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Abstract. The underground malware-based economy is flourishing anckit-
ident that the classical ad-hoc signature detection methoelbecoming insuffi-
cient. Malware authors seem to share some source code amgmaamples
often feature similar behaviors, but such commonalities difficult to detect
with signature-based methods because of an increasingf usen@rous freely-
available randomized obfuscation tools. To address thiblpm, the security
community is actively researching behavioral detectiothmes that commonly
attempt to understand and differentiate how malware behageopposed to just
detecting syntactic patterns. We continue that line ofasgein this paper and
explore how formal methods and tools of the verificationdéraduld be used for
malware detection and analysis. We propose a new approdéehrtong and gen-
eralizing from observed malware behaviors based on tresraia inference. In
particular, we develop an algorithm for inferritkgtestable tree automata from
system call dataflow dependency graphs and discuss the irderoéd automata
in malware recognition and classification.

1 Introduction

Over the last several decades, the IT industry advancedsalevery aspect of our
lives (including health care, banking, traveling,...) andustrial manufacturing. The
tools and techniques developed in the computer-aided catidh community played
an important role in that advance, changing the way we desigtems and improving
the reliability of industrial hardware, software, and oratls.

In parallel, another community made a lot of progress exiplpisoftware flaws for
various nefarious purposes, especially for illegal finahgain. Their inventions are
often ingenious botnets, worms, and viruses, commonly knagsmalware Malware
source code is rarely available and malware is regularligdes so as to thwart static
analysis through the use of obfuscation, packing, and @tiory[36].
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der Grants No. 0832943, 0842694, 0842695, 0831501, 042442the Air Force Research
Laboratory under Grant No. P010071555, by the Office of NBesearch under MURI Grant
No. N000140911081, and by the MURI program under AFOSR Graldt. FA9550-08-1-
0352 and FA9550-09-1-0539. The work of the first author is slspported by the Natural
Sciences and Engineering Research Council of Canada PDwdaip.
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Fig. 1: New Malicious Signatures added to the Symantec AnsvTool per Year [33].

For the above mentioned reasons, detection, analysis, lassification of mal-
ware are difficult to formalize, explaining why the verifimat community has mostly
avoided, with some notable exceptions (e.g., [8, 18]), teblem. However, the area is
in a dire need of new approaches based on strong formal undergs, as less princi-
pled techniques, like signature-based detection, areni@gansufficient. Recently, we
have been experiencing a flood of malware [33], while themeegample of Stuxnet
(e.g., [28]) shows that industrial systems are as vulnerablour every-day computers.

In this paper, we show how formal methods, more precise¢/dtgomata inference,
can be used for capturing the essence of malicious behawiotdshow such automata
can be used to detect behaviors similar to those observedgdilre training phase.
First, we execute malware in a controlled environment toaextdataflow dependen-
cies among executed system caligqcall$ using dynamic taint analysis [5, 30]. The
main way for programs to interact with their environmenhisugh syscalls, which are
broadly used in the security community as a high-level alobn of software behav-
ior [13, 24, 34]. The dataflow dependencies among syscatishearepresented by an
acyclic graph, in which nodes represent executed sysealtsthere is an edge between
two nodes, sag; andsy, when the result computed Isy (or a value derived from it) is
used as a parameter®f Second, we use tree automata inference to learn an automato
recognizing a set of graphs. The entire process is complatebmated.

The inferred automaton captures the essence of differelitiowes behaviors. We
show that we can adjust the level of generalization with glsitunable factor and how
the inferred automaton can be used to detect likely maliclmhaviors, as well as for
malware classification. We summarize the contributionaufpaper as follows:

— Expansion of dependency graphs into trees causes expali#otvup in the size of
the graph, similarly as eager inlining of functions durimtgtie analysis. We found
that a class of tree languages, nanetgstable tree languages [37] can be inferred
directly from dependency graphs, avoiding the expansidress.



— We improve upon the prior work on inferencelefestable tree languages by pro-
viding an &' (kN) algorithm, wherek is the size of the pattern aridlis the size of
the graph used for inference.

— We show how inferred automata can be used for detectinglikallicious behav-
iors and for malware classification. To our knowledge, thibe first work applying
the theory of tree automata inference to malware analygpMvide experimental
evidence that our approach is both feasible and useful ictipea

— While previous work (e.g., [7, 13]) often approximated degencies by syntactic
matching of syscall parameters, we implemented a tool &mking dependencies
via taint analysis [5, 30] and we made the generated depeydgaphs, as well as
the tree automata inference engine, publicly availabletmarage further research.

2 Related Work

2.1 Tree Automata Inference

Gold [17] showed that no super-finite (contains all finitegaages and at least one
infinite) is identifiable in the limit from positive exampfesnly. For instance, regular
and regular tree languages [9] are super-finite languageshade two options to cir-
cumvent this negative result; either use both positive aghtive examples, or focus
on less expressive languages that are identifiable in thiefliom positive examples
only. Inference of minimal finite state automata from botkifiee and negative exam-
ples is known to be NP-complete [17], because minimizatiom@omplete automata
is NP-complete [31]. The security community is discovenmnigions of new malware
samples each year and inferring a single minimal classifiealf the samples might be
infeasible. Inferring a non-minimal classifier is feasjtidat the classifier could be too
large to be useful in practice. Thus, we focus on a set of laggs identifiable in the
limit from positive examples in this paper.

A subclass of regular tree languagesk-testable tree languages [37] — is identifi-
able in the limit from positive examples only. These langsagre defined in terms of a
finite set ofk-level-deep tree patterns. Théactor effectively determines the level of ab-
straction, which can be used as a knob to regulate the ratadsaf positives (goodware
detected as malware) and false negatives (undetected realWae patterns partition
dependency graphs into a finite number of equivalence dasghicing a state-minimal
automaton. The automata inferred from positive (malwaxe)rles could be further
refined using negative (goodware) examples. Such a refinésnammceptually simple,
and does not increase the inference complexity, becau$e girbperties ok-testable
tree languages. We leave such a refinement for future work.

