
Malware Analysis with Tree Automata Inference ⋆

Domagoj Babić, Daniel Reynaud, and Dawn Song

University of California, Berkeley
{babic, reynaud, dawnsong}@cs.berkeley.edu

Abstract. The underground malware-based economy is flourishing and itis ev-
ident that the classical ad-hoc signature detection methods are becoming insuffi-
cient. Malware authors seem to share some source code and malware samples
often feature similar behaviors, but such commonalities are difficult to detect
with signature-based methods because of an increasing use of numerous freely-
available randomized obfuscation tools. To address this problem, the security
community is actively researching behavioral detection methods that commonly
attempt to understand and differentiate how malware behaves, as opposed to just
detecting syntactic patterns. We continue that line of research in this paper and
explore how formal methods and tools of the verification trade could be used for
malware detection and analysis. We propose a new approach tolearning and gen-
eralizing from observed malware behaviors based on tree automata inference. In
particular, we develop an algorithm for inferringk-testable tree automata from
system call dataflow dependency graphs and discuss the use ofinferred automata
in malware recognition and classification.

1 Introduction

Over the last several decades, the IT industry advanced almost every aspect of our
lives (including health care, banking, traveling,. . .) andindustrial manufacturing. The
tools and techniques developed in the computer-aided verification community played
an important role in that advance, changing the way we designsystems and improving
the reliability of industrial hardware, software, and protocols.

In parallel, another community made a lot of progress exploiting software flaws for
various nefarious purposes, especially for illegal financial gain. Their inventions are
often ingenious botnets, worms, and viruses, commonly known asmalware. Malware
source code is rarely available and malware is regularly designed so as to thwart static
analysis through the use of obfuscation, packing, and encryption [36].

⋆ This material is based upon work partially supported by the National Science Foundation un-
der Grants No. 0832943, 0842694, 0842695, 0831501, 0424422, by the Air Force Research
Laboratory under Grant No. P010071555, by the Office of NavalResearch under MURI Grant
No. N000140911081, and by the MURI program under AFOSR Grants No. FA9550-08-1-
0352 and FA9550-09-1-0539. The work of the first author is also supported by the Natural
Sciences and Engineering Research Council of Canada PDF fellowship.

0 This is an extended full version of the CAV 2011 paper.

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 2002 2003 2004 2005 2006 2007 2008 2009

Fig. 1: New Malicious Signatures added to the Symantec Antivirus Tool per Year [33].

For the above mentioned reasons, detection, analysis, and classification of mal-
ware are difficult to formalize, explaining why the verification community has mostly
avoided, with some notable exceptions (e.g., [8, 18]), the problem. However, the area is
in a dire need of new approaches based on strong formal underpinnings, as less princi-
pled techniques, like signature-based detection, are becoming insufficient. Recently, we
have been experiencing a flood of malware [33], while the recent example of Stuxnet
(e.g., [28]) shows that industrial systems are as vulnerable as our every-day computers.

In this paper, we show how formal methods, more precisely tree automata inference,
can be used for capturing the essence of malicious behaviors, and how such automata
can be used to detect behaviors similar to those observed during the training phase.
First, we execute malware in a controlled environment to extract dataflow dependen-
cies among executed system calls (syscalls) using dynamic taint analysis [5, 30]. The
main way for programs to interact with their environment is through syscalls, which are
broadly used in the security community as a high-level abstraction of software behav-
ior [13, 24, 34]. The dataflow dependencies among syscalls can be represented by an
acyclic graph, in which nodes represent executed syscalls,and there is an edge between
two nodes, says1 ands2, when the result computed bys1 (or a value derived from it) is
used as a parameter ofs2. Second, we use tree automata inference to learn an automaton
recognizing a set of graphs. The entire process is completely automated.

The inferred automaton captures the essence of different malicious behaviors. We
show that we can adjust the level of generalization with a single tunable factor and how
the inferred automaton can be used to detect likely malicious behaviors, as well as for
malware classification. We summarize the contributions of our paper as follows:

– Expansion of dependency graphs into trees causes exponential blowup in the size of
the graph, similarly as eager inlining of functions during static analysis. We found
that a class of tree languages, namelyk-testable tree languages [37] can be inferred
directly from dependency graphs, avoiding the expansion totrees.

– We improve upon the prior work on inference ofk-testable tree languages by pro-
viding anO (kN) algorithm, wherek is the size of the pattern andN is the size of
the graph used for inference.

– We show how inferred automata can be used for detecting likely malicious behav-
iors and for malware classification. To our knowledge, this is the first work applying
the theory of tree automata inference to malware analysis. We provide experimental
evidence that our approach is both feasible and useful in practice.

– While previous work (e.g., [7, 13]) often approximated dependencies by syntactic
matching of syscall parameters, we implemented a tool for tracking dependencies
via taint analysis [5, 30] and we made the generated dependency graphs, as well as
the tree automata inference engine, publicly available to encourage further research.

2 Related Work

2.1 Tree Automata Inference

Gold [17] showed that no super-finite (contains all finite languages and at least one
infinite) is identifiable in the limit from positive examples1 only. For instance, regular
and regular tree languages [9] are super-finite languages. We have two options to cir-
cumvent this negative result; either use both positive and negative examples, or focus
on less expressive languages that are identifiable in the limit from positive examples
only. Inference of minimal finite state automata from both positive and negative exam-
ples is known to be NP-complete [17], because minimization of incomplete automata
is NP-complete [31]. The security community is discoveringmillions of new malware
samples each year and inferring a single minimal classifier for all the samples might be
infeasible. Inferring a non-minimal classifier is feasible, but the classifier could be too
large to be useful in practice. Thus, we focus on a set of languages identifiable in the
limit from positive examples in this paper.

A subclass of regular tree languages —k-testable tree languages [37] — is identifi-
able in the limit from positive examples only. These languages are defined in terms of a
finite set ofk-level-deep tree patterns. Thek factor effectively determines the level of ab-
straction, which can be used as a knob to regulate the ratio offalse positives (goodware
detected as malware) and false negatives (undetected malware). The patterns partition
dependency graphs into a finite number of equivalence classes, inducing a state-minimal
automaton. The automata inferred from positive (malware) examples could be further
refined using negative (goodware) examples. Such a refinement is conceptually simple,
and does not increase the inference complexity, because of the properties ofk-testable
tree languages. We leave such a refinement for future work.

A number of papers focused onk-testable tree automata inference. Garcia and Vidal
[15] proposed anO (kPN) inference algorithm, wherek is the size of the pattern,P the
total number of possible patterns, andN the size of the input used for inference. Many
patterns might not be present among the training samples, sorather than enumerating all
patterns, [14] and [23] propose very similar algorithms that use only the patterns present

1 Positive examples are examples belonging to the language tobe inferred, while negative ex-
amples are those not in the language.

in the training set. Their algorithms are somewhat complex to implement as they require
computation of three different sets (called roots, forks, and leaves). Their algorithms
areO

(

MkN log(N)
)

, whereM is the maximal arity of any alphabet symbol in the tree
language. We derive a simpler algorithm, so that computing forks and leaves becomes
unnecessary. The complexity of our algorithm isO (kN), thanks to an indexing trick
that after performingk iterations over the training sample builds an index for finding
patterns in the training set. Patterns in the test set can be located in the index table in
amortized time linear in the size of the pattern. In our application — malware analysis
— thek factor tends to be small (≤ 5), so our algorithm can be considered linear-time.

