Advanced Engineering Informatics 27 (2013) 444-456

journal homepage: www.elsevier.com/locate/aei

Contents lists available at SciVerse ScienceDirect

Advanced Engineering Informatics

ADVANCED; ENGINEERING,

INFORMATIC

BIMQL - An open query language for building information models

Wiet Mazairac *, Jakob Beetz

@ CrossMark

Design Systems Group, Department of the Built Environment, Eindhoven University of Technology, PO Box 513, 600 MB Eindhoven, The Netherlands

ARTICLE INFO ABSTRACT

Article history:

Received 22 October 2012
Accepted 11 June 2013
Available online 25 July 2013

Keywords:

BIMQL

Domain Specific Language

Query Language

IFC

BIM

Building information model server

In this paper we present the on-going development of a framework for a domain specific, open query lan-
guage for building information models. The proposed query language is intended for selecting, updating
and deleting of data stored in Industry Foundation Classes models. Even though some partial solutions
already have been suggested, none of them are open source, domain specific, platform independent
and implemented at the same time. This paper provides an overview of existing approaches, conceptual
sketches of the language in development and documents the current state of implementation as a proto-
type plugin developed for the open source model server platform bimserver.org. We report on the exe-
cution of example test-cases to show the general feasibility of the approach chosen.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Being able to obtain required information in time is one of the
keys to success in the building industry. Not too long ago, drawings
were stored using file cabinets and sent by post. Over time, the ex-
change of information in the building process has become more
complex. With increasing specialization, the number of stakehold-
ers involved in a design and construction process has increased and
so did the amount of information each actor generates. Current ap-
proaches to collaboration using digital information include shared
building information models captured in vendor-neutral, standard-
ized and interoperable model formats such as the Industry Founda-
tion Classes (IFC) [1]. While most information exchange processes
currently used in practice are still document-based [2-6], the use
of model repositories that allow the integration of information
via networks has recently seen a large increase in attention. These
centralized or distributed repositories enable the structured and
concurrent creation, integration and maintenance of large quanti-
ties of data from the various stakeholders involved in the planning
and building process and the wide range of respective specialized
software tools. These approaches have been advocated by the re-
search community for many years [7-10] but have never really
gained much practical relevance until recently. Even though no
reliable survey data is available regarding their current practical
application, the increasing number of commercial implementa-
tions of vendor specific or interoperable model repositories is a

* Corresponding author. Tel.: +31 681220502.
E-mail address: 1.a.j.mazairac@tue.nl (W. Mazairac).

1474-0346/$ - see front matter © 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.aei.2013.06.001

promising indicator for the increasing acceptance of these ap-
proaches gained among industry practitioners.

By merging models from different disciplines into common
virtual models, the amount of information stored in such multi-
domain repositories quickly becomes large and complex even for
average projects. However, information needs of individual stake-
holders in different process phases differ substantially. For exam-
ple, a construction engineer does not require all the information
available in the overall building model and is e.g. not interested
in the detailed specifications of a suspended ceiling. This makes
the extraction of partial model subsets or domain specific views
on large models necessary.

A range of technologies with different conceptual approaches,
intended use cases and target audiences have been devised to ex-
tract and manipulate partial model information. These approaches
can be categorized as follows:

1. Approaches for model instances allow the individual inquiry and
extraction of information on a per-model-instance level. Exam-
ples include the interactive selection of individual components
or groups and classes of objects from a model. In AEC/FM, they
often involve graphical user interfaces or are executed directly
in the content creation applications such as CAD/BIM packages.
They range from generic Ul techniques like mouse picking, rub-
ber-banding, selection sets and layer management to finely
grained view definitions and object filtering that can be stored
as templates for later reuse and thereby blur the border with
schematic and conceptual approaches (category 2). These ad
hoc approaches are often limited in flexibility, expressiveness
and usefulness for automation in that they for example do not

http://crossmark.crossref.org/dialog/?doi=10.1016/j.aei.2013.06.001&domain=pdf
http://dx.doi.org/10.1016/j.aei.2013.06.001
mailto:l.a.j.mazairac@tue.nl
http://dx.doi.org/10.1016/j.aei.2013.06.001
http://www.sciencedirect.com/science/journal/14740346
http://www.elsevier.com/locate/aei

W. Mazairac, . Beetz/Advanced Engineering Informatics 27 (2013) 444-456 445

allow to select components based on individual class or attri-
bute values (e.g. ‘doors smaller than 1.01 m on the first floor’,
‘walls that are not made of brick’) in straight forward ways.
Often, they only reduce the quantity of instance individuals
exposed to the user without altering the complexity of the
model itself. In some cases though, they include pre-defined
mappings and transformations into target formats such as
reports or tabular data compilations.

2. Schematic approaches are used to transform model schemas
themselves to support software engineering purposes by e.g.
reducing model complexity or making implementations
reusable in varying contexts. Two main directions can be
identified in this category: Either they reduce complexity
through extraction and/or transformation of schema subsets
from larger schema models, e.g. through filtering on per-class
and per-attribute levels or by flattening deep inheritance attri-
bute-hierarchies. Or they take a reverse approach by composing
granular conceptual building blocks often in a cascading fashion
as is the case with XML namespaces or the ‘USE [...] FROM’
construct found in EXPRESS [11]. Schematic approaches are
static and are used for repeated application on multiple
models in re-occurring information takeoff scenarios, e.g. code-
compliance checking, information hand-over and quantity
takeoffs. They often include transformations and mappings of
information into other, sometimes simplified and thus less
complex schemas. However, up to now, the composition of such
schematic views is a complex process which is not suitable for
ad hoc per-project needs.

3. Hybrid and querying approaches operate on both instance and
schematic levels at the same time. While model instance
based approaches need existing schemas generated with the
use of the schematic tools, hybrid approaches often have
means to dynamically create new schemas or data structures,
extract information from an instance model and transform
the information into a new format. These approaches vary
in their demands and applicability in daily AEC/FM practice:
Hard-wired systems written in low-level programming lan-
guages or using high-level APIs such as the STEP SDAI [12]
standard are impractical to address ad hoc needs by engi-
neers and designers. Many query languages however lower
the threshold to access information from model repositories
significantly by abstracting and hiding some of the underlying
data processing operations from the user. While some lan-
guages still require an intimate knowledge of low-level struc-
tures like model mappings into relational data base tables,
others allow more focused, domain-specific queries on data.
Their syntax and grammar is often oriented at natural
language.

In Section 2 of this paper specific methods and related tools will
be examined more in-depth and an overview is provided in
Table 1.

For the IFC model format, the generation of such views has been
addressed by a number of research initiatives and the standardiza-
tion of such model subsets is addressed by the Model View Defini-
tion (MVD) effort [13]. MVDs are an essential part of the
Information Delivery Manual (IDM) concept [14], in which a pro-
cess-oriented, structured exchange of partial information is orga-
nized in automated ways [15]. However, these approaches rely
on fixed sub sets of information which currently have to be de-
fined, assembled and checked with specialized tools that are not
easy to use by end-users. Currently, they do not allow an easy, pro-
ject-specific assembly of ad hoc views. A review of MVD and its for-
mal specifications can be found in Section 2.2. Although various
approaches have been proposed for selecting and filtering data
from a server on which a building information model is stored,

an open, platform independent solution for creating such queries
is currently not available.

A number of software environments designed to process build-
ing information models provide some way of selecting or filtering
data. The bimserver.org project [16] for example enables end-users
to extract parts of the model from the repository by selecting ob-
jects by their Globally Unique Identifiers (GUID), selecting all in-
stances of a particular object class, using filters or by writing
custom queries in Java that are compiled and executed on the ser-
ver at runtime. Other tools such as the Solibri Model Viewer pro-
vide proprietary means to select, filter and check individual parts
of the model. Although it offers partial model extraction, sophisti-
cated queries and constraint checks, these mechanisms are not
based on open, reusable specifications and cannot be tailored to
individual needs in straight-forward, non-proprietary ways.

To address some of the shortcomings introduced in this section
and elaborated in Section 2, we are introducing BIMQL (Building
Information Model Query Language), a query language for IFC-
based building information models to allow the selection and par-
tial modification of model instances. Its aim is to provide a flexible
means for ad hoc generation of partial data sets from IFC-based
models based on practical information requirements. To ease the
composition of queries the grammar and syntax of the language
is designed to be adopted quickly by users already familiar with
other generic languages. Domain-specific constructs add a layer
of abstraction that hides some of the underlying complexities of
the model. Although not fully implemented and tested yet, these
abstraction mechanisms will be expanded in the future. In the long
run, a possible combination with natural language constructs [17]
will potentially lower the present requirements of in-depth knowl-
edge of current and future IFC model schema structures.

Aimed at the composition of Service Oriented Architectures
[18], several suggestions have been made to facilitate the remote
access of model repositories via standardized network protocols
[16,19-23]. However, most of these efforts are currently limited
to administrative aspects such as access rights and version-
management. They often only allow to access complete models,
predefined views, or single objects at a time. For interoperability
scenarios on the level of service-oriented tool-chains, BIMQL is
suggested as a flexible, ad hoc way for information exchange sim-
ilar to SPARQL [24] endpoints. BIMQL queries formulated sponta-
neously or composed from libraries can be used in combination
with MVDs as a content selector in information request communi-
cated via network protocols. The current implementation and inte-
gration into the bimserver.org framework allows remote BIMQL
queries via SOAP [25], REST [26] and Protocol Buffers [27].