A number of papers focused @rtestable tree automata inference. Garcia and Vidal
[15] proposed aw’ (kPN) inference algorithm, wherleis the size of the patteri, the
total number of possible patterns, aldhe size of the input used for inference. Many
patterns might not be present among the training sampleattser than enumerating all
patterns, [14] and [23] propose very similar algorithmg tise only the patterns present

1 positive examples are examples belonging to the languale iaferred, while negative ex-
amples are those not in the language.



in the training set. Their algorithms are somewhat complémplement as they require
computation of three different sets (called roots, forks] Eeaves). Their algorithms
are0o (MkN Iog(N)), whereM is the maximal arity of any alphabet symbol in the tree
language. We derive a simpler algorithm, so that computingsfand leaves becomes
unnecessary. The complexity of our algorithmZigkN), thanks to an indexing trick
that after performing iterations over the training sample builds an index for firgdi
patterns in the training set. Patterns in the test set candagdd in the index table in
amortized time linear in the size of the pattern. In our aggilon — malware analysis
— thek factor tends to be smalk(5), so our algorithm can be considered linear-time.

2.2 Malware Analysis

From the security perspective, several types of malwarlysisaare interesting: mal-
ware detection (i.e., distinguishing malware from good®yaclassification (i.e., deter-
mining the family of malware to which a particular sampledrgjs), and phylogeny
(i.e., forensic analysis of evolution of malware and comfd@tinctive features among
samples). All three types of analyses are needed in prackitection for preventing
further infections and damage to the infected computecsttamother two analyses are
crucial in development of new forms of protection, foressiand attribution. In this
paper, we focus on detection and classification.

The origins of the idea to use syscalls to analyze softwanebeatraced to For-
rest et al. [12], who used fixed-length sequences of sysfm@ligtrusion detection.
Christodorescu et al. [7] note that malware authors coukdlyeacorder data-flow-
independent syscalls, circumventing sequence-detesthames, but if we analyze
data-flow dependencies among syscalls and use such depgrgtaphs for detec-
tion, circumvention becomes harder. Data-flow-dependgstadls cannot be (easily)
reordered without changing the semantics of the prograray Tohmpute a difference
between malware and goodware dependency graphs, and showebalting graphs
can be used to detect malicious behaviors. Such graph mgtchin detect only the
exact behavioral patterns already seen in some samplepbstebt automatically gen-
eralize from training samples, i.e., does not attempt toapygroximate the training set
in order to detect similar, but not exactly the same behavior

Fredrikson et al. [13] propose an approach that focusessiimgiiishing features,
rather than similarities among dependency graphs. Fisly tompute dependency
graphs at runtime, declaring two syscalls, sayand s,, dependent, if the type and
value of the value returned tsy are equal to the type and value of some parameter of
s, ands, was executed aftes;. They extract significant behaviors from such graphs
using structural leap mining, and then choose behaviotctrabe combined together
using concept analysis. In spite of a very coarse unsounaaippation of the depen-
dency graph and lack of automatic generalization, they e detection rate on
around 500 malware samples used in their experiments. Wiaseapproach as com-
plementary to ours: the tree-automata we infer from reakddpncy graphs obtained
through taint analysis could be combined with leap minind aancept analysis, to
improve their classification power.

Bonfante et al. [3] propose to unroll control-flow graphsaibéd through dynamic
analysis of binaries into trees. The obtained trees are fima-@rained than the syscall



dependency graphs. The finer level of granularity couldyattice, be less susceptible
to mimicry attacks (e.g., [35]), but is also easier to defeedugh control-flow graph
manipulations. The computed trees are then declared teéattomata and the recog-
nizer is built by a union of such trees. Unlike inference, tingon does not generalize
from the training samples. The reported experiments irclaidarge set of malware
samples (over 10,000), but the entire set was used formigiand authors report only
false positives on a set of goodware (2653 samples). Thisgjiificult to estimate how
well their approach would work for malware detection andsification.

2.3 Taint Analysis

Dynamic taint analysis (DTA) [30] is a technique used todwlidata flows in programs
or whole systems at runtime. DTA can be seen as a single-piathdalic execution [22]
over a very simple domain (set of taints). Its premises argplg: taint is a variable
annotation introduced throughint sourcesit is propagated through program execu-
tion according to sompropagation rulequntil it reaches daint sink In our case, for
instance, taint sources are the syscalls’ output parageted taint sinks are the input
parameters.

As will be discussed in detail later, our implementationdsdd on the binary rewrit-
ing framework Pin [26] and uses the taint propagation rulesmafNewsome and Song
[30]. Since DTA must operate at the instruction-level gfarity, it poses a signifi-
cant runtime overhead. Our DTA implementation executedicgimns several thou-
sand times slower than the native execution. Our positidthatthe speed of the taint
analysis is less important than the speed of inference axadjnition. The taint analysis
can be run independently for each sample in parallel, thentigncy graph extraction
is linear with the length of each execution trace, and hardvisased information flow
tracking has been proposed (e.g., [32, 11]) as a potentiatico for improving per-
formance. In contrast, inference techniques have to psagéethe samples in order to
construct a single (or a small number of) recognizer(s). ¥erage anti-virus vendor
receives millions of new samples annually and the numbesjgtiized samples has been
steadily growing over the recent years. Thus, we believesttelability of inference is
a more critical issue than the performance of the taint @maly

3 Notation and Terminology

In this section, we introduce the notation and terminologgdithroughout the paper.
First, we build up the basic formal machinery that allows aigli¢fine tree automata.
Second, we introduce some notions that will help us defineots that can be intu-
itively seen as the tog levels of a tree. Later, we will show holtroots induce an
equivalence relation used in our inference algorithm. Towahe end of this section,
we introducek-testabldanguages, less expressive than regular tree languadesiitbu
able for designing fast inference algorithms.