2.2 Malware Analysis

From the security perspective, several types of malware analysis are interesting: mal-
ware detection (i.e., distinguishing malware from goodware), classification (i.e., deter-
mining the family of malware to which a particular sample belongs), and phylogeny
(i.e., forensic analysis of evolution of malware and common/distinctive features among
samples). All three types of analyses are needed in practice: detection for preventing
further infections and damage to the infected computers, and the other two analyses are
crucial in development of new forms of protection, forensics, and attribution. In this
paper, we focus on detection and classification.

The origins of the idea to use syscalls to analyze software can be traced to For-
rest et al. [12], who used fixed-length sequences of syscallsfor intrusion detection.
Christodorescu et al. [7] note that malware authors could easily reorder data-flow-
independent syscalls, circumventing sequence-detectionschemes, but if we analyze
data-flow dependencies among syscalls and use such dependency graphs for detec-
tion, circumvention becomes harder. Data-flow-dependent syscalls cannot be (easily)
reordered without changing the semantics of the program. They compute a difference
between malware and goodware dependency graphs, and show how resulting graphs
can be used to detect malicious behaviors. Such graph matching can detect only the
exact behavioral patterns already seen in some sample, but does not automatically gen-
eralize from training samples, i.e., does not attempt to overapproximate the training set
in order to detect similar, but not exactly the same behaviors.

Fredrikson et al. [13] propose an approach that focuses on distinguishing features,
rather than similarities among dependency graphs. First, they compute dependency
graphs at runtime, declaring two syscalls, says1 and s2, dependent, if the type and
value of the value returned bys1 are equal to the type and value of some parameter of
s2 ands2 was executed afters1. They extract significant behaviors from such graphs
using structural leap mining, and then choose behaviors that can be combined together
using concept analysis. In spite of a very coarse unsound approximation of the depen-
dency graph and lack of automatic generalization, they report 86% detection rate on
around 500 malware samples used in their experiments. We seetheir approach as com-
plementary to ours: the tree-automata we infer from real dependency graphs obtained
through taint analysis could be combined with leap mining and concept analysis, to
improve their classification power.

Bonfante et al. [3] propose to unroll control-flow graphs obtained through dynamic
analysis of binaries into trees. The obtained trees are morefine-grained than the syscall

dependency graphs. The finer level of granularity could, in practice, be less susceptible
to mimicry attacks (e.g., [35]), but is also easier to defeatthrough control-flow graph
manipulations. The computed trees are then declared to be tree automata and the recog-
nizer is built by a union of such trees. Unlike inference, theunion does not generalize
from the training samples. The reported experiments include a large set of malware
samples (over 10,000), but the entire set was used for training, and authors report only
false positives on a set of goodware (2653 samples). Thus, itis difficult to estimate how
well their approach would work for malware detection and classification.

2.3 Taint Analysis

Dynamic taint analysis (DTA) [30] is a technique used to follow data flows in programs
or whole systems at runtime. DTA can be seen as a single-path symbolic execution [22]
over a very simple domain (set of taints). Its premises are simple: taint is a variable
annotation introduced throughtaint sources, it is propagated through program execu-
tion according to somepropagation rulesuntil it reaches ataint sink. In our case, for
instance, taint sources are the syscalls’ output parameters, and taint sinks are the input
parameters.

As will be discussed in detail later, our implementation is based on the binary rewrit-
ing framework Pin [26] and uses the taint propagation rules from Newsome and Song
[30]. Since DTA must operate at the instruction-level granularity, it poses a signifi-
cant runtime overhead. Our DTA implementation executes applications several thou-
sand times slower than the native execution. Our position isthat the speed of the taint
analysis is less important than the speed of inference and recognition. The taint analysis
can be run independently for each sample in parallel, the dependency graph extraction
is linear with the length of each execution trace, and hardware-based information flow
tracking has been proposed (e.g., [32, 11]) as a potential solution for improving per-
formance. In contrast, inference techniques have to process all the samples in order to
construct a single (or a small number of) recognizer(s). An average anti-virus vendor
receives millions of new samples annually and the number of captured samples has been
steadily growing over the recent years. Thus, we believe that scalability of inference is
a more critical issue than the performance of the taint analysis.

3 Notation and Terminology

In this section, we introduce the notation and terminology used throughout the paper.
First, we build up the basic formal machinery that allows us to define tree automata.
Second, we introduce some notions that will help us definek-roots that can be intu-
itively seen as the topk levels of a tree. Later, we will show howk-roots induce an
equivalence relation used in our inference algorithm. Towards the end of this section,
we introducek-testablelanguages, less expressive than regular tree languages, but suit-
able for designing fast inference algorithms.

Let N be the set of natural numbers andN∗ the free monoid generated byN with
concatenation (·) as the operation and the empty stringε as the identity. The prefix
order≤ is defined as:u≤ v for u,v ∈ N

∗ iff there existsw ∈ N
∗ such thatv = u ·w.

For u ∈ N
∗,n ∈ N, the length |u| is defined inductively:|ε| = 0, |u · n| = |u|+ 1. We

say that a setS is prefix-closedif u ≤ v∧ v ∈ S⇒ u ∈ S. A tree domainis a finite
non-empty prefix-closed setD⊂ N

∗ satisfying the following property: ifu ·n∈ D then
∀1≤ j ≤ n . u · j ∈D.

A ranked alphabetis a finite setF associated with a finiteranking relation arity⊆
F ×N. DefineFn as a set{ f ∈F |(f ,n) ∈ arity}. The setT (F) of termsover the
ranked alphabetF is the smallest set defined by:

1. F0 ⊆ T (F)
2. if n≥ 1, f ∈Fn, t1, . . . , tn ∈ T (F) then f (t1, . . . , tn) ∈ T (F)

Each term can be represented as a finite orderedtree t : D→F , which is a mapping
from a tree domain into the ranked alphabet such that∀u∈ D:

1. if t (u) ∈Fn, n≥ 1 then{ j | u · j ∈ D}= {1, . . . ,n}
2. if t (u) ∈F0 then{ j | p · j ∈ D}= /0

a b

f

g a h

b

1

11 12 13

111 112 131

Fig. 2: An Example of a Treet and its Tree Domain.dom(t) = {1,11,111,112,
12,13,131}, F = { f ,g,h,a,b}, ‖ t ‖= 3, t(1) = f , t/131= b.

As usual in the tree automata literature (e.g., [9]), we use the lettert (possibly with
various indices) both to represent a tree as a mathematical object and to name a rela-
tion that maps an element of a tree domain to the corresponding alphabet symbol. An
example of a tree with its tree domain is given in Figure 2.

