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INDUCTIVE TYPES IN HOMOTOPY TYPE THEORY

STEVE AWODEY, NICOLA GAMBINO, AND KRISTINA SOJAKOVA

Abstract. Homotopy type theory is an interpretation of Martin-Löf’s con-
structive type theory into abstract homotopy theory. There results a link

between constructive mathematics and algebraic topology, providing topologi-
cal semantics for intensional systems of type theory as well as a computational
approach to algebraic topology via type theory-based proof assistants such
as Coq.

The present work investigates inductive types in this setting. Modified
rules for inductive types, including types of well-founded trees, or W-types, are
presented, and the basic homotopical semantics of such types are determined.
Proofs of all results have been formally verified by the Coq proof assistant,
and the proof scripts for this verification form an essential component of this
research.

Introduction

The constructive type theories introduced by Martin-Löf are dependently-typed λ-
calculi with operations for identity types IdA(a, b), dependent products (Πx :A)B(x)
and dependent sums (Σx :A)B(x), among others [1, 2, 3, 4, 5]. These are related
to the basic concepts of predicate logic, viz. equality and quantification, via the
familiar propositions-as-types correspondence [6]. The different systems introduced
by Martin-Löf over the years vary greatly both in proof-theoretic strength [7] and
computational properties. From the computational point of view, it is important
to distinguish between the extensional systems, that have a stronger notion of
equality, but for which type-checking is undecidable, and the intensional ones, that
have a weaker notion of equality, but for which type-checking is decidable [8, 9].
For example, the type theory presented in [3] is extensional, while that in [5] is
intensional.

The difference between the extensional and the intensional treatment of equality
has a strong impact also on the properties of the various types that may be assumed
in a type theory, and in particular on those of inductive types, such as the types of
Booleans, natural numbers, lists and W-types [2]. Within extensional type theories,
inductive types can be characterized (up to isomorphism) as initial algebras of cer-
tain definable functors. The initiality condition translates directly into a recursion
principle that expresses the existence and uniqueness of recursively-defined func-
tions. In particular, W-types can be characterized as initial algebras of polynomial
functors [10, 11]. Furthermore, within extensional type theories, W-types allow us
to define a wide range of inductive types, such as the type of natural numbers and
types of lists [10, 12, 13]. Within intensional type theories, by contrast, the corre-
spondence between inductive types and initial algebras breaks down, since it is not
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possible to prove the uniqueness of recursively-defined functions. Furthermore, the
reduction of inductive types like the natural numbers to W-types fails [10, 14].

In the present work, we exploit insights derived from the new models of in-
tensional type theory based on homotopy-theoretic ideas [15, 16, 17] to investi-
gate inductive types, thus contributing to the new area known as Homotopy Type
Theory. Homotopical intuition justifies the assumption of a limited form of func-
tion extensionality, which, as we show, suffices to deduce uniqueness properties of
recursively-defined functions up to homotopy. Building on this observation, we in-
troduce the notions of weak algebra homomorphism and homotopy-initial algebra,
which require uniqueness of homomorphisms up to homotopy. We modify the rules
for W-types by replacing the definitional equality in the standard computation rule
with its propositional counterpart, yielding a weak form of the corresponding induc-
tive type. Our main result is that these new, weak W-types correspond precisely
to homotopy-initial algebras of polynomial functors. Furthermore, we indicate how
homotopical versions of various inductive types can be defined as special cases of
the general construction in the new setting

The work presented here is motivated in part by the Univalent Foundations
program formulated by Voevodsky [18]. This ambitious program intends to pro-
vide comprehensive foundations for mathematics on the basis of homotopically-
motivated type theories, with an associated computational implementation in the
Coq proof assistant. The present investigation of inductive types serves as an
example of this new paradigm: despite the fact that the intuitive basis lies in
higher-dimensional category theory and homotopy theory, the actual development
is strictly syntactic, allowing for direct formalization in Coq. Proof scripts of the
definitions, results, and all necessary preliminaries are provided in a downloadable
repository [19].

The paper is organized as follows. In section 1, we describe and motivate the
dependent type theory over which we will work and compare it to some other
well-known systems in the literature. The basic properties of the system and its
homotopical interpretation are developed to the extent required for the present pur-
poses. Section 2 reviews the basic theory of W-types in extensional type theory and
sketches the proof that these correspond to initial algebras of polynomial functors;
there is nothing new in this section, rather it serves as a framework for the general-
ization that follows. Section 2 on intensional W-types contains the development of
our new theory; it begins with a simple example, that of the type 2 of Boolean truth
values, which serves to indicate the main issues involved with inductive types in
the intensional setting, and our proposed solution. We then give the general notion
of weak W-types, including the crucial new notion of homotopy-initiality, and state
our main result, the equivalence between the type-theoretic rules for weak W-types
and the existence of a homotopy-initial algebra of the corresponding polynomial
functor. Moreover, we show how some of the difficulties with intensional W-types
are remedied in the new setting by showing that the type of natural numbers can
be defined as an appropriate W-type. Finally, we conclude by indicating how this
work fits into the larger study of inductive types in Homotopy Type Theory and
the Univalent Foundations program generally.
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1. Preliminaries

The general topic of Homotopy Type Theory is concerned with the study of the
constructive type theories of Martin-Löf under their new interpretation into ab-
stract homotopy theory and higher-dimensional category theory. Martin-Löf type
theories are foundational systems which have been used to formalize large parts of
constructive mathematics, and also for the development of high-level programming
languages [2]. They are prized for their combination of expressive strength and de-
sirable proof-theoretic properties. One aspect of these type theories that has led to
special difficulties in providing semantics is the intensional character of equality. In
recent work [15, 16, 17, 20], it has emerged that the topological notion of homotopy

provides an adequate basis for the semantics of intensionality. This extends the
paradigm of computability as continuity, familiar from domain theory, beyond the
simply-typed λ-calculus to dependently-typed theories involving:

(i) dependent sums (Σx : A)B(x) and dependent products (Πx : A)B(x), mod-
elled respectively by the total space and the space of sections of the fibration
modelling the dependency of B(x) over x : A;

(ii) and, crucially, including the identity type constructor IdA(a, b), interpreted as
the space of all paths in A between points a and b.