Let N be the set of natural numbers aNd the free monoid generated by with
concatenation-) as the operation and the empty striags the identity. The prefix
order< is defined asu < v for u,v € N* iff there existsw € N* such thatv = u-w.



Foru e N*,n € N, thelength|u| is defined inductivelyje| = 0,|u-n| = |u] + 1. We
say that a se§ is prefix-closedf u < vAve S=-uec S A tree domainis a finite
non-empty prefix-closed s& C N* satisfying the following property: ifi-n € D then
vli<j<n.u-jeD.

A ranked alphabeis a finite set# associated with a finiteanking relation arityC
Z x N. Define %, as a sef{ f € #|(f,n) € arity}. The seftT (%) of termsover the
ranked alphabe# is the smallest set defined by:

1. %CT(F)
2.ifn>1, feZp ty,.. ,th e T(F) thenf(ty,...,tn) €T (F)

Each term can be represented as a finite ordeeed: D — .%, which is a mapping
from a tree domain into the ranked alphabet such'that D:

1. ift(uye #y,n>1then{j|u-jeD}={1,...,n}
2. ift(u)e Fothen{j|p-jeD}=0

1
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Fig.2: An Example of a Tre¢ and its Tree Domaindom(t) = {1,11,111112
12,13 131}, .# = {f,g,h,a,b}, ||t ||=3,t(1) = f,t/131=D.

As usual in the tree automata literature (e.g., [9]), we hedéttert (possibly with
various indices) both to represent a tree as a mathemabgdtcand to name a rela-
tion that maps an element of a tree domain to the correspgradifnabet symbol. An
example of a tree with its tree domain is given in Figure 2.

The set of all positions in a particular tree.e., its domain, will be denotedbm(t).

A subtreeof t rooted at positioru, denoted /u is defined agt/u)(v) =t(u-v) and
dom(t/u) = {v|u-ve dom(t)}. We generalize thdomoperator to sets asom(S) =
{dom(u) | u € S}. Theheightof a treet, denoted| t ||, is defined as:

|| t |lI= max({|u| such thau € dom(t)})

Let = = {& | f € Ui-0.%i } be a set of new nullary symbols such tiat .# = 0.
The = set will be used as a set pfaceholderssuch thatf; can be substituted only
with a treet whose position one (i.e., theead is labelled withf, i.e.,t(1) = f. Let
T (2 U.%) denote the set of trees over the ranked alphabet and plaegkofort,t’ €



T (ZUZ), we define thdink operatiorit’ by:

C L) ) £ 2V (k) = & AT £ (D)
(tt)(n) = {t’(z) ifn=y-z t(y) = sm)f, y e dom(t), ze dom(t')

For any two treed, t’ € T(.%), thetree quotient t't’ is defined by:
ti ={t"eT(ZuF) |t =t"jt}

The tree quotient operation can be extended to sets, as tist@= {tflt’ [t e S}.
For anyk > 0, definek-root of a tred as:

t if t(1) € %o
root (t) = ¢ é¢ if f=t(1),fecUso%, k=0
f(rooty_1(t1),...,ro00t_1 (tn)) if t=f(ts,...,tn), ||t]|>k>0

A finite deterministic bottom-up tree automat&DTA) is defined as a tupl®, #, 3, F),
whereQ is a finite set of states# is a ranked alphabef, C Q is the set of final states,
andd = | J; & is a set oftransition relationsdefined as followsd : .%o — Q and for
n>0,0:(FnxQ") —=Q.

Thek-testable in the strict sengk-TSS) languages [23] are intuitively defined by
a set of tree patterns allowed to appear as the elements Frtheage. The following
theorem is due to Lopez et al. [25]:

Theorem 1. Let £ C T(%). .Z is a k-TSS iff for any treeg t; € T(%) such that
root (t1) = root (tz), when 1.2 # 0At, L.Z # O then it follows thatf *.¥ =t, 1.2,

We choose Lopez et al.’s theorem as a definitiok-01SS languages. Other defi-
nitions in the literature [14, 23] define TSS languages in terms of three sets; leaves,
roots, and forks. Forks are roots that have at least onelpdéaer as a leaf. Theorem
1 shows that such more complex definitions are unnecessamtively, the theorem
says that within the language, any two subtrees that agrebeotopk levels are in-
terchangeable, meaning that a bottom-up tree automatato hasiember only a finite
amount of history. In the next section, we show that we camdefh equivalence re-
lation inducing an automaton accepting-a SS language using only our definition of
thek-root, as expected from Theorem 1.

4 Kk-Testable Tree Automata Inference

4.1 Congruence Relation

We begin with our definition of the equivalence relation tisatised to induce a state-
minimal automaton from a set of trees. The equivalenceioglgintuitively, compares
trees up t levels deep, i.e., comparksgoots.

Definition 1 (Root Equivalence Relation~y). For some k> 0, two treesi,t, € T (%)
are root-equivalent with degree k, denoted ty, if rooty (t1) = rooty (t2).



Lemma 1. The~y relation is a congruence (monotonic equivalence) relatibfinite
index.

Proof (Sketch)lt is obvious that~ is an equivalence relation (reflexive, symmetric,
and transitive), and here we show that it is also monotonid therefore a congruence.
Supposé; = f(t11,...,t1n) andty = f(t2s,...,tn), such thatoot (t1 /i) = rooty (t2 /i)

for all 1 <i < n. First, note that ikk > 0 androot (t) = root (t'), thenroot,_; (t) =
rooty_1 (t'). According to the definition afooty, for k > 0 we obtain:

root (ta)
= f (rootx_1 (t11),...,ro0t_1 (t1n)) By definition ofrootg
= f (rootc_1 (t21),...,r00t%_1 (t2n)) By inductive hypothesis
= rooty (tp) By definition ofroot

Thek = 0 case is trivial, agooty (t1) = & = rooty (t2).