The set of all positions in a particular treet, i.e., its domain, will be denoteddom(t).
A subtreeof t rooted at positionu, denotedt/u is defined as(t/u)(v) = t(u · v) and
dom(t/u) = {v | u ·v∈ dom(t)}. We generalize thedomoperator to sets as:dom(S) =
{dom(u) | u∈ S}. Theheightof a treet, denoted‖ t ‖, is defined as:

‖ t ‖= max({|u| such thatu∈ dom(t)})

Let Ξ =
{

ξ f | f ∈
⋃

i>0Fi
}

be a set of new nullary symbols such thatΞ ∩F = /0.
The Ξ set will be used as a set ofplaceholders, such thatξ f can be substituted only
with a treet whose position one (i.e., thehead) is labelled with f , i.e., t(1) = f . Let
T (Ξ ∪F) denote the set of trees over the ranked alphabet and placeholders. Fort, t ′ ∈

T (Ξ ∪F), we define thelink operationt♯t ′ by:

(t♯t ′)(n) =

{

t(n) if t(n) 6∈ Ξ ∨ (t(n) = ξ f ∧ f 6= t ′(1))
t ′(z) if n= y ·z, t(y) = ξt′(1), y∈ dom(t) , z∈ dom(t ′)

For any two trees,t, t ′ ∈ T(F), thetree quotient t−1t ′ is defined by:

t−1t ′ =
{

t ′′ ∈ T (Ξ ∪F) | t ′ = t ′′♯t
}

The tree quotient operation can be extended to sets, as usual: t−1S=
{

t−1t ′ | t ′ ∈ S
}

.
For anyk≥ 0, definek-root of a treet as:

rootk (t) =







t if t(1) ∈F0

ξ f if f = t(1), f ∈
⋃

i>0Fi , k= 0
f (rootk−1 (t1) , . . . , rootk−1 (tn)) if t = f (t1, . . . , tn), ‖ t ‖> k> 0

A finite deterministic bottom-up tree automaton(FDTA) is defined as a tuple(Q,F ,δ ,F),
whereQ is a finite set of states,F is a ranked alphabet,F ⊆Q is the set of final states,
andδ =

⋃

i δi is a set oftransition relationsdefined as follows:δ0 : F0→ Q and for
n> 0, δn : (Fn×Qn)→Q.

Thek-testable in the strict sense(k-TSS) languages [23] are intuitively defined by
a set of tree patterns allowed to appear as the elements of thelanguage. The following
theorem is due to López et al. [25]:

Theorem 1. Let L ⊆ T(F). L is a k-TSS iff for any trees t1, t2 ∈ T(F) such that
rootk (t1) = rootk (t2), when t−1

1 L 6= /0∧ t−1
2 L 6= /0 then it follows that t−1

1 L = t−1
2 L .

We choose López et al.’s theorem as a definition ofk-TSS languages. Other defi-
nitions in the literature [14, 23] definek-TSS languages in terms of three sets; leaves,
roots, and forks. Forks are roots that have at least one placeholder as a leaf. Theorem
1 shows that such more complex definitions are unnecessary. Intuitively, the theorem
says that within the language, any two subtrees that agree onthe topk levels are in-
terchangeable, meaning that a bottom-up tree automaton hasto remember only a finite
amount of history. In the next section, we show that we can define an equivalence re-
lation inducing an automaton accepting ak-TSS language using only our definition of
thek-root, as expected from Theorem 1.

4 k-Testable Tree Automata Inference

4.1 Congruence Relation

We begin with our definition of the equivalence relation thatis used to induce a state-
minimal automaton from a set of trees. The equivalence relation, intuitively, compares
trees up tok levels deep, i.e., comparesk-roots.

Definition 1 (Root Equivalence Relation∼k). For some k≥ 0, two trees t1, t2∈T (F)
are root-equivalent with degree k, denoted t1∼k t2, if rootk (t1) = rootk (t2).

Lemma 1. The∼k relation is a congruence (monotonic equivalence) relationof finite
index.

Proof (Sketch).It is obvious that∼k is an equivalence relation (reflexive, symmetric,
and transitive), and here we show that it is also monotonic, and therefore a congruence.
Supposet1 = f (t11, . . . , t1n) andt2 = f (t21, . . . , t2n), such thatrootk (t1/i) = rootk (t2/i)
for all 1≤ i ≤ n. First, note that ifk > 0 androotk (t) = rootk (t ′), thenrootk−1 (t) =
rootk−1 (t ′). According to the definition ofrootk, for k> 0 we obtain:

rootk (t1)
= f (rootk−1 (t11) , . . . , rootk−1 (t1n)) By definition ofrootk
= f (rootk−1 (t21) , . . . , rootk−1 (t2n)) By inductive hypothesis
= rootk (t2) By definition ofrootk

Thek= 0 case is trivial, asroot0 (t1) = ξ f = root0 (t2).
The size of ak-root is bounded byMk, whereM = max({n |Fn ∈ F,Fn 6= /0}).

Each positionu in thek-root’s domain can be labelled with at most|Farity(t(u))| symbols.
Thus,rootk generates a finite number of equivalence classes, i.e., is offinite index.

As a consequence of Lemma 1, inference algorithms based on the root equivalence
relation need not propagate congruences using union-find [10] algorithms, as the root
equivalence relation is a congruence itself.

Definition 2 (∼k-induced Automaton). Let T′ ⊆ T(F) be a finite set of finite trees.
The A∼k(T ′) = (Q,F ,δ ,F) automaton induced by the root equivalence relation∼k is
defined as:

Q = {rootk (t ′) | ∃t ∈ T ′ . ∃u∈ dom(T ′) . t ′ = t/u}
F = {rootk (t) | t ∈ T ′}

δ0(f) = f for f ∈F0

δn(f , rootk (t1) , . . . , rootk (tn)) = rootk (f (t1, . . . , tn)) for n≥ 1, f ∈Fn

Corollary 1 (Containment). From the definition it follows that∀k≥ 0 . T ′⊆L (A∼k(T ′)).
In other words, the∼k-induced automaton abstracts the set of trees T′.

Theorem 2. L (A∼k) is a k-TSS language.

Proof. We need to prove that∀t1, t2∈T(F), k≥ 0 . rootk (t1) = rootk (t2)∧t−1
1 L (A∼k) 6=

/0∧ t−1
2 L (A∼k) 6= /0⇒ t−1

1 L (A∼k) = t−1
2 L (A∼k). Suppose the antecedent is true, but

the consequent is false, i.e.,t−1
1 L (A∼k) 6= t−1

2 L (A∼k). Then there must existt such
thatt♯t1∈L (A∼k) andt♯t2 6∈L (A∼k). Letu be the position ofξt2(1), i.e.,(t♯t2)/u= t2.
Without loss of generality, lett be the tree with minimal|u|. Necessarily,|u|> 1, as oth-
erwiset−1

1 L (A∼k) = /0. Let u = w · i, i ∈ N. We prove thatt♯t2 must be inL (A∼k),
contradicting the initial assumption, by induction on the length ofw.

Base case (|w| = 1): Let (t(w))(1) = f , f ∈ Fn. There are two subcases:n = 1
and n > 1. For n = 1, the contradiction immediately follows, asδ (f , rootk (t1)) =
δ (f , rootk (t2)). For then> 1 case, observe that for all positionsw· j such that 1≤ j ≤ n

and j 6= i, (t♯t1)/w · j = (t♯t2)/w · j = t/w · j. From that observation androotk (t1) =
rootk (t j), it follows that

δ
(

(t♯t1/w)(1), rootk (t♯t1/w ·1) , . . . , rootk (t♯t1/w ·n)
)

= δ
(

(t♯t2/w)(1), rootk (t♯t2/w ·1) , . . . , rootk (t♯t2/w ·n)
)

Induction step (|w|> 1): Letw= w′ ·m, m∈N. From the induction hypothesis, we
know that for allm, rootk (t♯t1/w) = rootk (t♯t2/w), thus it follows:

δ
(

(t♯t1/w′)(1), rootk (t♯t1/w′ ·1) , . . . , rootk (t♯t1/w′ ·n)
)

= δ
(

(t♯t2/w′)(1), rootk (t♯t2/w′ ·1) , . . . , rootk (t♯t2/w′ ·n)
)

Theorem 3 (Minimality). A∼k is state-minimal.

