
or incorrect. VSA then executes as part of a tool called the connector, as it connects IDAPro with static analysis tools
in a safe way. The complete, correct IR produced by VSA can then be used by applications performing static program
analysis, such as the commercial tool CodeSurfer or research techniques detecting malicious code in executables or
building models of expected execution for programs. We will consider these last two applications momentarily.

Alternatively, the IR can be used for binary rewriting, a process that changes the binary code of a program to
produce a new executable with altered behavior. Our tool, called BREW, alters the IR in the connector and regenerates
binary code for the modified program. Binary rewriting applies to tools such as code obfuscators that change program
code to increase the difficulty of reverse engineering, and to binary patching tools that repair program bugs without
requiring recompilation of source code.

2.1 Applications

Malware detectors, such as virus scanners, identify malicious code hidden within off-the-shelf code and in code shared
over communications networks. Despite the importance of malware detectors, there is a dearth of testing techniques to
evaluate them. We introduced a technique based on program obfuscation to generate tests for malware detectors [5].
Our technique is geared towards evaluating the resilience of malware detectors to various obfuscation transformations
commonly used by hackers to disguise malware. We also demonstrated that a hacker can leverage a malware detector’s
weakness in handling obfuscation transformations and can extract the signature used by a detector for a specific
malware. We evaluated three widely-used commercial virus scanners using our techniques and discovered that the
resilience of these scanners to various obfuscations is very poor.

The fundamental deficiency of these commercial virus scanners is their use of pattern-matching approaches to mal-
ware detection: these approaches are purely syntactic and ignore the semantics of binary instructions. We developed a
malware-detection algorithm that addressed this deficiency by using instruction semantics to detect malicious program
traits [6]. Experimental evaluation demonstrated that, with a relatively low run-time overhead, our malware-detection
algorithm can detect variants of malware embedded within COTS code. Moreover, our semantics-aware malware
detection algorithm is resilient to common obfuscations used by hackers.

Just as a misuse detector identifies attacks contained in program code, a network intrusion detection system (NIDS)
detects attacks contained in network traffic. Using network-level obfuscation transformations, we used black-box
testing to evaluate the ability of COTS misuse-NIDS products to detect attacks and secure an organization’s networks.
A misuse-NIDS defines penetration via a table of malicious signatures: if the network traffic matches a signature in the
table, an alarm is raised. Both researchers and industry professionals accept that the effectiveness of current off-the-
shelf NIDS is questionable. Current NIDS generate many false alarms, and worse (although not always publicized),
they miss many real attacks. Our research strives to bring us closer to an effective NIDS: an intrusion detection system
that detects the attacks we specify and only those attacks. In our research, we developed formal models and tools that
can increase our confidence in NIDS. In the last two years, we have addressed two fundamental problems of NIDS
effectiveness: NIDS testing and signature construction.

We formulated a computational model that describes how attackers can generate attack instances that evade a
NIDS. Based on this model, we implemented a testing tool that automatically generated new attack instances from
known ones [13]. We used this tool to find attack instances that evaded two well-known COTS NIDS: Snort, which is
a popular NIDS publicly available from SourceFire, and UnityOne, which is a commercial NIDS from TippingPoint
used by highly secured sites such as the Los Alamos National Lab. In both cases, we exposed vulnerabilities that
would have enabled attackers to evade these systems for any TCP-based attack. In response to our findings, both
Sourcefire and TippingPoint issued patches to fix their systems.

The signatures that a NIDS uses determine its ability to recognize attacks. We developed a method to systematically
construct and evaluate signatures [14]. First, we formally defined the ability of attackers to obfuscate attacks. Then,
we combined this formal model with language-based techniques to find loopholes in signatures. To the best of our
knowledge, this was the first method that enabled NIDS developers to systematically “debug” the signatures they
developed. We showed that, under certain assumptions, the signatures produced are loophole free.

As a complement to network-based intrusion detection, host-based intrusion detection systems identify attempts to
exploit program vulnerabilities, frequently by monitoring the program’s execution. A model-based or behavioral-based
anomaly detector restricts execution to a precomputed model of expected behavior. An execution monitor verifies a
stream of system calls generated by the executing program and rejects any call sequences deviating from the model.
Constructing a model via static binary program analysis that balances the competing needs of detection ability and
efficiency is a challenging task. Non-deterministic finite automaton (NFA) models are efficient to operate, but fail
to detect attacks because they do not model the call-return semantics of the program. Pushdown automaton (PDA)
models detect more attacks by additionally modeling the program’s call stack, but they are inefficient to operate. New
models of correct program execution are needed.