The size of a-root is bounded bM¥, whereM = max({n | .7, € F, %, # 0}).
Each positioruin thek-root's domain can be labelled with at mo$ty ity (u)) | Symbols.
Thus,rooty generates a finite number of equivalence classes, i.e.fiigitefindex.

As a consequence of Lemma 1, inference algorithms baseceandhequivalence
relation need not propagate congruences using union-fijdalgjorithms, as the root
equivalence relation is a congruence itself.

Definition 2 (~k-induced Automaton).Let T' C T(.%) be a finite set of finite trees.
The Ax(T') = (Q,.#,d,F) automaton induced by the root equivalence relatignis
defined as:

Q= {roo(t') |3t € T'. Juedom(T’) .t' =t/u}
F = {rootc(t) [t T’}
oo(f)="f forfeF
On(f,rooty (t1),...,root (tn)) = rooty (f(t,...,tn)) forn>1f e %,

Corollary 1 (Containment). From the definition it follows thatk > 0. T' C £ (A™(T")).
In other words, thevx-induced automaton abstracts the set of treés T

Theorem 2. £ (A™) is a k-TSS language.

Proof. We need to prove thaty,t; € T(#), k> 0. root (t1) = root (t2) At{lf (A™K) £
ONL L2 (A) #£ 0=t 1.7 (AK) = t, 1.2 (A™%). Suppose the antecedent is true, but
the consequent is false, i.¢;,'.% (A™k) # t, 1.2 (A™k). Then there must existsuch
thattiit; € £ (A™) andtft, € .2 (A™). Letube the position o, (1), i.e.,(tit2) /u=to.
Without loss of generality, ldtbe the tree with minimal|. Necessarilyju| > 1, as oth-
erwiset; 1.Z (Ak) = 0. Letu=w-i, i € N. We prove thatft, must be in? (A~),
contradicting the initial assumption, by induction on thedth ofw.

Base case|W| = 1): Let (t(w))(1) = f, f € Z,. There are two subcases=1
andn > 1. Forn = 1, the contradiction immediately follows, & f,rooty(t1)) =
o(f,rooty (t2)). For then > 1 case, observe that for all positionsj such that &< j <n



andj #£i, (tity)/w- j = (tity)/w- j =t/w- j. From that observation andoty (t1) =
rooty (t;), it follows that

O ((thta/w)(1),root (titr/w- 1), ..., root (tity /w-n)
= O((tft2/w)(1),root (tit/w-1),... root (tita/w-n)

Induction step|fv] > 1): Letw=w -m, me N. From the induction hypothesis, we
know that for allm, rooty (tft; /w) = rooty (t§to/w), thus it follows:

O((thts/W)(1), root (tity/w - 1),...,root (tity/w - n))
= O((tita/W)(1), 100t (tito/W - 1),... rooty (tito/W -n))

Theorem 3 (Minimality). A~k is state-minimal.
Proof. Follows from Myhill-Nerode Theorem [20, pg. 72] and Lemma 1.

Minimality is not absolutely crucial for malware analysisa laboratory setting,
but it is important in practice, where antivirus tools campose a significant system
overhead and have to react promptly to infections.

Theorem 4 (Garcia [14])..Z (A1) C 2 (A™)

An important consequence of Garcia’s theorem is thaktlaetor can be used as an
abstraction knob — the smaller theactor, the more abstract the inferred automaton.
This tunability is particularly important in malware detien. One can’t hope to design
a classifier capable of perfect malware and goodware digimcT hus, tunability of the
false positive (goodware detected as malware) and falsstimequndetected malware)
ratios is crucial. More abstract automata will result in méalse positives and fewer
false negatives.

4.2 Inference Algorithm

In this section, we present our inference algorithm, bubiproceeding with the al-
gorithm, we discuss some practical aspects of inferenaa fiata-flow dependency
graphs. As discussed in Section 2, we use taint analysisnpete data-flow depen-
dencies among executed syscalls at runtime. The resuldbétimputation is not a tree,
but an acyclic directed graph, i.e., a partial order of sfscadered by the data-flow
dependency relation, and expansion of such a graph inte @gd cause exponential
blowup. Thus, it would be more convenient to have an infezealgorithm that operates
directly on graphs, without expanding them into trees.

Fortunately, such an algorithm is only slightly more coroated than the one that
operates on trees. In the first step, our implementatiompad common subexpression
elimination [1] on the dependency graph to eliminate syitaedundancies. The result
is a maximally-shared graph [2], i.e., an acyclic directeapt with shared common
subgraphs. Figure 3 illustrates how a tree can be foldediimt@ximally-shared graph.
In the second step, we compute a hash for daobot in the training set. The hash
is later used as a hash table key. Collisions are handledhaaiog [10], as usual,
but chaining is not described in the provided algorithmse st step of the inference
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Fig. 3: Folding a Tree into a Maximally-Shared Graph.

algorithm traverses the graph and folds it into a tree automaising the key computed

in the second phase to identify equival&nbots, which are mapped to the same state.
To simplify the exposition, we shall use the formal machyragveloped in Section

3 and present indexing and inference algorithms that workess. The extension to

maximally-shared graphs is trivial and explained brieftgta

input : Treet, factork
result : Key computed for every subtree bf

tmp<« hash(t(1))

foreachl <i < arity (t(1)) do
tst/i
tmp < tmpa® hash(ts.key)
ComputeKey(ts, k)

t.key«+ tmp

Algorithm 1: ComputeKey — Computingk-Root Keys (Hashes). The operator can
be any operator used to combine hashes, like bitwise exel@R. Thehash: .7 —
N function can be implemented as a string hash, returning tegral hash of the
alphabet symbols.