In the present work, we build on this homotopical interpretation to study in-
ductive types, such as the natural numbers, Booleans, lists, and W-types. Within
extensional type theories, W-types can be used to provide a constructive counter-
part of the classical notion of a well-ordering [3] and to uniformly define a variety
of inductive types [10]. However, most programming languages and proof assis-
tants, such as Coq [21], Agda [22] and Epigram [23] use schematic inductive defini-
tions [24, 25] rather than W-types to define inductive types. This is due in part to
the practical convenience of the schematic approach, but it is also a matter of neces-
sity; these systems are based on intensional rather than extensional type theories,
and in the intensional theory the usual reductions of inductive types to W-types
fail [10, 26]. Nonetheless, W-types retain great importance from a theoretical per-
spective, since they allow us to internalize in type theory arguments about inductive
types. Furthermore, as we will see in Section 3, a limited form of extensionality
licensed by the homotopical interpretation suffices to develop the theory of W-types
in a satisfactory way. In particular, we shall make use of ideas from higher category
theory and homotopy theory to understand W-types as “homotopy-initial” algebras
of an appropriate kind.

1.1. Extensional vs. intensional type theories. We work here with type the-
ories that have the four standard forms of judgement

A : type , A = B : type , a : A , a = b : A .

We refer to the equality relation in these judgements as definitional equality, which
should be contrasted with the notion of propositional equality recalled below. Such
a judgement J can be made also relative to a context Γ of variable declarations,
a situation that we indicate by writing Γ ⊢ J . When stating deduction rules we
make use of standard conventions to simplify the exposition, such as omitting the
mention of a context that is common to premisses and conclusions of the rule. The
rules for identity types in intensional type theories are given in [5, Section 5.5]. We
recall them here in a slighly different, but equivalent, formulation.
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• Id-formation rule.
A : type a : A b : A

IdA(a, b) : type

• Id-introduction rule.
a : A

refl(a) : IdA(a, a)

• Id-elimination rule.

x, y : A, u : IdA(x, y) ⊢ C(x, y, u) : type
x : A ⊢ c(x) : C(x, x, refl(x))

x, y : A, u : IdA(x, y) ⊢ idrec(x, y, u, c) : C(x, y, u)

• Id-computation rule.

x, y : A, u : IdA(x, y) ⊢ C(x, y, u) : type
x : A ⊢ c(x) : C(x, x, refl(x))

x : A ⊢ idrec(x, x, refl(x), c) = c(x) : C(x, x, refl(x)) .

As usual, we say that two elements a, b : A are propositionally equal if the type
Id(a, b) is inhabited. Most work on W-types to date (e.g. [10, 11, 13]) has been in
the setting of extensional type theories, in which the following rule, known as the
identity reflection rule, is also assumed:

(1)
p : IdA(a, b)

a = b : A

This rule collapses propositional equality with definitional equality, thus mak-
ing the overall system somewhat simpler to work with. However, it destroys the
constructive character of the intensional system, since it makes type-checking un-
decidable [8]. For this reason, it is not assumed in the most recent formulations of
Martin-Löf type theories [5] or in automated proof assistants like Coq [21].

In intensional type theories, inductive types cannot be characterized by standard
category-theoretic universal properties. For instance, in this setting it is not possible
to show that there exists a definitionally-unique function out of the empty type with
rules as in [5, Section 5.2], thus making it impossible to prove that the empty type
provides an initial object. Another consequence of this fact is that, if we attempt
to define the type of natural numbers as a W-type in the usual way, then the usual
elimination and computation rules for it are no longer derivable [10]. Similarly, it is
not possible to show the uniqueness of recursively-defined functions out of W-types.
When interpreted categorically, the uniqueness of such functions translates into the
initiality property of the associated polynomial functor algebra, which is why the
correspondence between W-types and initial algebras fails in the intensional setting.

Due to this sort of poor behaviour of W-types, and other constructions, in the
purely intensional setting, that system is often augmented by other extensionality
principles that are somewhat weaker than the Reflection rule, such as Streicher’s
K-rule or the Uniqueness of Identity Proofs (UIP) [27], which has recently been
reconsidered in the context of Observational Type Theory [28]. Inductive types in
such intermediate systems are somewhat better behaved, but still exhibit some un-
desirable properties, making them less useful for practical purposes than one might
wish [26]. Moreover, these intermediate systems seem to lack a clear conceptual
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basis: they neither intend to formalize constructive sets (like the extensional the-
ory) nor is there a principled reason to choose these particular extensionality rules,
beyond their practical advantages.