The paper is structured as follows: In the first section an intro-
duction to the problem of information take off from complex mod-
els is provided and requirements for a query language are
formulated. We then review related works and other approaches
to the problem on both generic and domain-specific levels, identify
open issues and position our work presented here in these con-
texts. The third section is dedicated to the design of the language
itself as well as to the underlying mechanism of its prototypical
implementation. Following this is an illustration of the specific fea-
tures of BIMQL using a number of examples in Section 4. An indic-
ative evaluation of the run-time performance of various models of
different sizes is provided in the fifth section before concluding the
paper with a critically discussion and evaluating of the proposed
language and indicating future research and development
directions.

1.1. BIM models captured in the IFC model format

The Industry Foundation Classes (IFC) is a vendor neutral and
open model that defines more than 650 entities and a few

446

Table 1

Classification matrix of existing partial model generation tools.

Technical aspects

Domain aspects

Selection

By

Tool

Schema

Manipulation
[CRUD]

Strongly
typed

Bulk

Recursion/
arbitrary
graphs

Geometry
topology

IFC support
(out of the

box)

Domain
specific

Knowledge
level

By rule/

By type By

By

transformation

automation

constraint

value

(IfcMappeditem)

object
class

individual
instance

required®

[R

X OO

n/a

12
12

CAD

Solibri
Navisworks
GTPPM

mvdXML
PQML
EQL

SQL

XSLT/XQuery
SPARQL
Gremlin

Linq

W. Mazairac, J. Beetz/Advanced Engineering Informatics 27 (2013) 444-456

SDAI

Generic

programming
languages

not supported.

partially supported/by some implementations/through extensions/libraries; —

supported; o
2 Knowledge level required (inclusive): 1 = basic understanding of CAD/BIM models, average domain expert; 2

required (DB design, XML, RDF etc.); 4

X=

generic data modeling and querying knowledge

good to excellent understanding of the IFC model required; 3 =

programming knowledge required.

thousand attributes. It is based on the STEP EXPRESS [11] which is
an ISO certified [28] schema modeling language used for large vari-
ety of domain models across different engineering industries. At its
core, the notions of inheritance-supporting classes (called ENTITIYs
in EXPRESS) and attributes of these classes that can have simple,
derived or user-defined data types including references to other
entity instances. To illustrate some of the EXPRESS modeling
features as well as the specific design choices and modeling ap-
proaches used in the IFC model, information captured about doors
is traced through the model as an example. The IfcDoor entity is a
subtype of the IfcRoot entity, both shown in Listing 1: EXPRESS
schema definition examples of the IfcDoor entity and its superclass
IfcRoot.

A door in the IFC data model is thus not only specified by the
width and height attributes related to the entity IfcDoor, but also
by a Globalld, OwnerHistory, Name and Description and other
attributes inherited from the IfcRoot entity.

In addition to these explicit attributes defined on a schema le-
vel, the IFC model also allows the flexible definition of additional
properties, grouped into property sets and assigned to the object
(see Fig. 7) on the instance level. As shown in Listing 1 the height
attribute is explicitly stated for the IfcDoor entity via an attribute,
however to find other highly relevant information about particular
objects like the fire rating, thermal transmittance etc. for doors an-
other mechanism is present in the IFC model. Properties (as op-
posed to attributes which are defined on a schema level) can be
defined and assigned to objects within an instance file. This is
one of the generic extension and meta-modeling mechanism the
IFC model provides to capture additional information not present
in the common schema. However, in real-world implementations
this is often used as weakly typed application-specific extension
to e.g. facilitate round-tripping. The properties are grouped into
sets (IfcPropertySet) and assigned to a particular object or type
via the objectified relationship entity IfcRelDefinesByProperties,
which requires a couple of hops during the traversal of the result-
ing model graph. The approach of objectified relationships is a
modeling choice adopted throughout the IFC model: Instead of col-
lecting object references through ‘SET’, ‘LIST’ and ‘ARRAY’ con-
structs on the attribute level, relationships such as
decompositions, aggregation, connection etc. are separate entities
that relate target objects amongst each other. This mechanism is
also illustrated in Figure in which a wall, an opening and a window
are connected by separate entities, both subtypes of the entity Ifc-
RelConnect. A few thousand of these additional properties are stan-
dardized and governed by the buildingSMART organization and
provided in the form of external XML files. This mechanism and
the possibility to define arbitrary properties on-the-fly provide
much needed flexibility but also impose a serious obstacle for
schema-aware processing tools.

Because to date the IFC model is the most established neutral
and open interoperability standard for building information mod-
elling, it was chosen as the starting point for BIMQL. BIMQL
streamlines the retrieval of objects from an IFC data model and
provides shortcuts to elusive data that would otherwise require
significant model navigation, for example retrieve properties of
an object instance.

1.2. Requirements for a query language

Ideally, a framework developed to address the project-specific
management of partial model information should enable the end
user to interact with a building information model following the
range of create, read, update and delete (CRUD) spectrum.

One of the specific aspects of building information captured in
IFC models are its networked structures. Although many explicit
relations can be accessed and manipulated in pre-defined,

W. Mazairac, . Beetz/Advanced Engineering Informatics 27 (2013) 444-456 447

ENTITY IfcDoor
SUPERTYPE OF (IfcDoorStandardCase)
SUBTYPE OF (IfcBuildingElement);

OverallWidth
END_ENTITY;

ENTITY IfcRoot

IfcObjectDefinition));
GlobalId: IfcGloballyUniqueld;
OwnerHistory: IfcOwnerHistory;
Name: OPTIONAL IfclLabel;
Description: OPTIONAL IfcText;
END_ENTITY;

OverallHeight: OPTIONAL IfcPositivelengthMeasure;
: OPTIONAL IfcPositivelLengthMeasure;

ABSTRACT SUPERTYPE OF (ONEOF (IfcPropertyDefinition,

IfcRelationship,

Listing 1. EXPRESS schema definition examples of the IfcDoor entity and its superclass IfcRoot.

predictable tree-structures (e.g. the aggregation building elements
through project-site-building-storey-building component) a num-
ber of constructs in these models exhibit the characteristics of
bi-directional graph structures. Room-connectivity graphs describ-
ing the relation of individual spaces among each other, geometric
transformation with arbitrarily deep nested local coordinate sys-
tems and the decomposition of building elements into sub-parts
cannot be matched by pre-defined patterns that are common in
traditional query languages. For such graph-like structures,
recursive queries are necessary in order to find and manipulate
information, enabling end users to collect information even from
objects that are related to other objects via an arbitrary number
of (objectified) relationships.

In order to make the language a useful tool for end user practi-
tioners, a syntax close to the natural language should be aimed at.
As an example, instead of using the lexically correct IFC class
names such as IfcWallStandardCase (and discriminating or includ-
ing, e.g. IfcWall from it) and IfcDoor, we would like to enable users
to use natural language terms such as ‘Wall’, ‘Walls’ and ‘Door’.
Such a mechanism is prototypically demonstrated in the ‘is-a’ lan-
guages construct described in Section 3.6 which uses look-up dic-
tionaries and structured vocabularies such as the International
Framework for Dictionaries (IFD) [29,30], by which also a localiza-
tions of the query language can be achieved.

Objects in a building information model often are linked to each
other through a complex network of relationships. An IfcWindow
entitiy for example is not directly related to an IfcWall entity, in-
stead three other entities are necessary to connect them (Fig. 1).

Often, even seemingly straight-forward relations between
information entities in an IFC model require complex navigation
of the underlying model that involves high-level technical knowl-
edge of the underlying model schema in its respective implemen-
tation. One prominent example is the location of building elements
on particular floors of a building, which can only be accessed by
traveling nodes and edges (partially of inverse relationships) that
should be hidden from the user. A prototypical implementation
to address this issue with the BIMQL language is provided in Sec-
tion 3.6. Apart from explicit relationships that can be found in
the IFC model, other, implicit relationships networks can be ex-
tracted from such models. A prominent example are room connec-
tivity graphs which can be used to check building code compliance
or minimize evacuation times of buildings. A requirement for
query mechanisms to allow a query of an arbitrary room to the
nearest exit is its ability to run recursively through the network
of room nodes that are connected by edges (representing doors
etc.). Enabling end-users to retrieve answers to common questions
such as “How many windows are on this floor?”, “What is the fire
rating of the external doors?” and “What is the shortest way to the

Ifcwall

RelatingBuildingElement

IfcRelVoidsElement

RelatedOpeningElement

IfcOpeningElement

RelatingOpeningElement

IfcRelFillsElement

RelatedBulkdingElement

IfcWindow

Fig. 1. Relationship between IfcWall and IfcWindow.

exit?” without requiring intimate knowledge of a complex IFC
schema are the targeted use cases of the proposed language.

2. Related work

Over time a wide range of querying approaches have been
developed that allow the extraction and manipulation of data in
large models. They can be roughly divided into two groups. The
first category includes generic querying approaches. These are
more versatile, but are not able to address specific needs of inter-
operable building information modelling. Approaches specific to
the domain of interoperability in the AEC/FM fall into the second
category. In this section we provide an overview of these two cat-
egories of BIM querying approaches. Table 1 provides a classifica-
tion matrix categorizing and comparing various features and
aspects of the technologies aimed at partial model creation and
interaction that are further elaborated upon in this section.