Algorithm 1 traverses treiein postorder (children before the parent). Every subtree
has a fieldkeyassociated with its head, and the field is assumed to bellyitero.
If the algorithm is called once, for trete the key of the head of each subtitgawill
consist only of the hash of the alphabet symbol labeting.e., hash(ts(1)). If the
algorithm is called twice (on the same tree), the key of thedhaf each subtree will
include the hash of its own label and the labels of its chiideind so on. Thus, after
k calls toComputeKey, the key of each node will be equal to koot key. Note that
the temporary key, stored in thmp variable, has to be combined with the children’s
(k—1)-root key. The algorithm can be easily extended to operataaximally-shared
graphs, but has to track visited nodes and visit each nodeamde in postorder. The
complexity of the algorithm i€’ (k- N), whereN is the size of the tree (or maximally-



shared graph). For multi-rooted graphs (or when procegsinlgiple trees), all roots
can be connected by creating a synthetic super-root of atsy@nd the algorithm is
then calleck times with the super-root as the first operand.

input : Treet, factork, alphabet#
output: A~k = (Q, #,9,F)
foreachsubtreegin {t/u| ue dom(t)} traversed in postordeto
if repfts.key = 0 then
g« rooty (ts)
replts.key =g
Q+Qugq
n <« arity (ts(1))

0+ ((ts(l), rep(ts/1).key, ..., rep[(ts/n).key), rep[ts.ke)})
F =F Urept.key
return (Q,.#,9,F)

Algorithm 2: k-Testable Tree Automaton Inference. Thp: hashrooty (T (.%))) —
root (T (%)) hash map contains representatives of equivalence clasdaesed by
~. Collisions are handled via chaining (not shown).

Algorithm 2 constructs tha™k automaton. The tree (alternatively maximally-shared
graph) used for training is traversed in postorder, kindot of each subtree is used to
retrieve the representative for eash-induced equivalence class. Multi-rooted graphs
can be handled by introducing super-roots (as describexadjeAmortized complexity
is 0'(kN), whereN is the size of the tree (or maximally-shared graph).

5 Implementation

5.1 Taint Analysis

We use Pin [26] to perform instruction-level tracing andlgsia. Pin is a dynamic bi-
nary instrumentation framework that allows program maniipand rewriting only in
user space, which prevents us from propagating taints gifrayscalls in the kernel
space. One possible solution would be to declare all syséafiut parameters to be
taint sinks, and all output parameters to be taint sourcefortiinately, the kernel in-
terface for the Windows XP operating system is only pastidibcumented. To work
around this problem, we use the libwst library by Martignand Paleari [27] to auto-
matically extract and parse parameters of Windows sysdadih libwst, we find out
the number, type, and directionalitynf/out) of parameters. The reverse-engineered
parameters are then used as an input-output specificateysodlls. After each return
from a syscall, we walk the stack and mark any location pditiey anout parameter
as tainted with a new taint mark. At syscall entry (i.e., justore our tool loses control),
we walk the stack and check if taint has reached any afitparameters. Since each



taint mark can be traced back to a unique: parameter, the set of dependencies for
anin parameter corresponds exactly to the set of its taint m&vksapproximate the
leaves of the dependency graph (i.e., input parametergtwohed by any syscall) with
their types. A more precise approach, left for future worku¥d be to use the actual
values.

Ideally, each malware sample would run unencumbered inrthieonment targeted
by its authors. According to conventional wisdom, most naa&samples target Win-
dows XP, so we set it up with the latest service pack in a ViBoa virtual machine
with no network connection and only one user with administearights. Although the
lack of network connection might prevent some samples freecating their payload,
such a precaution is necessary to avoid spreading the imfietde infect the virtual
machine via a shared folder. The physical machine used ttheidependency graph
extraction experiments has a 2.66GHz Intel Core i7 CPU and B&M. After each
run, we revert the virtual machine to a clean snapshot sarthivare samples can not
interfere with each other.

5.2 Inference Algorithm

The inference algorithm is a relatively straightforwarglementation of algorithms in

Section 4.2, written in about 3200 lines of C++ code. As exgld before, after reading
the dependency graphs, the implementation performs consunoexpression elimina-
tion (CSE), computek-root hashes (Algorithm 1), inferslatestable tree automaton
(Algorithm 2), and then runs the dependency graphs fromakeset against that au-
tomaton. Both CSE and inference are done directly on depeydgaphs, avoiding an

expansion into trees.

6 Experimental Results

6.1 Benchmarks

For the experiments, we use two sets of benchmarks: the meaémal the goodware set.
The malware set comprises 2631 samples pre-classified &htardilies. Each family
contains 5-317 samples. We rely upon the classification ois@idorescu et al. [6]
and Fredrikson et al. [13] The classification was based on the reports from antivirus
tools. For a small subset of samples, we confirmed the quaflitfassification using
virustotal.com, a free malware classification service. Bsv, without knowing the
internals of those antivirus tools and their classificatienristics, we cannot evaluate
the quality of the classification provided to us. Our clasatfon experiments indicate
that the classification antivirus tools do might be somevattahoc. Table 1 shows the
statistics for every family, while Table 2 shows goodwagdistics. Table 3 gives some
idea of how antivirus tools classify one randomly chosengam

2 The full set of malware contains 3136 samples, but we elitathaamples that were not exe-
cutable, executable but not analyzable with Pin (i.e., MSSDexecutables), broken executa-
bles, and those that were incompatible with the version aidafivs (XP) that we used for
experiments.



ID Family Name

Samples Avg. Nodes Trees MaxID Family Name

Samples Avg. Nodes Trees Max.