1.2. The system H. We here take a different approach to inductive types in the
intensional setting, namely, one motivated by the homotopical interpretation. It
involves working over a dependent type theory H which has the following deduction
rules on top of the standard structural rules:

• rules for identity types as stated above;
• rules for Σ-types as in [5, Section 5.8];
• rules for Π-types as in [29, Section 3.2];
• the propositional η-rule for Π-types, i.e. the axiom asserting that for every
f : (Πx : A)B(x), the type Id(f, λx.app(f, x)) is inhabited;

• the Function Extensionality axiom (FE), i.e. the axiom asserting that for
every f, g : A → B, the type

(Πx : A)IdB(app(f, x), app(g, x)) → IdA→B(f, g)

is inhabited.

Here, we have used the notation A → B to indicate function types, defined via Π-
types in the usual way. Similarly, we will write A×B to denote the binary product
of two types as usually defined via Σ-types.

Remarks.

(i) The rules for Π-types of H are derivable from those in [5, Section 5.4]. For
simplicity, we will write f(a) or fa instead of app(f, a).

(ii) As shown in [30], the η-rule for dependent functions and the function exten-
sionality principle stated above imply the corresponding function extension-
ality principle for dependent functions, i.e.

(Πx : A)IdB(x)(fx, gx) → Id(Πx:A)B(x)(f, g) .

(iii) The following form of the η-rule for Σ-types is derivable:

c : (Σx : A)B(x)

ηΣ(c) : Id(c, pair(π1c , π2c)) ,

where π1 and π2 are the projections. This can be proved by Σ-elimination,
without FE.

(iv) H does not include the η-rules as definitional equalities, either for Σ-types or
for Π-types (as is done in [14]).

(v) The type theory H will serve as the background theory for our study of in-
ductive types and W-types. For this reason, we need not assume it to have
any primitive types.

This particular combination of rules is motivated by the fact that H has a clear
homotopy-theoretic sematics. Indeed, the type theory H is a subsystem of the
type theory used in Voevodsky’s Univalent Foundations library [30]. In particular,
the Function Extensionality axiom is formally implied by Voevodsky’s Univalence
axiom [16], which is also valid in homotopy-theoretic models, but will not be needed
here. Note that, while the Function Extensionality axiom is valid also in set-
theoretic models, the Univalence axiom is not. Although H has a straightforward
set-theoretical semantics, we stress that it does not have any global extensionality
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rules, like the identity reflection rule, K, or UIP. This makes it also compatible with
“higher-dimensional” interpretations such as the groupoid model [31], in which the
rules of H are also valid.

1.3. Homotopical semantics. The homotopical semantics of H is based on the
idea that an identity term p : IdA(a, b) is (interpreted as) a path p : a ❀ b between
the points a and b in the space A. More generally, the interpretations of terms
a(x) and b(x) with free variables will be continuous functions into the space A,
and an identity term p(x) : IdA

(

a(x), b(x)
)

is then a continuous family of paths,
i.e. a homotopy between the continuous functions. Now, the main import of the
Id-elimination rule is that type dependency must respect identity, in the following
sense: given a dependent type

(2) x : A ⊢ B(x) : type ,

and p : IdA(a, b), there is then a transport function

p ! : B(a) → B(b),

which is defined by Id-elimination, taking for x : A the function refl(x) ! : B(x) →
B(x) to be the identity on B(x). Semantically, given that an identity term p :
IdA(a, b) is interpreted as a path p : a ❀ b, this means that a dependent type as
in (2) must be interpreted as a space B → A, fibered over the space A, and that
the judgement

x, y : A ⊢ IdA(x, y) : type

is interpreted as the canonical fibration AI → A × A of the path space AI over
A×A. For a more detailed overview of the homotopical interpretation, see [20].

Independently of this interpretation, each type A can be shown to carry the
structure of a weak ω-groupoid in the sense of [32, 33] with the elements of A as
objects, identity proofs p : IdA(a, b) as morphisms and elements of iterated identity
types as n-cells [34, 35]. Furthermore,H determines a weak ω-category C(H) having
types as 0-cells, elements f : A → B as 1-cells, and elements of (iterated) identity
types as n-cells [36]. The relation between the weak ω-category structure of C(H)
and the homotopical interpretation of intensional type theories closely mirrors that
between higher category theory and homotopy theory in modern algebraic topology,
and some methods developed in the latter setting are also applicable in type theory.
For instance, the topological notion of contractibility admits the following type-
theoretic counterpart, originally introduced by Voevodsky in [30].

Definition 1. A type A is called contractible if the type

(3) iscontr(A) =def (Σx : A)(Πy : A)IdA(x, y)

is inhabited.

The type iscontr(A) can be seen as the propositions-as-types translation of the
formula stating that A has a unique element. However, its homotopical interpreta-
tion is as a space that is inhabited if and only if the space interpreting A is con-
tractible in the usual topological sense. The notion of contractibility can be used to
articulate the world of types into different homotopical dimensions, or h-levels [30].
This classification has proven to be quite useful in understanding intensional type
theory. For example, it permits the definition of new notions of proposition and
set which provide a useful alternative to the standard approach to formalization of
mathematics in type theory [30].
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Remark 2. If A is a contractible type, then for every a, b : A, the type IdA(a, b) is
again contractible. This can be proved by Id-elimination [19].

Let us also recall from [30] the notions of weak equivalence and homotopy equiv-
alence. To do this, we need to fix some notation. For f : A → B and y : B, define
the type

hfiber(f, y) =def (Σx : A)IdB(fx, y) .

We refer to this type as the homotopy fiber of f at y.

Definition 3. Let f : A → B.

• We say that f is a weak equivalence if the type

isweq(f) =def (Πy : B) iscontr(hfiber(f, y))

is inhabited.
• We say that f is a homotopy equivalence if there exist a function g : B → A

and elements

η : (Πx : A)Id(gfx, x) ,

ε : (Πy : B)Id(fgy, y) .