448 W. Mazairac, J. Beetz/Advanced Engineering Informatics 27 (2013) 444-456

2.1. Generic querying approaches

Many of the existing database applications on the market use
the Structured Query Language (SQL) as the standard language
[31,32]. SQL was designed for managing data in a Relational Data-
base Management System (RDBMS). SQL makes it possible to cre-
ate, read, update and delete records, referred to as the CRUD
principle [33]. Even though SQL in its various dialects is the most
well-established query language to date, its applicability in an
IFC context is limited. SQL is specified around set operations on
data stored in tables. It would require traditional Object-Relational
Mapping (ORM), of the more than 600 entities of the IFC model
along with their thousands of attributes into individual tables. Ear-
lier works have reported, that there are severe performance and
scalability issues related to this approach [34,19,35]. Furthermore,
the complexity of such queries would quickly increase beyond lev-
els of feasibility. This is especially true for scenarios in which-non
programming domain experts such as BIM managers are the end
users. Even though the creation of nested, recursive queries using
standard SQL is available through some implementations and
extension modules, there is no widely accepted, standardized sup-
port that would be necessary to match the requirements formu-
lated earlier.

Designed on top of the .NET platform, the Language Integrated
Query (LINQ) [36,37] is Microsoft’s technology to provide a lan-
guage-level support mechanism for querying various types of data.
These types include in-memory arrays and collections, and can also
be applied to databases, XML documents and other forms of per-
sisted data. Through its language-level integration, the versatility
and expressiveness of the language is unmatched. Even though
similar approaches have been proposed for other languages [38],
no cross-platform mapping of a common standard is likely to be
achieved. Furthermore, the generic nature of LINQ again limits
the usefulness in an IFC context, since common, domain-specific
queries such as provided earlier would require intimate knowledge
of the model schema and result in queries written in a fully-fledged
programming languages, not suitable for end user practitioners
such as architects or structural engineers, who have no experience
in programming.

The Resource Description Framework (RDF) is a directed, la-
beled graph data format for representing information on the
Web. RDF is often used to represent, among other things, personal
information, social networks, metadata about digital artifacts, as
well as to provide a means of integration for disparate sources of
information. Although a number of different RDF query languages
have been proposed over the years [39,40], the SPARQL Protocol
and RDF query language [24] is the most established one and has
been officially standardized by the W3C. Especially relevant for
the interoperability among distributed heterogeneous information
systems is the standardization of service interfaces to SPARQL en-
gines, referred to as SPARQL endpoints [41]. This building block of
the Semantic Web effort enables the composition queries that span
several repositories and thus effectively link information from dif-
ferent sources. In a BIM context, such a mechanism would allow
the ad hoc connection of sub models that reside in repositories
owned and operated by the various stakeholders in a building pro-
ject. Such an approach could furthermore be used as a starting
point for the inclusion of software services that inserts the results
of specialized operations such as building regulation checking, per-
formance calculations or quantity takeoffs. For the design of BIM-
QL, a number of features have been inspirational, including the
syntactical means to specify and reference variables by the ‘?’ to-
ken. Furthermore, extension mechanisms that have been proposed
by the Jena ARQ implementation has been inspirational for the
extension with custom functionality described in Sections 3.6
and 4.

The Object Constraint Language (OCL) [42] is a language for pre-
cise textual descriptions of constraints which apply to graphical
models captured in the Unified Modeling Language (UML).

2.2. BIM querying approaches

Large and complex engineering models have spurred the need
for the creation of query languages already over a decade ago.
One of the early examples is the Express Query Language (EQL)
proposed by Huang et al. [43] designed as a generic query mecha-
nism for STEP part 21 models. The language has a complex syntax
and grammar which again renders its application by a large audi-
ence. Although proprietary implementation inspired by EQL are
available in commercial applications its use is not widespread.

The Partial Model Query Language (PMQL) proposed by Adachi
[44] aims to provide a general means for the selection, update, and
deletion of partial model data that contains specific parts of prod-
uct model data. Among the clear benefits the language design has
over generic query languages described in Section 2.1, are its capa-
bilities to construct recursive expressions. However, it currently
does not provide the possibility to create or add model data to
an existing building information model and its XML syntax would
require additional tools to enable non-programmers to construct
practical queries. For the design and specification of BIMQL, PMQL
has been an important influence. Among other things, this is re-
flected by the introduction of the ‘cascade’ operator, which has
been proposed by Adachi to cope with recursive characteristics
of IFC model graphs.

The Georgia Tech Process to product modeling [45] is a product
modeling method to (semi-)automatically derive a product model
from collected process information. A process modeling module
(called the Requirements Collection and Modeling (RCM) module)
can capture the contents, scope, granularity, and semantics of
information used in a process model. Later, the captured informa-
tion can be structured as a product model. GTPPM does not support
several IDM implementation details, it cannot automate the gener-
ation of an entire IDM. In particular, the conceptual approach of
hierarchical, modular Exchange Requirement (ER)/Functional Part
(FP) trees differs substantially as does flattening supertype attri-
butes into the exchange entity definitions in GTPPM. Benefits of
using GTPPM as a method to create an IFC IDM view include trace-
ability and reusability.

The Generalized Model Subset Definition (GMSD) schema de-
vised by Weise et al. [46] enables the realization of client/server
or file based transactions in a structured manner, at different levels
of granularity, and for different data exchange formats. GMSD is
specifically designed to the support EXPRESS-based models, with
special attention to IFC. GMSD is not a language per se but a sche-
ma which allows a neutral definition format with possible map-
pings for various practical data exchange and server/client
realizations.

The technical standard to specify Model View Definitions
(MVD) - mvdXML [47], which has been proposed as a standard
by the buildingSMART organization and co-authored by the
GMSD-author Weise, provides a rich set of filtering mechanisms
to specify the sub-model information that should be contained in
an MVD. Based on cascading concept templates that allow the def-
inition of entity-, attribute- and property- selectors as well as con-
straints on values (“door height must be greater or equal to 1 m”) it
covers a wide range of information exchange requirements. Even
though authoring tools for the composition of such formal MVD
specifications exist [48,49], which significantly accelerate the com-
plex authoring of MVDs, the level of background knowledge re-
quired is very high. Both tools also need additional (not yet
existing) processors to execute the actual model extraction based
on mvdXML definitions. In the outlook Section 6.3 we show how

W. Mazairac, . Beetz/Advanced Engineering Informatics 27 (2013) 444-456 449

these two technologies complement each other and could be com-
bined to provide ad hoc querying capabilities on the one hand with
standard-conform information compilation on the other hand.

Borrmann et al. [50] introduced the concept of a spatial query
language for building information models. It provides formal defi-
nitions using point set theory and point set topology for 3D spatial
data types as well as the directional, topological, metric and Bool-
ean operators employed with these types. It also serves to outline
the implementation of 3D spatial query processing based on an ob-
ject-relational database management system.

The Building Environment Rule and Analysis (BERA) language
[51] is another powerful language that is tailored to the specific
requirements of rule analysis that has been applied extensively
in layout circulation checking scenarios of the court house use case
also described in [7]. While its rule-checking focus differs from the
query-focus of BIMQL domain specific features like the reference of
attributes and properties through a [Entity].[attribute/property]
pattern (e.g. “Space.GUID”) bear some similarity in their usability
and readability. However, contrary to BIMQL these attributes are
hard-coded into the grammar of BERA, while a model-driven,
introspective approach has been chosen in BIMQL.

The commercial application “Solibri Model Checker” [52] pro-
vides several ways to select or view parts of the building informa-
tion model. However the methods of selection and filtering apply
to this software package only. The selection and filtering methods
are not platform independent and therefore cannot be exported to
or imported from other software packages.

3. Specification

The Backus-Naur Form [56] notation to describe the syntax and
grammar of the domain specific query language BIMQL is provided
in Listing 2. Note that the specification provided is currently lim-
ited to the ‘select’ and ‘set’ parts of the language features, whilst
‘create’ and ‘delete’ will be developed in the future. The implemen-
tation of the latter two language constructs requires a significant
amount of additional research and software development work,
because the consequences and side-effects of these operations
are not trivial. For example, even though the deletion of a single
window could be achieved by issuing a simple query, the extrac-
tion would have to incorporate additional housekeeping and gar-
bage collection to ensure model integrity. Such depending
operations include the deletion of all its geometry, the openings
covered by the particular window as well as the removal of indirect
dependencies such as window profiles and material specifications
in order to avoid unreferenced entities being carried on into the
model evolution.

3.1. ‘BIMQL"-rule

The first rule is the ‘BIMQL’-rule, denoting the start of the query.
This rule enables the user to choose the action to be carried out.
Currently the only top-level choice is ‘select’. The ‘set’-action is
not a top-level choice, because it depends on the ‘select’-action
to determine which aspect of the model to manipulate. In the fu-
ture other choices, for example ‘create’, can be added as subse-
quent instructions to the ‘BIMQL’-rule.