Proof. Follows from Myhill-Nerode Theorem [20, pg. 72] and Lemma 1.

Minimality is not absolutely crucial for malware analysis in a laboratory setting,
but it is important in practice, where antivirus tools can’timpose a significant system
overhead and have to react promptly to infections.

Theorem 4 (Garcia [14]).L (A∼k+1)⊆L (A∼k)

An important consequence of Garcia’s theorem is that thek factor can be used as an
abstraction knob — the smaller thek factor, the more abstract the inferred automaton.
This tunability is particularly important in malware detection. One can’t hope to design
a classifier capable of perfect malware and goodware distinction. Thus, tunability of the
false positive (goodware detected as malware) and false negative (undetected malware)
ratios is crucial. More abstract automata will result in more false positives and fewer
false negatives.

4.2 Inference Algorithm

In this section, we present our inference algorithm, but before proceeding with the al-
gorithm, we discuss some practical aspects of inference from data-flow dependency
graphs. As discussed in Section 2, we use taint analysis to compute data-flow depen-
dencies among executed syscalls at runtime. The result of that computation is not a tree,
but an acyclic directed graph, i.e., a partial order of syscalls ordered by the data-flow
dependency relation, and expansion of such a graph into a tree could cause exponential
blowup. Thus, it would be more convenient to have an inference algorithm that operates
directly on graphs, without expanding them into trees.

Fortunately, such an algorithm is only slightly more complicated than the one that
operates on trees. In the first step, our implementation performs common subexpression
elimination [1] on the dependency graph to eliminate syntactic redundancies. The result
is a maximally-shared graph [2], i.e., an acyclic directed graph with shared common
subgraphs. Figure 3 illustrates how a tree can be folded intoa maximally-shared graph.
In the second step, we compute a hash for eachk-root in the training set. The hash
is later used as a hash table key. Collisions are handled via chaining [10], as usual,
but chaining is not described in the provided algorithms. The last step of the inference

h

g

a b

g

a b

f

h

g

a b

f

h

g

a b

Fig. 3: Folding a Tree into a Maximally-Shared Graph.

algorithm traverses the graph and folds it into a tree automaton, using the key computed
in the second phase to identify equivalentk-roots, which are mapped to the same state.

To simplify the exposition, we shall use the formal machinery developed in Section
3 and present indexing and inference algorithms that work ontrees. The extension to
maximally-shared graphs is trivial and explained briefly later.

input : Treet, factork
result : Key computed for every subtree oft

tmp← hash(t(1))
foreach1≤ i ≤ arity(t(1)) do

ts← t/i
tmp← tmp⊕hash(ts.key)
ComputeKey(ts,k)

t.key← tmp

Algorithm 1: ComputeKey — Computingk-Root Keys (Hashes). The⊕ operator can
be any operator used to combine hashes, like bitwise exclusive OR. Thehash: F →
N function can be implemented as a string hash, returning an integral hash of the
alphabet symbols.

Algorithm 1 traverses treet in postorder (children before the parent). Every subtree
has a fieldkeyassociated with its head, and the field is assumed to be initially zero.
If the algorithm is called once, for treet, the key of the head of each subtreets will
consist only of the hash of the alphabet symbol labelingts, i.e., hash(ts(1)). If the
algorithm is called twice (on the same tree), the key of the head of each subtree will
include the hash of its own label and the labels of its children, and so on. Thus, after
k calls toComputeKey, the key of each node will be equal to itsk-root key. Note that
the temporary key, stored in thetmp variable, has to be combined with the children’s
(k−1)-root key. The algorithm can be easily extended to operate onmaximally-shared
graphs, but has to track visited nodes and visit each node only once in postorder. The
complexity of the algorithm isO (k ·N), whereN is the size of the tree (or maximally-

shared graph). For multi-rooted graphs (or when processingmultiple trees), all roots
can be connected by creating a synthetic super-root of all roots, and the algorithm is
then calledk times with the super-root as the first operand.

input : Treet, factork, alphabetF
output: A∼k = (Q,F ,δ ,F)

foreachsubtree ts in {t/u | u∈ dom(t)} traversed in postorderdo
if rep[ts.key] = /0 then

q← rootk (ts)
rep[ts.key] = q
Q←Q∪q

n← arity(ts(1))

δ ←
(

(

ts(1), rep[(ts/1).key], . . . , rep[(ts/n).key]
)

, rep[ts.key]
)

F = F ∪ rep[t.key]
return (Q,F ,δ ,F)

Algorithm 2: k-Testable Tree Automaton Inference. Therep: hash(rootk (T(F)))→
rootk (T(F)) hash map contains representatives of equivalence classes induced by
∼k. Collisions are handled via chaining (not shown).

Algorithm 2 constructs theA∼k automaton. The tree (alternatively maximally-shared
graph) used for training is traversed in postorder, andk-root of each subtree is used to
retrieve the representative for each∼k-induced equivalence class. Multi-rooted graphs
can be handled by introducing super-roots (as described before). Amortized complexity
is O (kN), whereN is the size of the tree (or maximally-shared graph).

5 Implementation

5.1 Taint Analysis

We use Pin [26] to perform instruction-level tracing and analysis. Pin is a dynamic bi-
nary instrumentation framework that allows program monitoring and rewriting only in
user space, which prevents us from propagating taints through syscalls in the kernel
space. One possible solution would be to declare all syscalls’ input parameters to be
taint sinks, and all output parameters to be taint sources. Unfortunately, the kernel in-
terface for the Windows XP operating system is only partially documented. To work
around this problem, we use the libwst library by Martignoniand Paleari [27] to auto-
matically extract and parse parameters of Windows syscalls. With libwst, we find out
the number, type, and directionality (in/out) of parameters. The reverse-engineered
parameters are then used as an input-output specification ofsyscalls. After each return
from a syscall, we walk the stack and mark any location pointed to by anout parameter
as tainted with a new taint mark. At syscall entry (i.e., justbefore our tool loses control),
we walk the stack and check if taint has reached any of itsin parameters. Since each

taint mark can be traced back to a uniqueout parameter, the set of dependencies for
anin parameter corresponds exactly to the set of its taint marks.We approximate the
leaves of the dependency graph (i.e., input parameters not returned by any syscall) with
their types. A more precise approach, left for future work, would be to use the actual
values.

Ideally, each malware sample would run unencumbered in the environment targeted
by its authors. According to conventional wisdom, most malware samples target Win-
dows XP, so we set it up with the latest service pack in a VirtualBox virtual machine
with no network connection and only one user with administrative rights. Although the
lack of network connection might prevent some samples from executing their payload,
such a precaution is necessary to avoid spreading the infection. We infect the virtual
machine via a shared folder. The physical machine used to runthe dependency graph
extraction experiments has a 2.66GHz Intel Core i7 CPU and 8GB RAM. After each
run, we revert the virtual machine to a clean snapshot so thatmalware samples can not
interfere with each other.