It is an adjoint homotopy equivalence if there are also terms

p : (Πx : A)Id(εfx , f ηx) ,

q : (Πy : B)Id(ηgy , g εy) ,

where the same notation for both function application and the action of a
function on an identity proof (which is easily definable by Id-elimination),
and we write αx instead of α(x) for better readability.

The type isweq(f) can be seen as the propositions-as-types translation of the
formula asserting that f is bijective, while homotopy equivalence is evidently a form
of isomorphism. Thus it is a pleasant fact that a function is a weak equivalence if
and only if it is a homotopy equivalence [30]. We also note that all type-theoretic
constructions are homotopy invariant, in the sense that they respect this relation
of equivalence, a fact which is exploited by the Univalence axiom [16].

In Section 3 below, these and related homotopy-theoretic insights will be used
to study inductive types, but first we must briefly review some basic facts about
inductive types in the extensional setting.

2. Extensional W-types

We briefly recall the theory of W-types in fully extensional type theories. Let us
begin by recalling the rules for W-types from [3]. To state them more conveniently,
we sometimes write W instead of (Wx : A)B(x).

• W-formation rule.

A : type x : A ⊢ B(x) : type

(Wx : A)B(x) : type

• W-introduction rule.

a : A t : B(a) → W

sup(a, t) : W
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• W-elimination rule.

w : W ⊢ C(w) : type
x : A , u : B(x) → W , v : (Πy : B(x))C(u(y)) ⊢

c(x, u, v) : C(sup(x, u))

w : W ⊢ wrec(w, c) : C(w)

• W-computation rule.

w : W ⊢ C(w) : type
x : A , u : B(x) → W , v : (Πy : B(x))C(u(y)) ⊢

c(x, u, v) : C(sup(x, u))

x : A, u : B(x) → W ⊢ wrec(sup(x, u), c) =
c(x, u, λy.wrec(u(y), c)) : C(sup(x, u)) .

W-types can be seen informally as the free algebras for signatures with operations
of possibly infinite arity, but no equations. Indeed, the premisses of the formation
rule above can be thought of as specifying a signature that has the elements of A
as operations and in which the arity of a : A is the cardinality of the type B(a).
Then, the introduction rule specifies the canonical way of forming an element of
the free algebra, and the elimination rule can be seen as the propositions-as-types
translation of the appropriate induction principle.

In extensional type theories, this informal description can easily be turned into a
precise mathematical characterization. To do so, let us use the theoryHext obtained
by extending H with the reflection rule in (1). Let C(Hext) be the category with
types as objects and elements f : A → B as maps, in which two maps are considered
equal if and only if they are definitionally equal. The premisses of the introduction
rule determines the polynomial endofunctor P : C(Hext) → C(Hext) defined by

P (X) =def (Σx : A)(B(x) → X) .

A P -algebra is a pair consisting of a type C and a function sC : PC → C, called
the structure map of the algebra. The formation rule gives us an object W =def

(Wx : A)B(x) and the introduction rule (in combination with the rules for Π-types
and Σ-types) provides a structure map

sW : PW → W .

The elimination rule, on the other hand, states that in order for the projection
π1 : C → W , where C =def (Σw :W )C(w), to have a section s, as in the diagram

C

π1

��

W

s

>>
⑤
⑤
⑤
⑤
⑤
⑤
⑤
⑤

1W
// W,

it is sufficient for the type C to have a P -algebra structure over W . Finally, the
computation rule states that the section s given by the elimination rule is also a
P -algebra homomorphism.

The foregoing elimination rule implies what we call the simple W-elimination
rule:

C : type x : A, v : B(x) → C ⊢ c(x, v) : C

w : W ⊢ simp-wrec(w, c) : C
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This can be recognized as a recursion principle for maps from W into P -algebras,
since the premisses of the rule describe exactly a type C equipped with a structure
map sC : PC → C. For this special case of the elimination rule, the corresponding
computation rule again states that the function

λw.simp-wrec(w, c) : W → C ,

where c(x, v) = sC(pair(x, v)) for x : A and v : B(x) → C, is a P -algebra homo-
morphism. Moreover, this homomorphism can then be shown to be definitionally
unique using the elimination rule, the principle of function extensionality and the
reflection rule. The converse implication also holds: one can derive the general
W-elimination rule from the simple elimination rule and the following η-rule

C : type w : W ⊢ h(w) : C
x : A, v : B(x) → C ⊢ c(x, v) : C
x : A , u : B(x) → W ⊢ h (sup(x, u)) = c(x, λy.hu(y)) : C

w : W ⊢ h(w) = simp-wrec(w, c) : C

stating the uniqueness of the simp-wrec term among algebra maps. Overall, we
therefore have that in Hext induction and recursion are interderivable:

Induction ⇔ Recursion

W-elimination Simple W-elimination
W-computation Simple W-computation + η-rule

Finally, observe that what we are calling recursion is equivalent to the statement
that the type W , equipped with the structure map sW : PW → W is the initial
P -algebra. Indeed, assume the simple elimination rule, the simple computation
rule and the η-rule; then for any P -algebra sC : PC → C, there is a function
f : W → C by the simple elimination rule, which is a homomorphism by the
computational rule, and is the unique such homomorphism by the η-rule. The
converse implication from initiality to recursion is just as direct. Thus, in the
extensional theory, to have an initial algebra for the endofunctor P is the same
thing as having a type W satisfying the introduction, elimination and computation
rules above. Section 3 will be devoted to generalizing this equivalence to the setting
of Homotopy Type Theory.