3.2. ‘Select’-rule

In the ‘select’-rule (Fig. 2), the ‘select’-token is followed by a
variable designated by the question mark character (this syntax
is inspired by other languages such as SPARQL). Variable names
are freely chosen by the user and will be later assigned with lists
of query results that are returned to the end-user. The variable

contained by the ‘select’-rule can be followed by a ‘where’-rule,
multiple ‘cascade’-rules or a ‘set’-rule.

3.3. ‘Where’-, ‘cascade’- and ‘set’-rule

The ‘where’-rule (Fig. 3) can be used to define a conditional
statement, referred to by the ‘statement’ keyword for the sake of
brevity. Conditional statements make it possible to specify what
to select and to narrow the selection down. Furthermore, the ‘cas-
cade’-instruction enables the user to make a new selection, based
on an existing selection. The existing collection could for example
be doors of a certain height. The cascade rule makes it possible to
select the walls in which those doors are placed. The ‘set’-rule is
used when the value of an attribute needs to be changed.

3.4. ‘Statement’-rule

Every ‘where’-rule starts with a token that identifies it and is
followed by a ‘statement’-rule (Fig. 4). A statement can be com-
posed of a single relation or can be broken down into a combina-
tion of several relations. If more relations are specified within
one statement these relations are combined using the ‘OR’ and
‘AND’-operations. These tokens indicate a disjunction or conjunc-
tion between the relations.

3.5. ‘Relationleft’-rule

The ‘relation’-rule is specified by a ‘relationleft’- and a ‘relation-
right’-rule and a collection of operator-tokens that separate them.
The ‘relationleft’-rule (Fig. 5) points to the entity type, property or
attribute involved.

The ‘relationleft’-rule starts with the variable defined earlier by
the user. It is followed by the *’-token. Similar to EXPRESS language
rules, the ‘’-token indicates a direct relation between its operands.
This token is followed by an ‘entitytype’-, an ‘attribute’-, or a ‘prop-
erty’-token. The ‘entitytype’-token can be used to specify the type
of an entity (for example IfcDoor). The ‘attribute’- and ‘property’-
token are both followed by the ‘string’-rule. This string is used to
specify the name of the attribute or property from which a value
needs to be retrieved.

In contrast to an attribute which is directly defined and related
to an entity on a fixed schema level, a property of an IFC model
item is not directly connected to the entity it is related to. They
are connected only indirectly via several edges and nodes in be-
tween them (see Fig. 7). Although an IfcPropertySingleValue can
be retrieved by applying the ‘attribute’-token multiple times and
thus traversing the graph depicted in Fig. 7, this frequently used se-
quence of ‘attribute’-tokens has been added as an explicit shortcut,
the ‘property’-operator (Listing 5).

Earlier versions of the implementation also ventured into leav-
ing out the necessity to specify the type of relation (property or
attribute). On the one hand, this further more decreases the re-
quired level of knowledge. On the other hand it comes with a price
on the performance side since more branches of the graph will
have to be traversed and processed. Future versions of the imple-
mentation might include setting parameters to allow the configu-
ration of this trade-off by the user.

3.6. Plugin mechanism

Through a plugin mechanism, more domain-specific functional-
ity can be added as explicit operators such as the geometric repre-
sentation and other relations that take up multiple edges and
nodes in the graph. These explicit domain specific query operators
are not only syntactic sugar, limit the search and manual, explicit
graph-traversal and -matching scope. In the case of searches this

450

also yields performance enhancements esp. on larger models. The
plugin is triggered by the ‘.’ colon character, after which an arbi-
trary string is identifying the keyword associated with a specific

W. Mazairac, J. Beetz/Advanced Engineering Informatics 27 (2013) 444-456

BIMQL
select
cascade

where

set
statement
relation

relationleft

relationright
VARIABLE
PLUGIN
INTEGER

REAL

STRING

1:= select

::= ‘Select’ VARIABLE where? cascade* set?

::= ‘Select’ VARIABLE :=¢ VARIABLE (°‘.Attribute.’ STRING | ‘.Property.’
STRING) where?

::= ‘Where’ statement

1:= ‘Set’ VARIABLE ‘.Attribute.’ STRING ‘:=¢ (INTEGER | REAL | STRING)

::= relation (‘And’ relation | ‘Or’ relation)*

::= relationleft (°=¢ relationright | ¢/=¢ relationright | ‘< relationright
| ‘<=¢ relationright | “>=¢ relationright | “>¢ relationright)

::= (VARIABLE .EntityType’ | VARIABLE ¢.Attribute.’ STRING | VARIABLE
‘.Property.’ STRING | VARIABLE PLUGIN)

::= (INTEGER | REAL | STRING)

1= ‘%’ STRING

ti= ‘7 STRING

= ‘9..97+

::= INTEGER+ (“.” INTEGER+)?

= ((0..9, | ‘A..Z° | ‘a..z’ | €12 | 3 | r$) | %> | ‘&’ | [| rl) |
€% | oy > b | €2 | r/: | €. | (;) |(<r | €_¢ | 5 ¢ | €2

3 | c_
>
| [l | € | r@: | < :)+

Listing 2. Backus-Naur form of the proposed BIMQL query language.

Select VARIABLE where |
e eI

cascade q
ey

Select ?Everything

Fig. 2. Syntax diagram of the ‘select’ statement along with a BIMQL example selecting all entities of a model.

Db—(Where H statement]—N

Select ?AllDoors
Where ?AllDoors.EntityType = IfcDoor

»—(SelectH WARIABLE I—@ WARIABLE

.Attribute. H STRING where

.Property. H STRING

Select ?AllDoors
Where ?AllDoors.EntityType = IfcDoor
Select ?AllDoorsHeights := ?AllDoors.Attribute.OverallHeight

Set

WARIABLE H .Attribute. H STRING

l INTEGER l
RE&L

Select ?AllDoors
Where P?AllDoors.EntityType = IfcDoor
Set ?AllDoors.Attribute.Description := ProductXYz

plugin implementation.

As a proof of concept, two such plugins have been imple-
mented: The “storey plugin” allows to filter building elements by
building storey by going through the ‘IfcRelContainedInSpatial-
Structure’ objectified relationship instances of the model and look-
ing whether the ‘RelatingStructure”s associated with an object
(IfcProduct) name matches with the right-hand side. The “is-a

Fig. 3. Flow diagrams and illustrative examples of ‘where’, ‘select’ and ‘set’ rules.

plugin” (Listing 3) allows for a natural-language selection of build-
ing objects. It uses the ISO 12006-3:3-based buildingSMART Data
Dictionary (bsDD) [53] to map natural language names to IFC en-
tity definitions: The ‘IfcDoor’ class has been associated as one of
the names of a concept (IfdSubject) which has the name “door”
in the language “International English” as one of its names. The
plugin implements a cached reverse-lookup that allows to retrieve
names of the same concept in other languages (“Tiir”, “Deur”,
“Dar” etc.) and matches them with the right-hand side of the
where statement. This allows for natural language selections of

W. Mazairac, . Beetz/Advanced Engineering Informatics 27 (2013) 444-456 451

relation

Select ?AllDoors

Where ?AllDoors.EntityType = IfcDoor
And ?PAllDoors.Attribute.Description = ProductXYz

»»— relation

Fig. 4. Syntax diagram and illustrative example of the ‘relation’-rule and its
combinations.

VARIABLE [—+{ "EntityType

VARIABLE [+ "Attribute.’ }-+{ STRING

‘'VARIABLE H ".Property.’ H STRING

VARIABLE [+ PLUGIN

Fig. 5. ‘relationleft’-rule syntax diagram.

objects. The following examples selects all IfcDoors (searched for
by its Dutch word “Deur”) and IfcWindows (searched for by its
French term “fenétre”) that are either on the first or second floor
(searched for by the German names provided in the particular
model.

Notice how the storey plugin can be triggerd by different key-
words “Storey” (English) and “Verdieping” (Dutch), as an arbitrary
number of keywords can be provided by a plugin registered into
the query engine implementation at runtime. More details on the
implementation of the extension mechanism can be found in Sec-
tion 4.

3.7. ‘Relationright’-rule

The ‘relationright’-rule (Fig. 6) for the assignment of a compar-
ison can be any string. If the string is numeric, it will be automat-
ically compared with property definitions of simple and derived
types provided in the property such as REAL, INTEGER or IfcPosi-
tiveLengthMeasure through automatic casting.

It is also possible to specify patterns by using asterisks, question
marks and other terms familiar from regular expression terms [54].
The underlying functionality will try to match the pattern with the
value the ‘relationleft’-rule returns. These patterns make is possi-
ble to e.g. return both ‘OverallHeight’ and ‘OverallWidth’ attributes
of an IfcDoor by querying for ‘Overalls’ or return the ‘SecurityRat-
ing’, ‘FireRating’ and ‘AccousticRating’ properties form the
PSet_Door_common in one go by asking for ‘«Rating’

3.8. Shortcuts

The introduction of shortcuts serve as an illustration as to why a
domain specific language that provides syntactic simplifications
compared with a general purpose language is useful for complex
models such as the IFC. The relation of an entity (IfcSpace in this
example) with its properties that go beyond the few direct attri-
butes (Listing 4) defined in the core schema constitutes a complex
sub graph (Fig. 7). This requires several graph network ‘hops’ or
nested iterations in procedural programming approaches and
nested joins in traditional SQL based query languages.