5.2 Inference Algorithm

The inference algorithm is a relatively straightforward implementation of algorithms in
Section 4.2, written in about 3200 lines of C++ code. As explained before, after reading
the dependency graphs, the implementation performs commonsubexpression elimina-
tion (CSE), computesk-root hashes (Algorithm 1), infers ak-testable tree automaton
(Algorithm 2), and then runs the dependency graphs from the test set against that au-
tomaton. Both CSE and inference are done directly on dependency graphs, avoiding an
expansion into trees.

6 Experimental Results

6.1 Benchmarks

For the experiments, we use two sets of benchmarks: the malware and the goodware set.
The malware set comprises 2631 samples pre-classified into 48 families. Each family
contains 5–317 samples. We rely upon the classification of Christodorescu et al. [6]
and Fredrikson et al. [13].2 The classification was based on the reports from antivirus
tools. For a small subset of samples, we confirmed the qualityof classification using
virustotal.com, a free malware classification service. However, without knowing the
internals of those antivirus tools and their classificationheuristics, we cannot evaluate
the quality of the classification provided to us. Our classification experiments indicate
that the classification antivirus tools do might be somewhatad-hoc. Table 1 shows the
statistics for every family, while Table 2 shows goodware statistics. Table 3 gives some
idea of how antivirus tools classify one randomly chosen sample.

2 The full set of malware contains 3136 samples, but we eliminated samples that were not exe-
cutable, executable but not analyzable with Pin (i.e., MS-DOS executables), broken executa-
bles, and those that were incompatible with the version of Windows (XP) that we used for
experiments.

ID Family Name Samples Avg. Nodes Trees Max.
1 ABU.Banload 16 7.71 544 303 21
2 Agent 42 8.86 965 593 27
3 Agent.Small 15 8.88 950 588 27
4 Allaple.RAHack 201 8.78 1225 761 44
5 Ardamax 25 6.21 144 69 16
6 Bactera.VB 28 7.09 333 177 28
7 Banbra.Banker 52 13.97 1218 686 37
8 Bancos.Banker 46 14.05 742 417 45
9 Banker 317 17.70 2952 1705 43

10 Banker.Delf 20 14.78 939 521 50
11 Banload.Banker 138 19.38 2370 1332 152
12 BDH.Small 5 5.82 348 199 21
13 BGM.Delf 17 7.04 339 199 25
14 Bifrose.CEP 35 11.17 1190 698 50
15 Bobax.Bobic 15 8.98 859 526 30
16 DKI.PoisonIvy 15 9.22 413 227 40
17 DNSChanger 22 12.62 874 483 36
18 Downloader.Agent 13 12.89 1104 613 49
19 Downloader.Delf 22 10.76 1486 906 32
20 Downloader.VB 17 10.80 516 266 29
21 Gaobot.Agobot 20 17.54 1812 1052 45
22 Gobot.Gbot 58 7.01 249 134 22
23 Horst.CMQ 48 16.86 1030 541 42
24 Hupigon.ARR 33 23.58 2388 1244 55

ID Family Name Samples Avg. Nodes Trees Max.
25 Hupigon.AWQ 219 24.63 7225 3758 62
26 IRCBot.Sdbot 66 16.51 3358 1852 47
27 LdPinch 16 16.88 1765 1012 66
28 Lmir.LegMir 23 9.00 1112 667 28
29 Mydoom 15 5.78 484 305 20
30 Nilage.Lineage 24 9.64 1288 657 83
31 Games.Delf 11 8.44 971 632 22
32 Games.LegMir 76 17.18 11892 8184 59
33 Games.Mmorpg 19 7.00 654 478 25
34 OnLineGames 23 7.30 718 687 16
35 Parite.Pate 71 14.31 1420 816 36
36 Plemood.Pupil 32 6.29 330 189 24
37 PolyCrypt.Swizzor 43 10.32 415 213 30
38 Prorat.AVW 40 23.47 1031 572 58
39 Rbot.Sdbot 302 14.23 4484 2442 47
40 SdBot 75 14.13 2361 1319 40
41 Small.Downloader 29 11.93 2192 1216 34
42 Stration.Warezov 19 9.76 1682 1058 34
43 Swizzor.Obfuscated 27 21.75 1405 770 49
44 Viking.HLLP 32 7.84 512 315 24
45 Virut 115 11.76 3149 1953 40
46 VS.INService 17 11.42 307 178 37
47 Zhelatin.ASH 53 12.14 1919 1146 39
48 Zlob.Puper 64 15.16 2788 1647 90

Table 1: Malware Statistics per Family. All dependency graphs were obtained by run-
ning each sample for 120sec in a controlled environment. Theidentifier that will be
used in later graphs is given in the first column. The third column shows the number
of samples per family. TheAvg.column shows the average height of the dependency
graphs across all the samples in the family. TheNodescolumn shows the total number
of nodes in the dependency graph (after CSE). TheTreescolumn shows the total num-
ber of different trees (i.e., roots of the dependency graph)across all the samples. The
Max column gives the maximal height of any tree in the family.

The goodware set comprises 33 commonly used applications: AdobeReader, Apple
SW Update, Autoruns, Battle for Wesnoth, Chrome, Chrome Setup, Firefox, Freecell,
Freeciv, Freeciv server, GIMP, Google Earth, Internet Explorer, iTunes, Minesweeper,
MSN Messenger, Netcat port listen and scan, NetHack, Notepad, OpenOffice Writer,
Outlook Express, Ping, 7-zip archive, Skype, Solitaire, Sys info, Task manager, Tux
Racer, uTorrent, VLC, Win. Media Player, and WordPad. We deemed these applications
to be representative of software commonly found on the average user’s computer, from
a number of different vendors and with a diverse set of behaviors. Also, we used two
micro benchmarks: a HelloWorld program written in C and a filecopy program. Micro-
benchmarks produce few small dependency graphs and therefore might be potentially
more susceptible to be misidentified for malware.

In behavioral malware detection, there is always a contention between the amount
of time the behavior is observed and the precision of the analysis. For malware samples,
which are regularly small pieces of software, we set the timeout to 120sec of running
in our environment. For goodware, we wanted to study the impact of the runtime on
the height and complexity of generated dependency graphs, and the impact of these
differences on the false positive rates. Thus, we ran goodware samples for both 120 and
800sec. To give some intuition of how that corresponds to theactual native runtime, it

800sec Trace 120sec Trace
ID Application Avg. Nodes Trees Max.Avg. Nodes Trees Max.
1 AdobeReader 8.09 340 191 228.57 271 147 22
2 Apple SW Update13.74 561 317 5120.87 293 151 51
3 Autoruns 12.29 330 181 4312.45 304 160 43
4 Battle for Wesnoth41.01 602 355 7634.73 380 187 76
5 Chrome 13.85 436 240 4311.11 273 143 31
6 Chrome Setup 5.19 148 74 17 5.19 148 74 17
7 Copy 77.14 913 426 24464.99 880 412 215
8 Firefox 30.43 785 464 9444.02 356 175 89
9 Freecell 11.65 308 167 3311.49 316 172 33