2.1. Inductive types as W-types. To conclude our review, recall that in exten-
sional type theory, many inductive types can be reduced to W-types. We mention
the following examples, among many others (see [3], [10], [14], [11], [12], [13]):

(1) Natural numbers. The usual rules for Nat as an inductive type can be de-
rived from its formalization as the following W-type. Consider the signature
with two operations, one of which has arity 0 and one of which has arity 1;
it is presented type-theoretically by a dependent type with corresponding
polynomial functor (naturally isomorphic to)

P (X) = 1+X ,

and the natural numbers Nat together with the canonical element 0 : Nat
and the successor function s : Nat → Nat form an initial P -algebra

(0, s) : 1+ Nat → Nat .
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(2) Second number class. As shown in [3], the second number class can be
obtained as a W-type determined by the polynomial functor

P (X) = 1+X + (Nat → X) .

This has algebras with three operations, one of arity 0, one of arity 1, and
one of arity (the cardinality of) Nat.

3. Intensional W-types

We begin with an example which serves to illustrate, in an especially simple case,
some aspects of our theory. The type of Boolean truth values is not a W-type, but
it can be formulated as an inductive type in the familiar way by means of formation,
introduction, elimination, and computation rules. It then has an “up to homotopy”
universal property of the same general kind as the one that we shall formulate in
section 3.2 below for W-types, albeit in a simpler form.

3.1. Preliminary example. The standard rules for the type 2 given in [5, Sec-
tion 5.1] can be stated equivalently as follows.

• 2-formation rule.

2 : type .

• 2-introduction rules.

0 : 2 , 1 : 2 .

• 2-elimination rule.

x : 2 ⊢ C(x) : type c0 : C(0) c1 : C(1)

x : 2 ⊢ 2rec(x, c0, c1) : C(x)

• 2-computation rules.

x : 2 ⊢ C(x) : type c0 : C(0) c1 : C(1)
{

2rec(0, c0, c1) = c0 : C(0) ,
2rec(1, c0, c1) = c1 : C(1) .

Although these rules are natural ones to consider in the intensional setting,
they do not imply a strict universal property. For example, given a type C and
elements c0, c1 : C, the function λx.2rec(x, c0, c1) : 2 → C cannot be shown to
be definitionally unique among the functions f : 2 → C with the property that
f(0) = c0 : C and f(1) = c1 : C. The best that one can do by using 2-elimination
over a suitable identity type, and function extensionality, is to show that it is
unique among all such maps up to an identity term, which itself is unique up to a
higher identity, which in turn is unique up to . . . . This sort of weak ω-universality,
which apparently involves infinitely much data, can nonetheless be captured directly
within the system of type theory (without resorting to coinduction) using ideas
from higher category theory. To do so, let us define a 2-algebra to be a type C

equipped with two elements c0 , c1 : C. Then, a weak homomorphism of 2-algebras
(f, p0, p1) : (C, c0, c1) → (D, d0, d1) consists of a function f : C → D together with
identity terms

p0 : IdD(f(c0), d0) , p1 : IdD(f(c1), d1) .
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This is a strict homomorphism when f(c0) = d0 : D, f(c1) = d1 : D and the identity
terms p0 and p1 are the corresponding reflexivity terms. We can then define the
type of weak homomorphisms from (C, c0, c1) to (D, d0, d1) by letting

2-Alg[(C, c0, c1), (D, d0, d1)
]

=def

(Σf : C → D)Id(f(c0), d0)× IdD(f(c1), d1) .

The weak universality condition on the 2-algebra (2, 0, 1) that we seek can now be
determined as follows.

Definition 4. A 2-algebra (C, c0, c1) is homotopy-initial if for any 2-algebra (D, d0, d1),
the type

2-Alg
[

(C, c0, c1), (D, d0, d1)
]

is contractible.

The notion of homotopy initiality, or h-initiality for short, captures in a precise
way the informal idea that there is essentially one weak algebra homomorphism
(2, 0, 1) → (C, c0, c1). Moreover, h-initiality can be shown to follow from the rules
of inference for 2 stated above. Indeed, the computation rules for 2 stated above
evidently make the function

λx.2rec(x, c0, c1) : 2 → C

into a strict algebra map, a stronger condition than is required for h-initiality. Re-
laxing these definitional equalities to propositional ones, we arrive at the following
rules.

• Propositional 2-computation rules.

x : 2 ⊢ C(x) : type c0 : C(0) c1 : C(1)
{

2comp0(c0, c1) : IdC(0)

(

2rec(0, c0, c1), c0) ,
2comp1(c0, c1) : IdC(1)

(

2rec(1, c0, c1), c1) .

This variant is not only still sufficient for h-initiality, but also necessary, as we
state precisely in the following.

Proposition 5. Over the type theory H, the formation, introduction, elimina-

tion, and propositional computation rules for 2 are equivalent to the existence of a

homotopy-initial 2-algebra.

Proof sketch. Suppose we have a type 2 satisfying the stated rules. Then clearly
(2, 0, 1) is a 2-algebra; to show that it is h-initial, take any 2-algebra (C, c0, c1).
By elimination with respect to the constant family C and the elements c0 and
c1, we have the map λx.2rec(x, c0, c1) : 2 → C, which is a weak algebra ho-
momorphism by the propositional computation rules. Thus we obtain a term
h : 2-Alg

[

(2, 0, 1), (C, c0, c1)
]

. Now given any k : 2-Alg
[

(2, 0, 1), (C, c0, c1)
]

, we
need a term of type Id(h, k). This term follows from a propositional η-rule, which
is derivable by 2-elimination over a suitable identity type.