The BIMQL-code in the above row of Listing 5 shows how BIM-
QL can be used to navigate the traditional graph-connection. Seven
lines of code are needed. The first two lines select an object and the

Select ?Varl Where ?Varl:Storey = Obergeschoss
Or ?Varl:Verdieping = Erdgeschoss
And ?Varl:is-a = Deur
Or ?Varl:is-a = fenétre

Listing 3. Natural language in a BIMQL query.

other five lines are required to retrieve the ‘volume’-property of
that object. When the property shortcut is used (lower part) those
five lines which were needed first are replaced by only one line.

In Section 1.1 the IFC model specification and specifically the
concept of objectified relationships have been introduced. Objecti-
fied relationships could be a starting point for additional shortcuts.
The next example, in which the boundary object for a given space
are retrieved from the model (Listing 6) illustrates this principle. A
space is related to its boundaries by the ‘IfcRelSpaceBoundary’-
entity.

By introducing a new shortcut, based on the ‘IfcRelSpaceBoun-
dary’-entity and named ‘SpaceBoundary’, the query not only be-
comes one line shorter, but also more comprehensible (Listing 7).

4. Implementation

The bimserver.org platform [16] already provides some means
to extract partial building information models from a repository.
These models can be downloaded after which they can be viewed
or edited. An altered partial model can be uploaded to the server
again on which it will be merged with the original model still pres-
ent. Selections on individual model revisions can be made by spec-
ifying object IDs (including revision and authoring information),
the IFC GUID, or all instances of a selected entity in the IFC schema.
It is also possible to create custom queries by writing Java code
which can be compiled and loaded during the runtime of the ser-
ver, however the threshold to actually use this feature is high
and the learning curve steep. In order to overcome this high entry
threshold and because the bimserver.org is an accessible open
source project we have chosen to integrate the proposed query lan-
guage as a Domain Specific Language (DSL) that wraps the under-
lying querying mechanisms and hides the low-level technicalities
from end-users. Next to the possibility to write Java code, the bim-
server.org platform will be extended, so it will be possible to write
BIMQL code.

The Model Driven Architecture (MDA) approach of software
engineering is one of the architectural cornerstones of the bimserv-
er.org framework. Instead of developing the source code itself, the
programmer develops a model, which is used for automatically
generating the source code. Although it increases the initial plan-
ning and writing resources required to produce the system that
automatically generates source code from a model, this method in-
creases portability, productivity and cross-platform interoperabil-
ity. First the EXPRESS schema is converted to an Eclipse
Modeling Framework (EMF) model. This model is then used to

INTEGER

STRING

Fig. 6. ‘Relationright’-rule syntax diagram.

452 W. Mazairac, J. Beetz/Advanced Engineering Informatics 27 (2013) 444-456

IfcRelDefinesByProperties

RelatedObjects S[1:?]

\
RelatingPropertyDefinition

HasProperties S[1:?]

IfcPropertySet

Path in model graph via attributes
(edges) and entities (nodes)

IfcPropertySingleValue =———

IfcSpace - q
)
Query []
shortcut]
Name [|
o feldentifr g 4
NominalValue s :
IfcValue
dll q IfcUnit

Fig. 7. Illustration of the mechanism to assign properties contained in a property set to an IfcObject (IfcSpace in this case) via the objectified relationship object

IfcRelDefinesByProperties. The dashed line indicates a query shortcut.

ENTITY IfcSpace
InteriorOrExteriorSpace
INVERSE

BoundedBy
END_ENTITY;

SUBTYPE OF (IfcSpatialStructureElement);
ElevationWithFlooring : OPTIONAL IfclLengthMeasure;

HasCoverings: SET OF IfcRelCoversSpaces FOR RelatedSpace;
: SET OF IfcRelSpaceBoundary FOR RelatingSpace;

IfcInternalOrExternalEnum;

Listing 4. Excerpt from the IFC2 x 3 model for spaces.

Select ?varl

Where ?Varl.Attribute.Globalld = "87d87dffn47a90z"

Select ?Var2 := ?Varl.Attribute.IsDefinedBy

Select ?Var3 := ?Var2.Attribute.RelatingPropertyDefinition
Select ?Var4 := ?Var3.Attribute.HasProperties

Where ?Var4.Attribute.Name = "Volume"

Select ?vVar5 := ?Var4.Attribute.NominalValue

Select ?varl
Where ?Varl.Attribute.Globalld = "87d87dffn47a9%0z"
Select ?Var2 := ?Varl.Property.Volume

Listing 5. Comparison BIMQL statements selecting the ‘volume’-property with
(upper part) and without (lower part) using the explicit ‘.property.” shortcut.

Select ?Varl

Where ?Varl.Attribute.Globalld = "87d87dffn47a9%ez"
Select ?Var2 :=?Varl.Attribute.BoundedBy

Select ?Var3 :=?Var2.Attribute.RelatedBuildingElement

Listing 6. BIMQL query to retrieve the enclosures of a space without shortcut for
objectified relationships.

generate Java classes for communicating with the bimserver.org
database. This strategy was also applied in some of the implemen-
tation aspects of the Java classes underlying the BIMQL project.
Here, bimserver.org Java classes which are based on the EMF Ecore
model were used for generating some of the BIMQL Java classes. An
overview of the system architecture of the bimserver.org frame-
work and the BIMQL query plugin can be found in Fig. 8.

4.1. EXPRESS schema

EXPRESS is a standard data modeling language for product data.
While a building is a product, EXPRESS can be used to describe
building information. A schema is a data model in a formal nota-
tion. The IFC specification consists of such a schema and describes
a set of data types and their possible relationships. In Listing 8 EX-
PRESS is used to describe the ‘IfcDoor’-entity.

Select ?Varl
Where ?Varl.Attribute.Globalld = "87d87dffn47a90z"
Select ?Var2 :=?Varl.SpaceBoundary

Listing 7. BIMQL query from Fig 14 with an additional shortcut for objectified
relationships.

4.2. EMF model

The Eclipse Modeling Framework (EMF) can be used to develop
a domain model. EMF is based on two meta-models; the Ecore
model and the Gen model. The Ecore model (Listing 9) contains
information about classes which are related to the data types
and possible relationships, both described by the EXPRESS schema.
The Gen model contains additional information for generating
code, in this case the bimserver.org Java classes.

4.3. BimServer.org Java classes

The bimserver.org Java classes are used to, among other things,
store a BIM model to the database and manipulate objects already
stored in the database. Each class contains ‘getters’ and ‘setters’,
which are methods used to manipulate variables. Listing 10 shows
the bimserver.org Java class ‘IfcDoorlmpl’ and one of its getters.
The BIMQL Java classes are based on those methods.

4.4. BIMQL Java classes

The BIMQL Java classes are generated from the bimserver.org
Java classes, are indirectly related to the IFC model specification
and establish a link between the developed query language and
the bimserver.org Java classes, which are talking to the database
in which a building information model is stored. Listing 11 shows
part of a BIMQL Java class. This specific class is based on the class in
Listing 10.

W. Mazairac, . Beetz/Advanced Engineering Informatics 27 (2013) 444-456 453

Part 21 SPFF IFC
instance file

i

API layer (exposed via SOAP, REST, Proto Buffers

generates

|FC EXPRESS Version-management
schema (e.g. 23) meta-model

Bimserver.org core
EMF instance model with [Part 21 SPFF IFC
database backend .-"\.\ s instance file
g L g - report —I
1 .§ BIMQY - plugin Partial
ramework libraries "\ » model
S wi 8
g (POJO) 2 8 g es \ view
é 5E§ uses | Vizuali - plugi \
c§; :“:. S zualisation - plugin v
X&_]EMF ecore schema — model ',-‘

1/0 plugin &
1

Fig. 8. System overview of the bimserver.org framework, the BIMQL plugin and the MDA layers involved.

ENTITY IfcDoor
SUPERTYPE OF (IfcDoorStandardCase)
SUBTYPE OF (IfcBuildingElement);
OverallHeight: OPTIONAL IfcPositivelengthMeasure;
OverallWidth : OPTIONAL IfcPositivelLengthMeasure;
END_ENTITY;

Listing 8. EXPRESS schema definition of the IfcDoor entity.

4.5. Implementation of the grammar plugins

In order to make the BIMQL extendable a mechanism has been
inserted that allows the execution of arbitrary grammar plugins
through a plugin interface. The ‘:’-character serves as a ‘magic to-
ken’ in the ‘plugin-rule’ on the left-handside statement rule that
marks an arbitrary variable keyword. Upon initialization of the
BIMQL query language engine prototype, plugins can be loaded
into the engine, that implement a’BIMQLGrammarPlugininterface’
interface class. When the colon magic token is recognized by the
parser (which is generated from a static ANTLR-grammar used in
the prototype implementation) all registered plugins are queried
for the variable keyword following the colon. If found, the particu-
lar evaluation method of the appropriate plugin is called. This way,
not only arbitrary amounts of additional keywords can be plugged
into the language making expansions through the community pos-
sible and shareable. Individual keywords can also be localized eas-
ily to add natural language integration. The “:onStorey”/
“:opVerdieping” example provided above is an example for this.

5. Examples

In addition to examples provided in Section 3, we will present a
few examples in this section to demonstrate the use of this new
language. The first examples show how to select only those build-
ing elements that satisfy certain criteria. We will for example se-
lect only those spaces that have a floor area larger than 20
square meters.