1 ABU.Banload 16 7.71 544 303 2125 Hupigon.AWQ 219 24.63 7225 3758 62
2 Agent 42 886 965 593 27 26 IRCBot.Sdbot 66 16.51 3358 1852 47
3 Agent.Small 15 8.88 950 588 2727 LdPinch 16 16.88 1765 1012 66
4 Allaple.RAHack 201 8.78 1225 761 4428 Lmir.LegMir 23 9.00 1112 667 28
5 Ardamax 25 6.21 144 69 1629 Mydoom 15 578 484 305 20
6 Bactera.VB 28 7.09 333 177 2830 Nilage.Lineage 24 9.64 1288 657 83
7 Banbra.Banker 52 13.97 1218 686 3B1 Games.Delf 11 844 971 632 22
8 Bancos.Banker 46 14.05 742 417 482 Games.LegMir 76 17.18 11892 8184 59
9 Banker 317 17.70 2952 1705 4333 Games.Mmorpg 19 7.00 654 478 25
10 Banker.Delf 20 1478 939 521 5034 OnLineGames 23 7.30 718 687 16
11 Banload.Banker 138 19.38 2370 1332 1535 Parite.Pate 71 1431 1420 816 36
12 BDH.Small 5 5.82 348 199 21 36 Plemood.Pupil 32 6.29 330 189 24
13 BGM.Delf 17 7.04 339 199 25 37 PolyCrypt.Swizzor 43 10.32 415 213 30
14 Bifrose.CEP 35 11.17 1190 698 5038 Prorat. AVW 40 23.47 1031 572 58
15 Bobax.Bobic 15 8.98 859 526 3039 Rbot.Sdbot 302 14.23 4484 2442 47
16 DKI.Poisonlvy 15 9.22 413 227 4040 SdBot 75 14.13 2361 1319 40
17 DNSChanger 22 12.62 874 483 3641 Small.Downloader 29 11.93 2192 1216 34
18 Downloader.Agent 13 12.89 1104 613 4912 Stration.Warezov 19 9.76 1682 1058 34
19 Downloader.Delf 22 10.76 1486 906 3243 Swizzor.Obfuscated 27 21.75 1405 770 49
20 Downloader.VB 17 10.80 516 266 2944 Viking.HLLP 32 784 512 315 24
21 Gaobot.Agobot 20 17.54 1812 1052 495 Virut 115 11.76 3149 1953 40
22 Gobot.Ghot 58 7.01 249 134 2246 VS.INService 17 11.42 307 178 37
23 Horst.CMQ 48 16.86 1030 541 4247 Zhelatin.ASH 53 12.14 1919 1146 39
24 Hupigon.ARR 33 23.58 2388 1244 5548 Zlob.Puper 64 15.16 2788 1647 90

Table 1: Malware Statistics per Family. All dependency psapere obtained by run-
ning each sample for 120sec in a controlled environment.iddéstifier that will be
used in later graphs is given in the first column. The thirdiood shows the number

of samples per family. Thévg. column shows the average height of the dependency
graphs across all the samples in the family. Noalescolumn shows the total number
of nodes in the dependency graph (after CSE). Tieescolumn shows the total num-
ber of different trees (i.e., roots of the dependency gragh)ss all the samples. The
Max column gives the maximal height of any tree in the family.

The goodware set comprises 33 commonly used applicatiatsh@Reader, Apple
SW Update, Autoruns, Battle for Wesnoth, Chrome, Chromeagdiirefox, Freecell,
Freeciv, Freeciv server, GIMP, Google Earth, Internet Brgal iTunes, Minesweeper,
MSN Messenger, Netcat port listen and scan, NetHack, NdteppenOffice Writer,
Outlook Express, Ping, 7-zip archive, Skype, Solitaires 8o, Task manager, Tux
Racer, uTorrent, VLC, Win. Media Player, and WordPad. Weawkbthese applications
to be representative of software commonly found on the axeuaer's computer, from
a number of different vendors and with a diverse set of bemaviAlso, we used two
micro benchmarks: a HelloWorld program written in C and addey program. Micro-
benchmarks produce few small dependency graphs and therafght be potentially
more susceptible to be misidentified for malware.

In behavioral malware detection, there is always a cordartietween the amount
of time the behavior is observed and the precision of theyaisalFor malware samples,
which are regularly small pieces of software, we set the diméo 120sec of running
in our environment. For goodware, we wanted to study the anpfthe runtime on
the height and complexity of generated dependency graplasthe impact of these
differences on the false positive rates. Thus, we ran goosigamples for both 120 and
800sec. To give some intuition of how that corresponds tatiteal native runtime, it



800sec Trace 120sec Trace

ID Application Avg. Nodes Trees MaxAvg. Nodes Trees Max.
1 AdobeReader 8.09 340 191 2p8.57 271 147 22
2 Apple SW Updat¢l3.74 561 317 5p0.87 293 151 51
3 Autoruns 12,29 330 181 43245 304 160 43
4 Battle for Wesnot#1.01 602 355 7@4.73 380 187 76
5 Chrome 13.85 436 240 431.11 273 143 31
6 Chrome Setup 519 148 74 1y5.19 148 74 17
7 Copy 77.14 913 426 2484.99 880 412 215
8 Firefox 3043 785 464 944.02 356 175 89
9 Freecell 11.65 308 167 33149 316 172 33
10 Freeciv 28.48 472 241 787.14 300 137 72
11 Freecivserver [11.46 300 177 30Q1.62 297 174 30
12 GIMP 30.97 681 359 8@86.33 299 134 69
13 Google Earth 33.08 321 155 764.63 88 37 13
14 Helloworld 162 35 15 4153 34 14 4
15 Internet Explorer(10.58 572 319 279 139 45
16 iTunes 48.81 852 457 404 217 75
17 Minesweeper  (10.85 304 167 305 167 30
18 MSN Messenger({17.75 809 477 308 158 58
19 Netcat port listen|65.08 997 494 873 413 225
20 Netcat port scan |54.67 1123 597 882 420 225
21 NetHack 494 124 63 124 63 15
22 Notepad 9.68 350 198 298 165 30
23 OpenOffice Writer 6.55 271 156 271 156 19
24 Outlook Express|20.45 490 279 360 201 49
25 Ping 11.82 535 317 360 197 34
26 7-zip archive 12.96 269 149 267 144 30
27 Skype 138 31 12 31 12 3
28 Solitaire 11.63 303 165 311 170 31
29 Sys. Info 6.48 613 382 305 171 26
30 Task Manager [11.28 513 307 343 196 35
31 TuxRacer 1411 441 261 279 157 39
32 uTorrent 9.31 267 151 214 114 28
33VLC 12,92 325 178 295 159 38
34 Win. Media Player9.50 448 255 315 174 36
35 WordPad 8.33 420 235 262 147 27
Average 19.06 426 235 5|1L7.10 295 153 46

Table 2: Goodware Statistics. For the description of otléurons, see Table 1.