We developed a new formal model called the Dyck model that preserves the correctness of PDA models but operates
with efficiency close to that of NFA models [10, 16]. Our model determinizes previously costly PDA operations
modeling the program’s call stack [9]. Techniques for determinizing the PDA models essentially incorporate additional
program state, such as the program counter and stack activity, into the model. Our results showed that the Dyck model
enabled construction of precise program models with performance suitable for online security monitoring. These
results vindicated context sensitive models, showing that reasonable efficiency needs not be sacrificed for model
precision.

3 Conclusions

We have made good progress towards some of our goals. However, there are some important tasks that should be
addressed in the future. We want to improve the robustness and enhance the capabilities of our static-analysis and
rewriting infrastructure. Information-flow analysis also remains an important goal which we have not addressed.
Compositional analysis of COTS also remains an important goal.

References

[1] G. Balakrishnan and T. Reps. Analyzing memory accesses in x86 executables. In /3th International Conference
on Compiler Construction (CC), Barcelona, Spain, Apr. 2004.

[2] T.Ball and S. K. Rajamani. The slam toolkit. In International Conference on Computer Aided Verification (CAV),
2001.

[3] W. Bush, J. Pincus, and D. Sielaff. A static analyzer for finding dynamic programming errors. Software—Practice
& Experience, 30:775-802, 2000.

[4] H. Chen and D. Wagner. MOPS: An infrastructure for examining security properties of software. In ACM
Conference on Computer and Communications Security, Nov. 2002.

[5] M. Christodorescu and S. Jha. Testing malware detectors. In International Symposium on Software Testing and
Analysis (ISSTA), Boston, MA, July 2004.

[6] M. Christodorescu, S. Jha, S. A. Seshia, D. Song, and R. E. Bryant. Semantics-aware malware detection. In 2005
IEEE Symposium on Security and Privacy, Oakland, CA, May 2005.

[7] M. Das, S. Lerner, and M. Seigle. ESP: path-sensitive program verification in polynomial time. In Programming
Language Design and Implementation (PLDI), New York, NY, 2002.

[8] D. R. Engler, B. Chelf, A. Chou, and S. Hallem. Checking system rules using system-specific, programmer-
written compiler extensions. In Operating System Design and Implementation (OSDI), 2000.

[9] H. H. Feng, J. T. Giffin, Y. Huang, S. Jha, W. Lee, and B. P. Miller. Formalizing sensitivity in static analysis for
intrusion detection. In IEEE Symposium on Security and Privacy, Oakland, CA, May 2004.

[10] J. T. Giffin, S. Jha, and B. P. Miller. Efficient context-sensitive intrusion detection. In /7th Network and Dis-
tributed System Security Symposium (NDSS), San Diego, CA, Feb. 2004.

[11] K. Havelund and T. Pressburger. Model checking Java programs using Java PathFinder. Software Tools for
Technology Transfer, 2(4), 2000.

[12] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In Principles of Programming Lan-
guages (POPL), 2002.

[13] S. Rubin, S. Jha, and B. P. Miller. Automatic generation and analysis of NIDS attacks. In 20th Annual Computer
Security Applications Conference (ACSAC), Tuscon, AZ, Dec. 2004.

[14] S. Rubin, S. Jha, and B. P. Miller. Language-based generation and evaluation of NIDS signatures. In /IEEE
Symposium on Security and Privacy, Oakland, CA, May 2005.

[15] M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis. In S. S. Muchnick and N. D.
Jones, editors, Program Flow Analysis: Theory and Applications, chapter 7, pages 189-233. Prentice-Hall, 1981.

[16] W. von Dyck. Gruppentheoretische studien. Mathematische Annalen, 20:1-44, 1882.

[17] D. Wagner, J. Foster, E. Brewer, and A. Aiken. A first step towards automated detection of buffer overrun
vulnerabilities. In Network and Distributed System Security Symposium, Feb. 2000.