5.1. Examples of selecting information

The first examples will retrieve parts of the IFC model. Parts of
an IFC model can be all the windows, the first floor or a specific col-
umn, but a part can also be a list of numbers, for example all the
doors and their dimensions. The example query in Listing 12 re-
turns all spaces whose area is larger than 20 square meters. Notice
the ‘property’-operator. This operator provides a shortcut for
retrieving the value of a property. In the case provided, it will
match instances of the ‘IfcSpace’ entity which have a ‘NetFloorArea’
property assigned to them by an IfcElementQuantity property set.

The example in Listing 13 returns the floors areas of spaces
whose GloballDs are known. The first two lines select the spaces
of which the floor areas need to be retrieved. The last two lines per-
form a new query based on those first two lines. These two lines
actually return the floor areas. This example returns a list of values,
instead of only one value. BIMQL could be improved by adding ex-
plicit aggregation functions, which can for example locate the max-
imum or minimum value.

The final example in Listing 14 returns all doors which are too
small to provide access to an operating room. The first two lines se-
lect all operating rooms. Lines 3 and 4 select all building elements
which define the operating room space and the last line limits that
selection to the doors with a certain dimension.

5.2. Examples of altering information via the ‘Set’ operation

The set feature makes it possible to change the value of an attri-
bute. The example in Listing 15 changes the name of a space to
‘Kitchen’.

Notice that currently no further consistency checks have been
implemented to safeguard the integrity of the model when apply-
ing value modifications through the ‘set’ operation. Examples be-
yond those described in Section 5.2 include the modification of a
value explicitly attributed to an entity that should be derived from
its implicit geometric properties (OverallWidth of an IfcDoor) or
the inadvertent deletion of references by list-redefinitions (IfcRep-
resentationltems in an IfcRepresenation).

454 W. Mazairac, J. Beetz/Advanced Engineering Informatics 27 (2013) 444-456

</eClassifiers>

<eClassifiers xsi:type="ecore:EClass" name="IfcDoor" eSuperTypes="#//IfcBuildingElement">
<eStructuralFeatures xsi:type="ecore:EAttribute" name="OverallHeight"/>
<eStructuralFeatures xsi:type="ecore:EAttribute" name="OverallHeightAsString"/>
<eStructuralFeatures xsi:type="ecore:EAttribute" name="OverallWidth"/>
<eStructuralFeatures xsi:type="ecore:EAttribute"” name="OverallWidthAsString"/>

Listing 9. EMF model definition of the IfcDoor entity.

public double getOverallHeight() {

}

public class IfcDoorImpl extends IfcBuildingElementImpl implements IfcDoor {

return (Double) eGet(Ifc2x3Package.Literals.IFC_DOOR__OVERALL_HEIGHT, true);

Listing 10. Part of the bimserver.org IfcDoor Java class.

public class SetAttributeSubIfcDoor {
public void setAttribute() {

else if (attributeName.equals("OverallHeight")) {
((IfcDoor) object).setOverallHeight(Double.parseDouble(attributeNewValue));

Listing 11. Part of the BIMQL IfcDoor Java class.

Select ?MySpace
Where ?MySpace.EntityType = IfcSpace
And ?PMySpace.Property.NetFloorArea > 20

Listing 12. BIMQL example selects spaces based on the floor area.

Select ?mySpace

Where ?mySpace.Attribute.GlobalID = 3Dn6BYWjfErxElJocogMGQ Or
’mySpace.Attribute.GlobalID = @tLttARJ1FlesyGISeaTmd

Select ?netFloorArea

Where ?netFloorArea := ?mySpace.property.NetFloorArea

Listing 13. BIMQL example returns the floor area of a space.

6. Summary and outlook
6.1. Summary

In this paper we introduced BIMQL, an extendable, open, do-
main specific query language for building information models. It
can be used to select and update partial aspects in building infor-
mation models. We described our conceptual approaches, the for-
mal specification of the language, an implementation of the design
as well as preliminary performance tests. The language has been
designed and implemented on top of the bimserver.org platform
even though it is generic enough to be adapted in other implemen-
tations of IFC-based modeling and development tools. At its cur-
rent state of implementation, it allows the selection of objects
and attributes based on their schema names or arbitrary properties
stemming from standardized or custom property sets. While it is in
principle possible to select objects connected to each other via
arbitrary relationship edges in a STEP part 21 graph network, BIM-
QL introduces extendable, domain specific shortcuts to make these

selection processes easier. Two shortcuts have been demonstrated
that allow querying for properties related to objects and the con-
tainment of elements on building storeys through a single term in-
stead of a number of sequential graph traversal statements
(“.property.” and “:onStorey”). The flexible syntax plugin mecha-
nism for the future extension of the BIMQL language through fur-
ther operators by the community has been demonstrated by an
example: The term “:is-a”, allows the lookup of IFC schema names
of objects (IfcDoor, IfcWindow, etc.) by names in other languages
associated to the term (Tiir, fenétre, etc.) in the buildingSMART
data dictionary.

Even though the language in its current state of specification
and implementation is useful for a number of ad hoc and repeated
sub-model extraction scenarios described in this paper, a number
of limitations and desirable additions are going to be addressed
by future research and development:

6.2. Advanced natural language capabilities

The search for model parts by their natural language terms is
currently limited to singulars signifiers explicitly mapped in the
buildingSMART data dictionary. More sophisticated natural lan-
guage mappings could be achieved in future through a number
of different approaches. These include the incorporation of more
sophisticated structured vocabularies such as WordNet and DBPe-
dia and their counterpart in other languages through Web services
or derived cached mappings. Such mappings would also require
more sophisticated mapping techniques.

6.3. Query patterns and combination with Model View Definition
Templates

Another limitation of the current state of BIMQL is the necessity
to request all required information aspects manually by defining
individual query variables per desired aspect ($wall and $open-
ingCoverInWall) or to gather this information by sequential que-
ries or other form of post-processing. In future, rather than

W. Mazairac, . Beetz/Advanced Engineering Informatics 27 (2013) 444-456 455

Select ?0peratingRoom
Where

Select ?0peratingRoomSmallDoor :=

Where

?OperatingRoom.EntityType = IfcSpace And ?OperatingRoom.Attribute.Name = OR*
Select ?0peratingRoomSpaceBoundary := ?OperatingRoom.Attribute.BoundedBy

?OperatingRoomSpaceBoundary.Attribute.RelatedBuildingElement
?OperatingRoomSmallDoor.EntityType = IfcDoor
And ?OperatingRoomSmallDoor.Attribute.OverallWidth < 150

Listing 14. More complex BIMQL example selecting all doors which are too small.

Select $MySpace
Where $MySpace.GlobalID = 3Dn6BYWjfErxE1JocogMGQ
Set ?MySpace.Name := Kitchen

Listing 15. BIMQL example changing the name of an object.

returning collections of objects or attribute values, it would be
preferable to provide mechanisms to define and reuse aggregated
information compilations on higher conceptual levels (e.g. get all
geometrical representations of a building element or all informa-
tion including postal address, mail, role etc. when querying for
an IfcPerson). In addition to the possibility of building up reposito-
ries of frequently used query patterns and “stored procedures” one
of the most interesting directions is the inclusion of Model View
Definitions. More specific, the expected rapid growth of mvdXML
definitions and their conceptual building blocks (templates) could
be used to compile result sets to queries. Preliminary selection
mechanisms and algorithms are present in the bimserver.org code-
base and could be modified and adapted within a few person
weeks.

6.4. Spatial queries

Similar to the existing plugin mechanism used for statements
on the lefthand-side of comparison operators (“?var:is-a = Door”),
such a mechanism could be added for other kinds of operators.
Spatial query algebras and algorithms as outlined in [55] could
implemented to allow searches for walls touching a particular
other wall through specialized operators like (“?wall.
attribute.GUID = [ID] And ?otherwalls:is-a = Wall And ?otherwalls:
touches ?wall”). While the addition of the extension-mechanism
for operators is straight-forward, the inclusion of the spatial
reasoning capabilities themselves require much additional
research and development work. It would then for example be
possible to search for all south faced windows and all external
doors on the ground floor (even if not explicitly stated, e.g. through
a “is External” property) and determining the implicit ‘ground
floor’ by relating it to the terrain elevation. While developing the
spatial query functionality, simultaneously new shortcuts could
be developed to accelerate the development of queries.

6.5. Distribution and service orientation

Rather than using centralized model repositories the approach
of federated servers that contain domain specific sub-models
(structural model, HVAC model) somewhere in a network structure
has received much attention. Here, a special problem is to query
several repositories at once, dealing with administrative issues
(rights-management etc.) as well as the necessity to merge partial
query results and the problem of inter-sub-model dependencies of
information. It be interesting to extend BIMQL with capabilities
either to explicitly address specific repositories for parts of the
query. (“Get x from repository Alice, use x to retrieve y from Bob”.)

Similarly, it would be interesting to be able to trigger remote
services specializing in particular operations. (“Get surface area
of x according to building regulation A from service Alice. Retrieve
invalid objects from Bob”). In such a way BIMQL could even be
elaborated as a content language for agent systems interacting in
distributed networks.