Antivirus Classification Antivirus Classification
AVG Downloader.Generic4.GAF |AhnLab-V3 Win-Trojan/Xema.variant
AntiVir TR/Agent.8192.123 Antiy-AVL Trojan/Win32.Agent.gen
Avast Win32&Agent-GQA Avast5 Win32&Agent-GQA
BitDefender Trojan.Downloader.Agent. AABAT-QuickHeal TrojanDownloader.Agent.aah
ClamAV Trojan.Downloader-6542 Command W32/Downldr2.COH
Comodo TrojWare.Win32. nProtect Trojan-Downloader/

TrojanDownloader.Agent.AAH W32.Agent.8192.K
Emsisoft Trojan-Dropper.Agent!IK F-Prot W32/Downldr2.COH
F-Secure Trojan.Downloader.Agent. AABData Trojan.Downloader.Agent.AAH
Ikarus Trojan-Dropper.Agent Jiangmin Trojan/PSW.GamePass.gir
K7AntiVirus Trojan-Downloader Kaspersky Trojan-Downloader.

Win32.Agent.aah

McAfee Suspect-AB!3BC816C45FD4| DrwWeb Adware.DealHelper
Microsoft ~ TrojanDownloader& NOD32 Win32/

Win32/Agent TrojanDownloader.Agent.AAH
Norman W32/Agent.ECGQ PCTools Trojan-Downloader.Agent. AAH
Panda Trj/Downloader.OEW Prevx Med. Risk Malware Downloader
Rising Trojan.Clicker.Win32.Small.nfSophos Mal/Generic-L
Symantec  Downloader TheHacker Trojan/Downloader.Agent.aah
TrendMicro TROJGeneric VirusBuster Trojan.DL.Agent. TOR

Table 3: Sample 3BC816C45FD461377E13A775AE8768A3 Gleaton. Data ob-
tained from Virustotal.com.

takes approximately 800s in our DTA analysis environmengftrobat Reader to open
a document and display a window.

We noticed a general tendency that detection and classificegnd to correlate
positively with the average height of trees in samples ueetr&ining and testing. We
provide the average heights in tables 1 and 2, and heat mayisling a deeper insight
into the distribution of the heights in figures 4, 6, and 5.

6.2 Malware and Goodware Recognition

For our malware recognition experiments, we chose at rarfdh of the entire mal-
ware set for training, and used the rest and the entire gomdse as test sets. Train-
ing with k = 4 took around 10sec for the entire set of 1315 training sasnled the
time required for analyzing each test sample was less theatintfing jitter (sub-second
range). All the experiments were performed in Ubuntu 10rQAning in a VMware
7.1.3 workstation, running on Win XP Pro and dual-core 2.&Ghtel machine with
4GB of RAM. In Figure 7 (resp. 8), we show the results, using goodware depen-
dency graphs produced with an 800sec (resp. 120sec) timeout

The detection works as follows. We run all the trees (i.eots®f the dependency
graph) in each test sample against the inferred automatst, We sort the trees by
height, and then compute how many trees for each height aspeed by the automa-
ton. Second, we score the sample according to the followingtfon:

i

Score=

acceptegd i
total;

vil @)

wherei ranges from 1 to the maximal height of any tree in the test sarftbe last
column of Table 1)acceptedis the number of trees with heightaccepted by the
automaton, antbtal; is the total number of trees with heightThe test samples that
produce no syscall dependency graphs are assumed to hagesoo.
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Fig. 4: Malware Tree Height Heat Map. TRexis represents the tree height, while the
y axis lists malware families. The legend on the right is a cotale for the number of
trees observed with a particular height.

The score can range from 0 to 1. Higher score signifies a hitikedihood the
sample is malicious. The ratio in the nominator of Eq. 1 istipliéd by the depth of
the tree to filter out the noise from shallow trees, often gateel by standard library
functions, that have very low classification power.

The results turned out to be slightly better with an 800seediut than with the
120sec timeout, as the average height of dependency graghslightly larger. As
expected, we found that with the risikgactor (and therefore decreasing level of ab-
straction), the capability of inferred tree automaton ttedemalware decreases, which
obviously indicates the value of generalization achievedugh tree automata infer-
ence. On the other hand, with the risikdactor, the detection becomes more precise
and therefore the false positive rate drops down. Thus,mportant to find the right
level of abstraction. In our experiments, we determinedtiitha4 was the optimal ab-
straction level. The desired ratio between false positaresnegatives can be adjusted
by selecting the score threshold. All samples scoring ak@sp. below) the threshold
are declared malware (resp. goodware). For examplé,fo#, timeout of 800sec, and
score 0.6, our approach reports two false positives (5%) +ei@h setup and NetHack,
and 270 false negatives (20%), which corresponds to an 8@86titn rate. Fok = 4,
timeout of 800sec, and score 0.6, our approach reports ool false positive
(System info), and the same number of false negatives \atiha few malware samples
are somewhat closer to the threshold. Obviously, the lottgebehavior is observed,
the better the classification.
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Fig.5: Goodware (800sec Trace) Tree Height Heat Map XThés represents the good-
ware samples.