Conversely, let (2, 0, 1) be an h-initial 2-algebra. To prove elimination, let x :
2 ⊢ C(x) : type with c0 : C(0) and c1 : C(1) be given, and consider the 2-algebra



12 STEVE AWODEY, NICOLA GAMBINO, AND KRISTINA SOJAKOVA

(C′, c′0, c
′

1) defined by:

C′ =def (Σx : 2)C(x) ,

c′0 =def pair(0, c0) ,

c′1 =def pair(1, c1) .

Since 2 is h-initial, there is a map r : 2 → C′ with identities p0 : Id(r0, c′0) and
p1 : Id(r1, c′1). Now, we would like to set

2rec(x, c0, c1) = π2(rx) : C(x),

where π2 is the second projection from C′ = (Σx : 2)C(x). But recall that in
general π2(z) : C(π1(z)), and so (taking the case x = 0) we have π2(r0) : C(π1(r0))
rather than the required π2(r0) :C(0); that is, since it need not be that π1(r0) = 0,
the term π2(r0) has the wrong type to be 2rec(0, c0, c1). However, we can show
that

π1 : (Σx : 2)C(x) → 2

is a weak homomorphism, so that the composite π1 ◦ r : (2, 0, 1) → (2, 0, 1) must
be propositionally equal to the identity homomorphism 12 : (2, 0, 1) → (2, 0, 1),
by the contractibility of 2-Alg

[

(2, 0, 1), (2, 0, 1)
]

. Thus there is an identity term
p : Id(π1 ◦ r, 12), along which we can transport using p! : C(π1(r0)) → C(0), thus
taking π2(r0) : C(π1(r0)) to the term p!(π2(r0)) : C(0) of the correct type. We can
then set

2rec(x, c0, c1) = p!(π2(rx)) : C(x)

to get the required elimination term. The computation rules follow by a rather
lengthy calculation. �

Proposition 5 is the analogue in Homotopy Type Theory of the characterization
of 2 as a strict coproduct 1 + 1 in extensional type theory. It makes precise the
rough idea that, in intensional type theory, 2 is a kind of homotopy coproduct
or weak ω-coproduct in the weak ω-category C(H) of types, terms, identity terms,
higher identity terms, . . . . It is worth emphasizing that h-initiality is a purely type-
theoretic notion; despite having an obvious semantic interpretation, it is formulated
in terms of inhabitation of specific, definable types. Indeed, Proposition 5 and its
proof have been completely formalized in the Coq proof assistant [19].

Remark 6. A development entirely analogous to the foregoing can be given for the
type Nat of natural numbers. In somewhat more detail, one introduces the notions
of a Nat-algebra and of a weak homomorphism of Nat-algebras. Using these, it is
possible to define the notion of a homotopy-initial Nat-algebra, analogue to that
of a homotopy-initial 2-algebra in Definition 4. With these definitions in place,
one can prove an equivalence between the formation, introduction, elimination and
propositional computation rules for Nat and the existence of a homotopy-initial
Nat-algebra. Here, the propositional computation rules are formulated like those
above, i.e. by replacing the definitional equalities in the conclusion of the usual
computation rules [5, Section 5.3] with propositional equalities. We do not pursue
this further here, however, since Nat can also be presented as a W-type, as we
discuss in section 3.3 below.
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3.2. The main theorem. Although it is more elaborate to state (and difficult
to prove) owing to the presence of recursively generated data, our main result on
W-types is analogous to the foregoing example in the following respect: rather than
being strict initial algebras, as in the extensional case, weak W-types are instead
homotopy-initial algebras. This fact can again be stated entirely syntactically, as
an equivalence between two sets of rules: the formation, introduction, elimination,
and propositional computation rules (which we spell out below) for W-types, and
the existence of an h-initial algebra, in the appropriate sense. Moreover, as in the
simple case of the type 2, the proof of the equivalence is again entirely constructive.

The required definitions in the current setting are as follows. Let us assume that

x : A ⊢ B(x) : type ,

and define the associated polynomial functor as before:

(4) PX = (Σx : A)(B(x) → X) .

(Actually, this is now functorial only up to propositional equality, but this change
makes no difference in what follows.) By definition, a P -algebra is a type C

equipped a function sC : PC → C. For P -algebras (C, sC) and (D, sD), a weak

homomorphism between them (f, sf ) : (C, sC) → (D, sD) consists of a function
f : C → D and an identity proof

sf : IdPC→D

(

f ◦ sC , sD ◦ Pf
)

,

where Pf : PC → PD is the result of the easily-definable action of P on f : C → D.
Such an algebra homomorphism can be represented suggestively in the form:

PC

sC

��

Pf
//

sf

PD

sD

��

C
f

// D

Accordingly, the type of weak algebra maps is defined by

P -Alg
[

(C, sC), (D, sD)
]

=def

(Σf : C → D) Id(f ◦ sC , sD ◦ Pf) .

Definition 7. A P -algebra (C, sC) is homotopy-initial if for every P -algebra (D, sD),
the type

P -Alg
[

(C, sC), (D, sD)
]

of weak algebra maps is contractible.