6.6. Additional domain specific shortcuts

In addition to the shortcuts demonstrated here (“on storey”
“property x in IFC property set”) other frequently used paths and
subgraphs could be abbreviated into shortcuts, e.g. simplifying
the search for certain specific dependencies between entities. This
would make it easier to find all doors or windows related to one
wall for example. This is already possible now, however more than
one line of query code is needed.

Even though the proposed language is far from feature com-
plete, with BIMQL, we hope to provide a useful vantage point for
future research, discussion and development on the development
for end-user interfaces to complex building information models
as well as the composition of service-oriented architectures.

Ackknowledgements

We would like to extend our sincere gratitude and appreciation
to the bimserver.org community and especially to Ruben de Laat
and Léon van Berlo of TNO and to Joran Jessurun of the Eindhoven
University of Technology for their support and feedback during this
work.

References

[1] ISO/PAS 16739:2005 Industry Foundation Classes, Release 2x, Platform
Specification (IFC2x Platform), 2005.

[2] B.Ingirige, G. Aouad, Awareness and Usage of Information Standards in the UK
Construction Industry: A Survey by The SIENE Network, 2000.

[3] T. Froese, Z. Han, M. Alldritt, Study of information technology development for
the Canadian construction industry, Canadian Journal of Civil Engineering 34
(2007) 817-829.

[4] N. Forcada, M. Casals, X. Roca, M. Gangolells, Adoption of web databases for
document management in SMEs of the construction sector in Spain,
Automation in Construction 16 (2007) 411-424.

[5] B.B.-G,, S. Rice, An assessment of building information modeling value and use,
in: CIB W078 2009, 2009.

[6] L. Khemlani, Top Criteria for BIM Solutions: AECbytes Survey Results,
AECbytes, AECbytes Special Report, 2007.

[7] C. Eastman, P. Teicholz, R. Sacks, K. Liston, BIM Handbook: A Guide to Building
Information Modeling for Owners, Managers, Designers, Engineers and
Contractors, John Wiley & Sons, 2011.

[8] T. Cerovsek, A review and outlook for a “Building Information Model” (BIM): a
multi-standpoint framework for technological development, Advanced
Engineering Informatics 25 (2011) 224-244.

[9] W. Shen, Q. Hao, H. Mak,]. Neelamkavil, H. Xie,]. Dickinson, et al., Systems
integration and collaboration in architecture, engineering, construction, and
facilities management: a review, Advanced Engineering Informatics 24 (2010)
196-207.

[10] N. Bakis, G. Aouad, M. Kagioglou, Towards distributed product data sharing
environments - progress so far and future challenges, Automation in
Construction 16 (2007) 586-595.

[11] D.A. Schenck, P.R. Wilson, Information Modeling: the EXPRESS Way, Oxford
University Press, Inc., New York, NY, USA, 1994.

http://refhub.elsevier.com/S1474-0346(13)00065-7/h0005
http://refhub.elsevier.com/S1474-0346(13)00065-7/h0005
http://refhub.elsevier.com/S1474-0346(13)00065-7/h0005
http://refhub.elsevier.com/S1474-0346(13)00065-7/h0010
http://refhub.elsevier.com/S1474-0346(13)00065-7/h0010
http://refhub.elsevier.com/S1474-0346(13)00065-7/h0010
http://refhub.elsevier.com/S1474-0346(13)00065-7/h0015
http://refhub.elsevier.com/S1474-0346(13)00065-7/h0015
http://refhub.elsevier.com/S1474-0346(13)00065-7/h0015
http://refhub.elsevier.com/S1474-0346(13)00065-7/h0015
http://refhub.elsevier.com/S1474-0346(13)00065-7/h0020
http://refhub.elsevier.com/S1474-0346(13)00065-7/h0020
http://refhub.elsevier.com/S1474-0346(13)00065-7/h0020
http://refhub.elsevier.com/S1474-0346(13)00065-7/h0025
http://refhub.elsevier.com/S1474-0346(13)00065-7/h0025
http://refhub.elsevier.com/S1474-0346(13)00065-7/h0025
http://refhub.elsevier.com/S1474-0346(13)00065-7/h0025
http://refhub.elsevier.com/S1474-0346(13)00065-7/h0030
http://refhub.elsevier.com/S1474-0346(13)00065-7/h0030
http://refhub.elsevier.com/S1474-0346(13)00065-7/h0030
http://refhub.elsevier.com/S1474-0346(13)00065-7/h0035
http://refhub.elsevier.com/S1474-0346(13)00065-7/h0035
http://refhub.elsevier.com/S1474-0346(13)00065-7/h0035

456 W. Mazairac, J. Beetz/Advanced Engineering Informatics 27 (2013) 444-456

[12] ISO 10303-22:1998 Industrial Automation Systems and Integration - Product
Data Representation and Exchange - Part 22: Implementation Methods:
Standard Data Access Interface, 1998.

[13] M. Venugopal, C.M. Eastman, R. Sacks, J. Teizer, Semantics of model views for
information exchanges using the industry foundation class schema, Advanced
Engineering Informatics 26 (2012) 411-428.

[14] D. Davis, J. Karlsh/oj, R. See, An Integrated Process for Delivering IFC Based
Data Exchange, BuildingSMART, 2012.

[15] J. Karlshoej, Process and building information modelling in the construction
industry by using information delivery manuals and model view definitions,
in: G. Gudnason, RJ. Scherer (Eds.), ECPPM 2012, Taylor & Francis Group,
2012.

[16] J. Beetz, L. van Berlo, R. de Laat, P. van den Helm, Bimserver.org - an open
source [FC model server, in: Proceedings of the CIB W78 2010: 27th
International Conference, Cairo, Egypt, 2010.

[17] R. Niemeijer, B. de Vries, J. Beetz, Constraint soup, in: Natural Language
Processing and Knowledge Engineering (NLP-KE), 2010 International
Conference On, 2010, pp. 1-6.

[18] T. Erl, Service-Oriented Architecture (SOA): Concepts, Technology, and Design,
Prentice Hall, 2005.

[19] A. Kiviniemi, M. Fischer, V. Bazjanac, Integration of multiple product models:
Ifc model servers as a potential solution, in: Proc. of the 22nd CIB-W78
Conference on Information Technology in, Construction, 2005.

[20] Open BIM Collaboration Format Web-Service API Proposal, n.d.

[21] B. Kumar, J.C. Cheng, L. McGibbney, Cloud computing and its implications for
construction IT, in: Int. Computing Conf. on Civil and Building, Engineering,
2010.

[22] A. Redmond, A. Hore, M. Alshawi, R. West, Exploring how information
exchanges can be enhanced through Cloud BIM, Automation in Construction
24 (2012) 175-183.

[23] Constructivity Server IFC Interface.
cmserver.htm> (accessed 1.1.13).

[24] E. Prud’hommeaux, A. Seaborne, SPARQL Query Language for RDF - Working
Draft, 2005.

[25] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, S. Weerawarana,
Unraveling the web services web: an introduction to SOAP, WSDL, and
UDDI, IEEE Internet Computing 6 (2002) 86-93.

[26] R.T. Fielding, R.N. Taylor, Principled design of the modern web architecture,
ACM Transactions on Internet Technology (TOIT) 2 (2002) 115-150.

[27] Google Protocol Buffers Documentation, (n.d.).

[28] 1SO010303-11:1994, Industrial Automation Systems and Integration - Product
Data Representation and Exchange - Part 11: Description Methods: The
EXPRESS Language Reference Manual, 1994.

[29] 1SO12006-3, Building Construction - Organization of Information about
Construction Works - Part 3: Framework for Object-Oriented Information,
2006.

[30] C. Lima, A. Zarli, G. Storer, Controlled vocabularies in the European
construction sector: evolution, current developments, and future trends, in:
Complex Systems, Concurrent Engineering, 2007, pp. 565-574.

[31] EF. Codd, A relational model of data for large shared data banks,
Communications of the ACM 13 (1970) 377-387.

[32] ISO/IEC 9075-1:2011 Information Technology - Database Languages - SQL -
Part 1: Framework (SQL/Framework), (n.d.).

[33] J. Martin, Managing the Data-Base Environment, Prentice-Hall, 1983.

[34] H. Kang, G. Lee, Development of an object-relational IFC server, in: Proc. of the
3rd International Conference on Construction Engineering & Management/6th

<http://www.constructivity.com/

International Conference on Construction Project Management, Jeju, Korea,
2009.

[35] Y. Adachi, Overview of IFC Model Server Framework, EWork and EBusiness in
Architecture, Engineering and Construction, 2002, p. 367.

[36] E. Meijer, B. Beckman, G. Bierman, LINQ: reconciling object, relations and XML
in the .NET framework, in: Proceedings of the 2006 ACM SIGMOD International
Conference on Management of Data, ACM, New York, NY, USA, 2006. pp. 706-
706.

[37] P. Pialorsi, M. Russo, Introducing Microsoft’s Ling, First Microsoft Press,
Redmond, WA, USA, 2007.

[38] E. Wcisto, P. Habela, K. Subieta, A java-integrated object oriented query
language, in: A. Abd Manaf, A. Zeki, M. Zamani, S. Chuprat, E. El-Qawasmeh
(Eds.), Informatics Engineering and Information Science, Springer, Berlin
Heidelberg, 2011, pp. 589-603.