10 Freeciv 28.48 472 241 7537.14 300 137 72
11 Freeciv server 11.46 300 177 3011.62 297 174 30
12 GIMP 30.97 681 359 8636.33 299 134 69
13 Google Earth 33.08 321 155 764.63 88 37 13
14 HelloWorld 1.62 35 15 4 1.53 34 14 4
15 Internet Explorer 10.58 572 319 4913.08 279 139 45
16 iTunes 48.81 852 457 12032.05 404 217 75
17 Minesweeper 10.85 304 167 3010.72 305 167 30
18 MSN Messenger 17.75 809 477 5923.28 308 158 58
19 Netcat port listen 65.08 997 494 24167.05 873 413 225
20 Netcat port scan 54.67 1123 597 24165.69 882 420 225
21 NetHack 4.94 124 63 15 4.94 124 63 15
22 Notepad 9.68 350 198 3010.69 298 165 30
23 OpenOffice Writer 6.55 271 156 196.60 271 156 19
24 Outlook Express 20.45 490 279 5120.64 360 201 49
25 Ping 11.82 535 317 3412.19 360 197 34
26 7-zip archive 12.96 269 149 2612.97 267 144 30
27 Skype 1.38 31 12 3 1.38 31 12 3
28 Solitaire 11.63 303 165 3111.30 311 170 31
29 Sys. Info 6.48 613 382 267.01 305 171 26
30 Task Manager 11.28 513 307 3511.94 343 196 35
31 TuxRacer 14.11 441 261 4415.53 279 157 39
32 uTorrent 9.31 267 151 2810.49 214 114 28
33 VLC 12.92 325 178 3812.76 295 159 38
34 Win. Media Player 9.50 448 255 3610.23 315 174 36
35 WordPad 8.33 420 235 288.52 262 147 27

Average 19.06 426 235 5117.10 295 153 46
Table 2: Goodware Statistics. For the description of other columns, see Table 1.

Antivirus Classification Antivirus Classification
AVG Downloader.Generic4.GAF AhnLab-V3 Win-Trojan/Xema.variant
AntiVir TR/Agent.8192.123 Antiy-AVL Trojan/Win32.Agent.gen
Avast Win32&Agent-GQA Avast5 Win32&Agent-GQA
BitDefender Trojan.Downloader.Agent.AAHCAT-QuickHeal TrojanDownloader.Agent.aah
ClamAV Trojan.Downloader-6542 Command W32/Downldr2.COH
Comodo TrojWare.Win32. nProtect Trojan-Downloader/

TrojanDownloader.Agent.AAH W32.Agent.8192.K
Emsisoft Trojan-Dropper.Agent!IK F-Prot W32/Downldr2.COH
F-Secure Trojan.Downloader.Agent.AAHGData Trojan.Downloader.Agent.AAH
Ikarus Trojan-Dropper.Agent Jiangmin Trojan/PSW.GamePass.gir
K7AntiVirus Trojan-Downloader Kaspersky Trojan-Downloader.

Win32.Agent.aah
McAfee Suspect-AB!3BC816C45FD4 DrWeb Adware.DealHelper
Microsoft TrojanDownloader& NOD32 Win32/

Win32/Agent TrojanDownloader.Agent.AAH
Norman W32/Agent.ECGQ PCTools Trojan-Downloader.Agent.AAH
Panda Trj/Downloader.OEW Prevx Med. Risk Malware Downloader
Rising Trojan.Clicker.Win32.Small.nhSophos Mal/Generic-L
Symantec Downloader TheHacker Trojan/Downloader.Agent.aah
TrendMicro TROJGeneric VirusBuster Trojan.DL.Agent.TOR

Table 3: Sample 3BC816C45FD461377E13A775AE8768A3 Classification. Data ob-
tained from Virustotal.com.

takes approximately 800s in our DTA analysis environment for Acrobat Reader to open
a document and display a window.

We noticed a general tendency that detection and classification tend to correlate
positively with the average height of trees in samples used for training and testing. We
provide the average heights in tables 1 and 2, and heat maps providing a deeper insight
into the distribution of the heights in figures 4, 6, and 5.

6.2 Malware and Goodware Recognition

For our malware recognition experiments, we chose at random50% of the entire mal-
ware set for training, and used the rest and the entire goodware set as test sets. Train-
ing with k = 4 took around 10sec for the entire set of 1315 training samples, and the
time required for analyzing each test sample was less than the timing jitter (sub-second
range). All the experiments were performed in Ubuntu 10.04,running in a VMware
7.1.3 workstation, running on Win XP Pro and dual-core 2.5GHz Intel machine with
4GB of RAM. In Figure 7 (resp. 8), we show the results, using the goodware depen-
dency graphs produced with an 800sec (resp. 120sec) timeout.

The detection works as follows. We run all the trees (i.e., roots of the dependency
graph) in each test sample against the inferred automaton. First, we sort the trees by
height, and then compute how many trees for each height are accepted by the automa-
ton. Second, we score the sample according to the following function:

score=
∑i

acceptedi
totali

∗ i

∑i i
(1)

wherei ranges from 1 to the maximal height of any tree in the test sample (the last
column of Table 1),acceptedi is the number of trees with heighti accepted by the
automaton, andtotali is the total number of trees with heighti. The test samples that
produce no syscall dependency graphs are assumed to have score zero.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

 10 20 30 40 50 60 70

 5

10

15

20

25

30

35

40

45

50

Fig. 4: Malware Tree Height Heat Map. Thex axis represents the tree height, while the
y axis lists malware families. The legend on the right is a color code for the number of
trees observed with a particular height.

The score can range from 0 to 1. Higher score signifies a higherlikelihood the
sample is malicious. The ratio in the nominator of Eq. 1 is multiplied by the depth of
the tree to filter out the noise from shallow trees, often generated by standard library
functions, that have very low classification power.

The results turned out to be slightly better with an 800sec timeout than with the
120sec timeout, as the average height of dependency graphs was slightly larger. As
expected, we found that with the risingk factor (and therefore decreasing level of ab-
straction), the capability of inferred tree automaton to detect malware decreases, which
obviously indicates the value of generalization achieved through tree automata infer-
ence. On the other hand, with the risingk factor, the detection becomes more precise
and therefore the false positive rate drops down. Thus, it isimportant to find the right
level of abstraction. In our experiments, we determined that k = 4 was the optimal ab-
straction level. The desired ratio between false positivesand negatives can be adjusted
by selecting the score threshold. All samples scoring above(resp. below) the threshold
are declared malware (resp. goodware). For example, fork= 4, timeout of 800sec, and
score 0.6, our approach reports two false positives (5%) — Chrome setup and NetHack,
and 270 false negatives (20%), which corresponds to an 80% detection rate. Fork= 4,
timeout of 800sec, and score 0.6, our approach reports one additional false positive
(System info), and the same number of false negatives, although a few malware samples
are somewhat closer to the threshold. Obviously, the longerthe behavior is observed,
the better the classification.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

 20 40 60 80 100

 5

10

15

20

25

30

35

40

45

50

Fig. 5: Goodware (800sec Trace) Tree Height Heat Map. Thex axis represents the good-
ware samples.