Remark 8. The notion of h-initiality captures a universal property in which the
usual conditions of existence and uniqueness are replaced by conditions of existence
and uniqueness up to a system of higher and higher identity proofs. To explain
this, let us fix a P -algebra (C, sC) and assume that it is homotopy-initial. Then,
given any P -algebra (D, sD), there is a weak homomorphism (f, sf ) : (C, sC) →

(D, sD), since the type of weak maps from (C, sC) to (D, sD), being contractible,
is inhabited. Furthermore, for any weak map (g, sg) : (C, sC) → (D, sD), the
contractibility of the type of weak maps implies that there is an identity proof

p : Id
(

(f, sf ), (g, sg)
)

,
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witnessing the uniqueness up to propositional equality of the homomorphism (f, sf ).
But it is also possible to prove that the identity proof p is unique up to propositional
equality. Indeed, since (f, sf ) and (g, sg) are elements of a contractible type, the
identity type Id((f, sf ), (g, sg)) is also contractible, as observed in Remark 2. Thus,
if we have another identity proof q : Id((f, sf ), (g, sg)), there will be an identity term
α : Id(p, q), which is again essentially unique, and so on. It should also be pointed
out that, just as strictly initial algebras are unique up to isomorphism, h-initial
algebras are unique up to weak equivalence. It then follows from the Univalence
axiom that two h-initial algebras are propositionally equal, a fact that we mention
only by the way. Finally, we note that there is also a homotopical version of
Lambek’s Lemma, asserting that the structure map of an h-initial algebra is itself
a weak equivalence, making the algebra a homotopy fixed point of the associated
polynomial functor. The reader can work out the details from the usual proof and
the definition of h-initiality, or consult [19].

The deduction rules that characterize homotopy-initial algebras are obtained
from the formation, introduction, elimination and computation rules for W-types
stated in Section 2 by simply replacing the W-computation rule with the following
rule, that we call the propositional W-computation rule.

• Propositional W-computation rule.

w : W ⊢ C(w) : type
x : A, u : B(x) → W, v : (Πy : B(x))C(u(y)) ⊢

c(x, u, v) : C(sup(x, u))

x : A, u : B(x) → W ⊢ wcomp(x, u, c) :
Id
(

wrec(sup(x, u), c), c(x, u, λy.wrec(u(y), c)
)

Remark 9. One interesting aspect of this group of rules, to which we shall refer as
the rules for homotopical W-types, is that, unlike the standard rules for W-types,
they are invariant under propositional equality. To explain this more precisely, let
us work in a type theory with a type universe U closed under all the forms of types
of H and W-types. Let A : U, B : A → U and define W =def (Wx : A)B(x).
The invariance of the rules for homotopy W-types under propositional equality can
now be expressed by saying that if we have a type W ′ : U and an identity proof
p : IdU (W,W ′), then the Id-elimination rule implies that W ′ satisfies the same rules
as W , in the sense that there are definable terms playing the role of the primitive
constants that appear in the rules for W .

We can now state our main result. Its proof has been formalized in the Coq
system, and the proof scripts are available at [19]; thus we provide only an outline
of the proof.

Theorem 10. Over the type theory H, the rules for homotopical W-types are equiv-

alent to the existence of homotopy-initial algebras for polynomial functors.

Proof sketch. The two implications are proved separately. First, we show that the
rules for homotopical W-types imply the existence of homotopy-initial algebras for
polynomial functors. Let us assume that x : A ⊢ B(x) : type and consider the
associated polynomial functor P , defined as in (4). Using the W-formation rule,
we define W =def (Wx : A)B(x) and using the W-introduction rule we define a
structure map sW : PW → W , exactly as in the extensional theory. We claim
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that the algebra (W, sW ) is h-initial. So, let us consider another algebra (C, sC)
and prove that the type T of weak homomorphisms from (W, sW ) to (C, sC) is
contractible. To do so, observe that the W-elimination rule and the propositional
W-computation rule allow us to define a weak homomorphism (f, sf ) : (W, sW ) →
(C, sC), thus showing that T is inhabited. Finally, it is necessary to show that for
every weak homomorphism (g, sg) : (W, sW ) → (C, sC), there is an identity proof

(5) p : Id((f, sf ), (g, sg)) .

This uses the fact that, in general, a type of the form Id((f, sf ), (g, sg)), is weakly
equivalent to the type of what we call algebra 2-cells, whose canonical elements
are pairs of the form (e, se), where e : Id(f, g) and se is a higher identity proof
witnessing the propositional equality between the identity proofs represented by
the following pasting diagrams:

PW

Pg

%%

sW

��

sg
PD

sD

��

W

g

$$

f

;;
e D

PW

Pg

%%

sW

��

Pf

;;
Pe PD

sD

��

W

f

;;

sf
D

In light of this fact, to prove that there exists a term as in (5), it is sufficient to
show that there is an algebra 2-cell

(e, se) : (f, sf ) ⇒ (g, sg) .

The identity proof e : Id(f, g) is now constructed by function extensionality and
W-elimination so as to guarantee the existence of the required identity proof se.

For the converse implication, let us assume that the polynomial functor associ-
ated to the judgement x : A ⊢ B(x) : type has an h-initial algebra (W, sW ). To
derive the W-formation rule, we let (Wx :A)B(x) =def W . The W-introduction
rule is equally simple to derive; namely, for a : A and t : B(a) → W , we de-
fine sup(a, t) : W as the result of applying the structure map sW : PW → W

to pair(a, t) : PW . For the W-elimination rule, let us assume its premisses and
in particular that w : W ⊢ C(w) : type. Using the other premisses, one shows
that the type C =def (Σw : W )C(w) can be equipped with a structure map
sC : PC → C. By the h-initiality of W , we obtain a weak homomorphism
(f, sf ) : (W, sW ) → (C, sC). Furthermore, the first projection π1 : C → W can be
equipped with the structure of a weak homomorphism, so that we obtain a diagram
of the form

PW
Pf

//

sW

��

PC

sC

��

Pπ1
// PW

sW

��

W
f

// C
π1

// W .