It is interesting to notice that increasing the valu&kabove 4 does not make a sig-
nificant difference in (mis)detection rates. We ran the expents withk up to 10, but
do not show the results as they are essentially the same ks=fdr From our prelim-
inary analysis, it seems that generalization is effectibemva sequence of dependent
syscalls are executed within a loop. If two samples exedigesame loop body a dif-
ferent number of times, our approach will be able to deteatt tBhanging effectively
changes the window with which such loop bodies are detebedng the inference, it
seems like one size (&) does not fit all cases. We believe that by analyzing the repet
itiveness of patterns in dependency graphs, we could detectizes of loop bodies
much more accurately, and adjust thfactor according to the size of the body, which
should in turn improve the generalization capabilitieshef inference algorithm. Many
other improvements of our work are possible, as discussed la

6.3 Malware Classification

We were wondering what is the classification power of inféaatomata, so we did the
following experiment. We divided at random each family it@ining and test sets of
equal size. For each training set, we inferred a family-gjgdcee automaton. For each
test set, we read the dependency graphs for all the samptee Bet, and compute a
single dependency graph, which is then analyzed with theiied tree automaton. The
scores are computed according to Equation 1, with3. The only difference from the
experiment done in the previous section is that the scoremgpated for the entire test
set, not individual samples in the set. Results are showigur€ 9.
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Fig. 6: Goodware (120sec Trace) Tree Height Heat Map XThés represents the good-
ware samples.

The pronounced diagonal in Figure 9 shows that our inferaédmata clearly have
a significant classification power and could be used to dlagsalware into families.
There is some noise as well. The noise could be attributedanynfactors: over-
generalization, over- and under-tainting of our DTA [5, lififufficiently large depen-
dency graphs, frequently used dynamic libraries that aaeeshby many applications
and malware, and a somewhat ad-hoc pre-classification tangrus tools.

7 Limitations

There are several inherent limitations of our approach. #acker could try to mask
syscall dependencies so as to be similar (or the same) as dfibgnign applications.
This class of attacks are known asmicry attackg35]. All intrusion and behavioral

malware detection approaches are susceptible to mimiagkat One way to make this
harder for the attacker, is to make the analysis more preaseill be discussed in the
following section.

Triggering interesting malware behavior is another cimgite Some behaviors could
be triggered only under certain conditions (date, web sgited, choice of the default
language, users’ actions,...). Moser et al. [29, 4] propd3&RT [16] as a plausible
approach for detecting rarely exhibited behaviors.

As discussed earlier, our DTA environment slows the exeouteveral thousand
times, which is obviously too expensive for real-time détet A lot of work on mal-
ware analysis is done in the lab setting, where this is nogjaifsiant constraint, but
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% of samples with scores above (below)

Score

Fig. 7: Malware and Goodware Recognition. Timeouts for gatireg the dependency
graphs were 120sec for malware test and training sets ars8@0r the goodware test
set in the figure on the left. The training set consists of 50%® entire malware set,
chosen atrandom. The test set consists of the remainingarasamples (curves rising
from left to right), and the goodware set (curves fallingnfréeft to right). The rising
curves represent the percentage of malware samples fohwiecomputed score was
lessthan the corresponding value on tkaxis. The falling curves represent the per-
centage of goodware samples for which the scoregwaaterthan the corresponding
value on thex axis. The figure shows curves for four different valuekahere is es-
sentially no difference between the cases wken4 andk = 5. For the rising curves,
the lowest curve is fok = 2, the next higher one fdr= 3, and the two highest ones for
the remaining cases. For the falling curves, the orderimgvisrsed. The optimal score
for distinguishing malware from goodware is the lowestliséetion of the rising and
falling curves for the samle
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Fig.8: Malware and Goodware Recognition. Timeouts for gatireg dependency
graphs were 120 seconds for malware test and training setgelhas for the good-
ware test set.

efficiency obviously has to be improved if taint-analysisdé@dapproaches are ever to
be broadly used for malware detection. Hardware taintyaishccelerators are a viable
option [32, 11], but we also expect we could probably acheverder of magnitude
speedup of our DTA environment with a very careful optinizat

8 Conclusions and Future Work

In this paper, we presented a novel approach to detectialy likalicious behaviors and
malware classification based on tree automata inferencehged that inference, un-
like simple matching of dependency graphs, does geneffatirethe learned patterns
and therefore improves detection of yet unseen polymornphieware samples. We pro-
posed an improvel-testable tree automata inference algorithm and showedthew
k factor can be used as a knob to tune the abstraction levelrdm®xperiments, our
approach detects 80% of the previously unseen polymorpaiwane samples, with a
5% false positive rate, measured on a diverse set of benjgitafons.

Our technique is, at the current stage of development, die@iho be used in a lab-
oratory setting. Currently, detection and classificatibnrmalware require significant
amounts of manual work (see [21] for discussion and refe®ndhe goal of our ap-
proach is to automate these processes in the lab settinger@lyr tracing targeted ap-
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Fig. 9: Malware Classification Results. Théy) axis represents the training (test) sets.
The size of the shaded circle corresponds to the score cexhpytEq. 1.

plications and tracking their syscall dependencies inawignificant slowdown, which
is, in our view, the most significant obstacle to adoptingapproach in a real-time real-
world setting. We expect that further research and recergrpss in hardware-assisted
[32,11] taint analysis could bridge the performance gap.

There are many directions for further improvements. Thesification power of
our approach could be improved by a more precise analysissoali parameters (e.g.,
using their actual values in the analysis), by dynamicadigdting the best value of the
factor in order to match the size of loop bodies that prodattems in the dependency
graphs, by using goodware dependency graphs as negatingkesaduring training,
and by combining our approach with the leap mining appro&sh [

Also, in the current dependency graphs analysis, we do stihduish how syscalls
return values. For example, if a syscall returns two valoes, through the firsbut
parameter and another one through the second, we consa$er tiio values to be the
same during the inference, even though our taint analystsduishes them. In other
words, the inference merges all outputs into a single owpdtall dependencies are
analyzed with respect to that single merged output.

Another interesting direction is inference of more expkessree languages. In-
ference of more expressive languages might handle reppategfns more precisely,
generalizing only as much as needed to fold a repeatablerpéttto a loop in the tree
automaton. Further development of similar methods couwe lazbroad impact in secu-
rity, forensics, detection of code theft, and perhaps eestirtg and verification, as the
inferred automata can be seen as high-level abstractigm®gfam’s behavior.
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