It is interesting to notice that increasing the value ofk above 4 does not make a sig-
nificant difference in (mis)detection rates. We ran the experiments withk up to 10, but
do not show the results as they are essentially the same as fork = 4. From our prelim-
inary analysis, it seems that generalization is effective when a sequence of dependent
syscalls are executed within a loop. If two samples execute the same loop body a dif-
ferent number of times, our approach will be able to detect that. Changingk effectively
changes the window with which such loop bodies are detected.During the inference, it
seems like one size (ofk) does not fit all cases. We believe that by analyzing the repet-
itiveness of patterns in dependency graphs, we could detectthe sizes of loop bodies
much more accurately, and adjust thek factor according to the size of the body, which
should in turn improve the generalization capabilities of the inference algorithm. Many
other improvements of our work are possible, as discussed later.

6.3 Malware Classification

We were wondering what is the classification power of inferred automata, so we did the
following experiment. We divided at random each family intotraining and test sets of
equal size. For each training set, we inferred a family-specific tree automaton. For each
test set, we read the dependency graphs for all the samples inthe set, and compute a
single dependency graph, which is then analyzed with the inferred tree automaton. The
scores are computed according to Equation 1, withk= 3. The only difference from the
experiment done in the previous section is that the score is computed for the entire test
set, not individual samples in the set. Results are shown in Figure 9.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

 20 40 60 80 100

 5

10

15

20

25

30

35

40

45

50

Fig. 6: Goodware (120sec Trace) Tree Height Heat Map. Thex axis represents the good-
ware samples.

The pronounced diagonal in Figure 9 shows that our inferred automata clearly have
a significant classification power and could be used to classify malware into families.
There is some noise as well. The noise could be attributed to many factors: over-
generalization, over- and under-tainting of our DTA [5, 19], insufficiently large depen-
dency graphs, frequently used dynamic libraries that are shared by many applications
and malware, and a somewhat ad-hoc pre-classification by theantivirus tools.

7 Limitations

There are several inherent limitations of our approach. An attacker could try to mask
syscall dependencies so as to be similar (or the same) as those of benign applications.
This class of attacks are known asmimicry attacks[35]. All intrusion and behavioral
malware detection approaches are susceptible to mimicry attacks. One way to make this
harder for the attacker, is to make the analysis more precise, as will be discussed in the
following section.

Triggering interesting malware behavior is another challenge. Some behaviors could
be triggered only under certain conditions (date, web site visited, choice of the default
language, users’ actions,. . .). Moser et al. [29, 4] proposed DART [16] as a plausible
approach for detecting rarely exhibited behaviors.

As discussed earlier, our DTA environment slows the execution several thousand
times, which is obviously too expensive for real-time detection. A lot of work on mal-
ware analysis is done in the lab setting, where this is not a significant constraint, but

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

%
 o

f
sa

m
p
le

s
w

it
h
 s

co
re

s
ab

o
v
e

(b
el

o
w

)

Score

k=2
k=3
k=4
k=5

Fig. 7: Malware and Goodware Recognition. Timeouts for generating the dependency
graphs were 120sec for malware test and training sets and 800sec for the goodware test
set in the figure on the left. The training set consists of 50% of the entire malware set,
chosen at random. The test set consists of the remaining malware samples (curves rising
from left to right), and the goodware set (curves falling from left to right). The rising
curves represent the percentage of malware samples for which the computed score was
lessthan the corresponding value on thex axis. The falling curves represent the per-
centage of goodware samples for which the score wasgreater than the corresponding
value on thex axis. The figure shows curves for four different values ofk, there is es-
sentially no difference between the cases whenk = 4 andk = 5. For the rising curves,
the lowest curve is fork= 2, the next higher one fork= 3, and the two highest ones for
the remaining cases. For the falling curves, the ordering isreversed. The optimal score
for distinguishing malware from goodware is the lowest intersection of the rising and
falling curves for the samek.

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

%
 o

f
sa

m
p

le
s

w
it

h
 s

co
re

s
ab

o
v
e

(b
el

o
w

)

Score

k=2
k=3
k=4
k=5

Fig. 8: Malware and Goodware Recognition. Timeouts for generating dependency
graphs were 120 seconds for malware test and training sets, as well as for the good-
ware test set.

efficiency obviously has to be improved if taint-analysis based approaches are ever to
be broadly used for malware detection. Hardware taint-analysis accelerators are a viable
option [32, 11], but we also expect we could probably achievean order of magnitude
speedup of our DTA environment with a very careful optimization.

8 Conclusions and Future Work

In this paper, we presented a novel approach to detecting likely malicious behaviors and
malware classification based on tree automata inference. Weshowed that inference, un-
like simple matching of dependency graphs, does generalizefrom the learned patterns
and therefore improves detection of yet unseen polymorphicmalware samples. We pro-
posed an improvedk-testable tree automata inference algorithm and showed howthe
k factor can be used as a knob to tune the abstraction level. In our experiments, our
approach detects 80% of the previously unseen polymorphic malware samples, with a
5% false positive rate, measured on a diverse set of benign applications.

Our technique is, at the current stage of development, intended to be used in a lab-
oratory setting. Currently, detection and classification of malware require significant
amounts of manual work (see [21] for discussion and references). The goal of our ap-
proach is to automate these processes in the lab setting. Currently, tracing targeted ap-

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

Fig. 9: Malware Classification Results. Thex (y) axis represents the training (test) sets.
The size of the shaded circle corresponds to the score computed by Eq. 1.

plications and tracking their syscall dependencies incursa significant slowdown, which
is, in our view, the most significant obstacle to adopting ourapproach in a real-time real-
world setting. We expect that further research and recent progress in hardware-assisted
[32, 11] taint analysis could bridge the performance gap.

There are many directions for further improvements. The classification power of
our approach could be improved by a more precise analysis of syscall parameters (e.g.,
using their actual values in the analysis), by dynamically detecting the best value of thek
factor in order to match the size of loop bodies that produce patterns in the dependency
graphs, by using goodware dependency graphs as negative examples during training,
and by combining our approach with the leap mining approach [13].

Also, in the current dependency graphs analysis, we do not distinguish how syscalls
return values. For example, if a syscall returns two values,one through the firstout
parameter and another one through the second, we consider these two values to be the
same during the inference, even though our taint analysis distinguishes them. In other
words, the inference merges all outputs into a single outputand all dependencies are
analyzed with respect to that single merged output.

Another interesting direction is inference of more expressive tree languages. In-
ference of more expressive languages might handle repeatedpatterns more precisely,
generalizing only as much as needed to fold a repeatable pattern into a loop in the tree
automaton. Further development of similar methods could have a broad impact in secu-
rity, forensics, detection of code theft, and perhaps even testing and verification, as the
inferred automata can be seen as high-level abstractions ofprogram’s behavior.

Acknowledgments

We are grateful to Matt Fredrikson and Somesh Jha for sharingtheir library of classified
malware [13] with us. We thank Emiliano Martinez Contreras for giving us an account
at virustotal.com that we used to double-check the classification, and for giving us sup-
port in using the API through which our experimentation scripts communicated with
virustotal.com. We would especially like to thank Lorenzo Martignoni, who wrote the
libwst library [27] for extracting and parsing arguments ofWindows’s system calls. We
also thank reviewers for their insightful and constructivecomments.