But the identity function 1W : W → W has a canonical structure of a weak algebra
homomorphism and so, by the contractibility of the type of weak homorphisms
from (W, sW ) to itself, there must be an identity proof between the composite of
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(f, sf ) with (π1, sπ1
) and (1W , s1W ). This implies, in particular, that there is an

identity proof p : Id(π1 ◦ f, 1W ). Since (π2 ◦ f)w : C((π1 ◦ f)w), we can define

wrec(w, c) =def p ! ((π2 ◦ f)w) : C(w)

where the transport p ! is defined via Id-elimination over the dependent type

u : W → W ⊢ C(u(w)) : type .

The verification of the propositional W-computation rule is a rather long calcula-
tion, involving several lemmas concerning the naturality properties of operations of
the form p ! . �

3.3. Definability of inductive types. We conclude this section by indicating how
the limited form of extensionality that is assumed in the type theory H, namely the
principle of function extensionality, allows us to overcome the obstacles in defining
various inductive types as W-types mentioned at the end of Section 2, provided
that both are understood in the appropriate homotopical way, i.e. with all types
being formulated with propositional computation rules.

Consider first the paradigmatic case of the type of natural numbers. To define
it as a W-type, we work in an extension of the type theory H with

• formation, introduction, elimination and propositional computation rules
for types 0, 1 and 2 that have zero, one and two canonical elements, respec-
tively;

• the rules for homotopy W-types, as stated above;
• rules for a type universe U reflecting all the forms of types of H, W-types,
and 0, 1 and 2.

In particular, the rules for 2 are those given in Section 3.1. We then proceed as
follows. We begin by setting A = 2, as in the extensional case. We then define a
dependent type

x : A ⊢ B(x) : U

by 2-elimination, so that the propositional 2-computation rules give us propositional
equalities

p0 : IdU (0, B(0)) , p1 : IdU (1, B(1)) .

Because of the invariance of the rules for 0 and 1 under propositional equalities (as
observed in Remark 9), we can then derive that the types B(0) and B(1) satisfy
rules analogous to those for 0 and 1, respectively. This allows us to show that the
type

Nat =def (Wx : A)B(x)

satisfies the introduction, elimination and propositional computation rules for the
type of natural numbers. The proof of this fact proceeds essentially as one would
expect, but to derive the propositional computation rules it is useful to observe
that for every type X : U, there are adjoint homotopy equivalences, in the sense
of Definition 3, between the types 0 → X and 1, and between 1 → X and X .
Indeed, the propositional identities witnessing the triangular laws are useful in the
verification of the propositional computation rules for Nat. For details, see the
formal development in Coq provided in [19]. Observe that as a W-type, Nat is
therefore also an h-initial algebra for the equivalent polynomial functor P (X) =
1+X , as expected.

Finally, let us observe that the definition of a type representing the second num-
ber class as a W-type, as discussed in [3], carries over equally well. Indeed, one
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now must represent type-theoretically a signature with three operations: the first
of arity zero, the second of arity one, and the third of arity Nat. For the first two
we can proceed exactly as before, while for the third there is no need to prove auxil-
iary results on adjoint homotopy equivalences. As before, the second number class
supports an h-initial algebra structure for the corresponding polynomial functor
P (X) = 1+X + (Nat → X). Again, the formal development of this result in Coq
can be found in [19].

4. Future work

The treatment of W-types presented here is part of a larger investigation of general
inductive types in Homotopy Type Theory. We sketch the projected course of our
further research.

(1) In the setting of extensional type theory, Dybjer [10] showed that every
strictly positive definable functor can be represented as a polynomial func-
tor, so that all such inductive types are in fact W-types. This result should
generalize to the present setting in a straightforward way.

(2) Also in the extensional setting, Gambino and Hyland [12] showed that
general tree types [37] [4, Chapter 16], viewed as initial algebras for general
polynomial functors, can be constructed from W-types in locally cartesian
closed categories, using equalizers. We expect this result to carry over to
the present setting as well, using Id-types in place of equalizers.

(3) In [16] Voevodsky has shown that all inductive types of the Predicative
Calculus of Inductive Constructions can be reduced to the following special
cases:

• 0, 1, A+B, (Σx : A)B(x),
• IdA(a, b),
• general tree types.

Combining this with the foregoing, we expect to be able to extend our
Theorem 10 to the full system of predicative inductive types underlying
Coq.

Finally, one of the most exciting recent developments in Univalent Foundations is
the idea of Higher Inductive Types (HITs), which can also involve identity terms
in their signature [38, 39]. This allows for algebras with equations between terms,
like associative laws, coherence laws, etc.; but the really exciting aspect of HITs
comes from the homotopical interpretation of identity terms as paths. Viewed thus,
HITs should permit direct formalization of many basic geometric spaces and con-
structions, such as the unit interval I; the spheres Sn, tori, and cell complexes;
truncations, such as the [bracket] types [40]; various kinds of quotient types; ho-
motopy (co)limits; and many more fundamental and fascinating objects of geom-
etry not previously captured by type-theoretic formalizations. Our investigation
of conventional inductive types in the homotopical setting should lead to a deeper
understanding of these new and important geometric analogues.
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