[39] P. Haase, J. Broekstra, A. Eberhart, R. Volz, A Comparison of RDF query
languages, in: Proc. Third International Semantic Web Conference, Springer,
2004, pp. 502-517.

[40] J. Bailey, F. Bry, T. Furche, S. Schaffert, Web and semantic web query languages:
a survey, in: N. Eisinger, J. Maluszynski (Eds.), Reasoning Web, Springer,
Berlin/Heidelberg, 2005. 95-95.

[41] K.G. Clark, L. Feigenbaum, E. Torres (Eds.), SPARQL Protocol for RDF, (n.d.).

[42] J.B. Warmer, A.G. Kleppe, The Object Constraint Language: Getting Your
Models Ready for MDA, Addison-Wesley Professional, 2003.

[43] D. Koonce, L. Huang, R. Judd, EQL an express query language, Computers &
Industrial Engineering 35 (1998) 271-274.

[44] Y. Adachi, Overview of partial model query language, in: Proc. of the 10th Int.
Conf. on, Concurrent Engineering, 2003, pp. 549-555.

[45] G. Lee, R. Sacks, Generating IFC VIEWs and Conformance Classes using GTPPM,
in: Proc. 11th International Conference on Computing in Civil and Building
Engineering ICCCBE-XI, 2006, pp. 1715-1724.

[46] M. Weise, P. Katranuschkov, RJ. Scherer, Generalised model subset definition
schema, in: Construction IT: Bridging the Distance, Proceedings of the CIB-
W78 Workshop, 2003, p. 440.

[47] T. Chipman, T. Liebich, M. Weise, mvdXML - Specification of a Standardized
Format to Define and Exchange Model View Definitions with Exchange
Requirements and Validation Rules, buildingSMART, 2012.

[48] IfcDoc Tool - The New MVD Development Tool. <http://www.buildingsmart-
tech.org/blogs/msg-blog/ifcdoc-the-new-mvd-development-tool> (accessed
2.15.13).

[49] ViewEdit Tool - Private Email Conversation with Matthias Weise, 2012.

[50] A. Borrmann, C. van Treeck, E. Rank, Towards a 3D Spatial Query Language for
Building Information Models, in: H. Rivard, M.M. Cheung, H.G. Melhem, E.T.
Miresco, R. Amor, F.L. Ribeiro (Eds.), 11th International Conference on
Computing in Civil and Building Engineering ICCCBE-XI, Montreal, Canada,
2006, pp. 1374-1385.

[51] J. Lee, Building Environment Rule and Analysis (BERA) Language, PhD Thesis,
Georgia Institute of Technology, 2011.

[52] Solibri Inc, Solibri Model Checker. <http://www.solibri.com/solibri-model-
checker.html> (accessed 2.15.13).

[53] R. Grant, H. Bell, L. Bjorkhaug, A. Bjaaland, IFD Library White Paper, 2008.

[54] Mastering Regular Expressions, O'Reilly Media, Inc., 2006.

[55] A. Borrmann, J. Beetz, Towards spatial reasoning on building information
models, in: Proc. of the 8th European Conference on Product and Process
Modeling (ECPPM), 2010.

[56] ISOJIEC 14977:1996(E) Information technology - Syntactic Metalanguage -
Extended BNF.

http://refhub.elsevier.com/S1474-0346(13)00065-7/h0040
http://refhub.elsevier.com/S1474-0346(13)00065-7/h0040
http://refhub.elsevier.com/S1474-0346(13)00065-7/h0040
http://refhub.elsevier.com/S1474-0346(13)00065-7/h0045
http://refhub.elsevier.com/S1474-0346(13)00065-7/h0045
http://refhub.elsevier.com/S1474-0346(13)00065-7/h0045
http://refhub.elsevier.com/S1474-0346(13)00065-7/h0045
http://refhub.elsevier.com/S1474-0346(13)00065-7/h0045
http://refhub.elsevier.com/S1474-0346(13)00065-7/h0045
http://refhub.elsevier.com/S1474-0346(13)00065-7/h0045
http://refhub.elsevier.com/S1474-0346(13)00065-7/h0050
http://refhub.elsevier.com/S1474-0346(13)00065-7/h0050
http://refhub.elsevier.com/S1474-0346(13)00065-7/h0050
http://refhub.elsevier.com/S1474-0346(13)00065-7/h0055
http://refhub.elsevier.com/S1474-0346(13)00065-7/h0055
http://refhub.elsevier.com/S1474-0346(13)00065-7/h0055
http://www.constructivity.com/cmserver.htm
http://www.constructivity.com/cmserver.htm
http://refhub.elsevier.com/S1474-0346(13)00065-7/h0060
http://refhub.elsevier.com/S1474-0346(13)00065-7/h0060
http://refhub.elsevier.com/S1474-0346(13)00065-7/h0060
http://refhub.elsevier.com/S1474-0346(13)00065-7/h0065
http://refhub.elsevier.com/S1474-0346(13)00065-7/h0065
http://refhub.elsevier.com/S1474-0346(13)00065-7/h0070
http://refhub.elsevier.com/S1474-0346(13)00065-7/h0070
http://refhub.elsevier.com/S1474-0346(13)00065-7/h0075
http://refhub.elsevier.com/S1474-0346(13)00065-7/h0075
http://refhub.elsevier.com/S1474-0346(13)00065-7/h0080
http://refhub.elsevier.com/S1474-0346(13)00065-7/h0080
http://refhub.elsevier.com/S1474-0346(13)00065-7/h0080
http://refhub.elsevier.com/S1474-0346(13)00065-7/h0080
http://refhub.elsevier.com/S1474-0346(13)00065-7/h0080
http://refhub.elsevier.com/S1474-0346(13)00065-7/h0085
http://refhub.elsevier.com/S1474-0346(13)00065-7/h0085
http://refhub.elsevier.com/S1474-0346(13)00065-7/h0085
http://refhub.elsevier.com/S1474-0346(13)00065-7/h0090
http://refhub.elsevier.com/S1474-0346(13)00065-7/h0090
http://refhub.elsevier.com/S1474-0346(13)00065-7/h0090
http://refhub.elsevier.com/S1474-0346(13)00065-7/h0090
http://refhub.elsevier.com/S1474-0346(13)00065-7/h0090
http://refhub.elsevier.com/S1474-0346(13)00065-7/h0090
http://refhub.elsevier.com/S1474-0346(13)00065-7/h0090
http://refhub.elsevier.com/S1474-0346(13)00065-7/h0090
http://refhub.elsevier.com/S1474-0346(13)00065-7/h0090
http://refhub.elsevier.com/S1474-0346(13)00065-7/h0090
http://refhub.elsevier.com/S1474-0346(13)00065-7/h0095
http://refhub.elsevier.com/S1474-0346(13)00065-7/h0095
http://refhub.elsevier.com/S1474-0346(13)00065-7/h0095
http://refhub.elsevier.com/S1474-0346(13)00065-7/h0095
http://refhub.elsevier.com/S1474-0346(13)00065-7/h0100
http://refhub.elsevier.com/S1474-0346(13)00065-7/h0100
http://refhub.elsevier.com/S1474-0346(13)00065-7/h0100
http://refhub.elsevier.com/S1474-0346(13)00065-7/h0100
http://refhub.elsevier.com/S1474-0346(13)00065-7/h0100
http://refhub.elsevier.com/S1474-0346(13)00065-7/h0100
http://refhub.elsevier.com/S1474-0346(13)00065-7/h0105
http://refhub.elsevier.com/S1474-0346(13)00065-7/h0105
http://refhub.elsevier.com/S1474-0346(13)00065-7/h0105
http://refhub.elsevier.com/S1474-0346(13)00065-7/h0110
http://refhub.elsevier.com/S1474-0346(13)00065-7/h0110
http://www.buildingsmart-tech.org/blogs/msg-blog/ifcdoc-the-new-mvd-development-tool
http://www.buildingsmart-tech.org/blogs/msg-blog/ifcdoc-the-new-mvd-development-tool
http://www.solibri.com/solibri-model-checker.html
http://www.solibri.com/solibri-model-checker.html

	BIMQL – An open query language for building information models
	1 Introduction
	1.1 BIM models captured in the IFC model format
	1.2 Requirements for a query language

	2 Related work
	2.1 Generic querying approaches
	2.2 BIM querying approaches

	3 Specification
	3.1 ‘BIMQL’-rule
	3.2 ‘Select’-rule
	3.3 ‘Where’-, ‘cascade’- and ‘set’-rule
	3.4 ‘Statement’-rule
	3.5 ‘Relationleft’-rule
	3.6 Plugin mechanism
	3.7 ‘Relationright’-rule
	3.8 Shortcuts

	4 Implementation
	4.1 EXPRESS schema
	4.2 EMF model
	4.3 BimServer.org Java classes
	4.4 BIMQL Java classes
	4.5 Implementation of the grammar plugins

	5 Examples
	5.1 Examples of selecting information
	5.2 Examples of altering information via the ‘Set’ operation

	6 Summary and outlook
	6.1 Summary
	6.2 Advanced natural language capabilities
	6.3 Query patterns and combination with Model View Definition Templates
	6.4 Spatial queries
	6.5 Distribution and service orientation
	6.6 Additional domain specific shortcuts

	Ackknowledgements
	References