References

1. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: principles, techniques, and tools. Addison-
Wesley Longman Publishing Co., Inc., Boston, Massachusetts, USA (1986)

2. Babić, D.: Exploiting Structure for Scalable Software Verification. Ph.D. thesis, University
of British Columbia, Vancouver, Canada (2008)

3. Bonfante, G., Kaczmarek, M., Marion, J.Y.: Architectureof a morphological malware detec-
tor. Journal in Computer Virology 5, 263–270 (2009)

4. Brumley, D., Hartwig, C., Zhenkai Liang, J.N., Song, D., Yin, H.: Botnet Detection Counter-
ing the Largest Security Threat, Advances in Information Security, vol. 36, chap. Automati-
cally Identifying Trigger-based Behavior in Malware, pp. 65–88. Springer (2008)

5. Chow, J., Pfaff, B., Garfinkel, T., Christopher, K., Rosenblum, M.: Understanding data life-
time via whole system simulation. In: Proc. of 13th USENIX Security Symposium (2004)

6. Christodorescu, M., Jha, S.: Testing malware detectors.In: ISSTA’04: Proc. of the 2004 ACM
SIGSOFT Int. Symp. on Software Testing and Analysis. pp. 34–44. ACM (2004)

7. Christodorescu, M., Jha, S., Kruegel, C.: Mining specifications of malicious behavior. In:
Proc. of the the 6th joint meeting of the European software engineering conf. and the ACM
SIGSOFT symp. on The foundations of software engineering. pp. 5–14. ACM (2007)

8. Christodorescu, M., Jha, S., Seshia, S.A., Song, D., Bryant, R.E.: Semantics-aware malware
detection. In: SP’05: Proc. of the 2005 IEEE Symp. on Security and Privacy. pp. 32–46.
IEEE Comp. Soc. (2005)

9. Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D., Tison, S.,
Tommasi, M.: Tree automata techniques and applications (2007)

10. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.:Introduction to Algorithms. The MIT
Press, 2nd edn. (2001)

11. Crandall, J., Chong, F.: Minos: Control data attack prevention orthogonal to memory model.
In: In the Proc. of the 37th Int. Symp. on Microarchitecture.pp. 221–232. IEEE (2005)

12. Forrest, S., Hofmeyr, S.A., Somayaji, A., Longstaff, T.A.: A sense of self for unix processes.
In: Proc. of the 1996 IEEE Symp. on Security and Privacy. pp. 120–129. IEEE Comp. Soc.
(1996)

13. Fredrikson, M., Jha, S., Christodorescu, M., Sailer, R., Yan, X.: Synthesizing near-optimal
malware specifications from suspicious behaviors. In: Proc. of the 2010 IEEE Symposium
on Security and Privacy. pp. 45–60. IEEE Comp. Soc. (2010)

14. Garcı́a, P.: Learningk-testable tree sets from positive data. Tech. rep., Dept. Syst. Inform.
Comput., Univ. Politecnica Valencia, Valencia, Spain (1993)

15. Garcı́a, P., Vidal, E.: Inference of k-testable languages in the strict sense and application to
syntactic pattern recognition. IEEE Trans. Pattern Anal. Mach. Intell. 12, 920–925 (1990)

16. Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated random testing. In:
PLDI’05: Proc. of the ACM SIGPLAN Conf. on Prog. Lang. Designand Implementation.
pp. 213–223. ACM (2005)

17. Gold, E.M.: Complexity of automaton identification fromgiven data. Information and Con-
trol 37(3), 302–320 (1978)

18. Holzer, A., Kinder, J., Veith, H.: Using verification technology to specify and detect malware.
LNCS, vol. 4739, pp. 497–504. Springer (2007)

19. Kang, M.G., McCamant, S., Poosankam, P., Song, D.: DTA++: Dynamic taint analysis with
targeted control-flow propagation. In: Proceedings of the 18th Annual Network and Dis-
tributed System Security Symposium. San Diego, CA (2011)

20. Khoussainov, B., Nerode, A.: Automata Theory and Its Applications. Birkhauser (2001)
21. Kinder, J., Katzenbeisser, S., Schallhart, C., Veith, H.: Detecting malicious code by model

checking. In: Julisch, K., Krügel, C. (eds.) GI SIG SIDAR Conference on Detection of Intru-
sions and Malware and Vulnerability Assessment. LNCS, vol.3548, pp. 174–187. Springer
(2005)

22. King, J.C.: Symbolic execution and program testing. Comm. of the ACM 19(7), 385–394
(1976)

23. Knuutila, T.: Inference ofk-testable tree languages. In: Bunke, H. (ed.) Advances in Struc-
tural and Syntactic Pattern Recognition: Proc. of the Int. Workshop, pp. 109–120. World
Scientific (1993)

24. Kolbitsch, C., Milani, P., Kruegel, C., Kirda, E., Zhou,X., Wang, X.: Effective and efficient
malware detection at the end host. In: The 18th USENIX Security Symposium (2009)

25. López, D., Sempere, J.M., Garcı́a, P.: Inference of reversible tree languages. IEEE Transac-
tions on Systems, Man, and Cybernetics, Part B 34(4), 1658–1665 (2004)

26. Luk, C., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S., Reddi, V.,
Hazelwood, K.: Pin: building customized program analysis tools with dynamic instrumenta-
tion. In: PLDI’05: Proc. of the 2005 ACM SIGPLAN Conf. on Prog. lang. design and impl.
pp. 190–200. ACM (2005)

27. Martignoni, L., Paleari, R.: The libwst library (a part of WUSSTrace) (2010),
http://code.google.com/p/wusstrace/

28. Matrosov, A., Rodionov, E., Harley, D., Malcho, J.: Stuxnet under the microscope. Tech.
rep., Eset (2010)

29. Moser, A., Kruegel, C., Kirda, E.: Exploring multiple execution paths for malware analysis.
In: SP’07: Proc. of the 2007 IEEE Symposium on Security and Privacy. pp. 231–245. IEEE
Computer Society, Washington, DC, USA (2007)

30. Newsome, J., Song, D.: Dynamic Taint Analysis: Automatic Detection, Analysis, and Sig-
nature Generation of Exploit Attacks on Commodity Software. In: Proc. of the Network and
Distributed Systems Security Symposium (2005)

31. Pfleeger, C.P.: State reduction in incompletely specified finite-state machines. IEEE Trans-
actions on Computers 22(12), 1099–1102 (1973)

32. Suh, G., Lee, J., Zhang, D., Devadas, S.: Secure program execution via dynamic information
flow tracking. ACM SIGOPS Operating Systems Review 38(5), 85–96 (2004)

33. Symantec: Symantec global internet security threat report: Trends for 2009. volume xv. Tech.
rep., Symantec (April 2010)

34. Wagner, D., Dean, D.: Intrusion detection via static analysis. In: Proc. of the 2001 IEEE
Symposium on Security and Privacy. p. 156. IEEE Computer Society (2001)

35. Wagner, D., Soto, P.: Mimicry attacks on host-based intrusion detection systems. In: CCS’02:
Proc. of the 9th ACM Conf. on Comp. and Comm. Security. pp. 255–264. ACM (2002)

36. You, I., Yim, K.: Malware Obfuscation Techniques: A Brief Survey. Int. Conf. on Broadband,
Wireless Computing, Communication and Applications pp. 297–300 (2010)

37. Zalcstein, Y.: Locally testable languages. J. Comput. Syst. Sci. 6(2), 151–167 (1972)

