
Computational Statistics and Data Analysis 54 (2010) 2383–2399

Contents lists available at ScienceDirect

Computational Statistics and Data Analysis

journal homepage: www.elsevier.com/locate/csda

Time-varying joint distribution through copulas
M. Concepcion Ausin a,∗, Hedibert F. Lopes b
a Department of Statistics and Operations Research, Universidad Complutense de Madrid, Spain
b Booth School of Business, University of Chicago, USA

a r t i c l e i n f o

Article history:
Available online 21 March 2009

a b s t r a c t

The analysis of temporal dependence in multivariate time series is considered. The
dependence structure between the marginal series is modelled through the use of copulas
which, unlike the correlation matrix, give a complete description of the joint distribution.
The parameters of the copula function vary through time, following certain evolution
equations depending on their previous values and the historical data. The marginal time
series follow standard univariate GARCH models. Full Bayesian inference is developed
where the whole set of model parameters is estimated simultaneously. This represents an
essential difference from previous approaches in the literature where themarginal and the
copula parameters are estimated separately in two consecutive steps.Moreover, a Bayesian
procedure is proposed for the estimation of several measures of risk, such as the variance,
Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) of a portfolio of assets, providing
point estimates and predictive intervals. The proposed copula model enables to capture
the dependence structure between the individual assets which strongly influences these
risk measures. Finally, the problem of optimal portfolio selection based on the estimation
of mean–variance, mean–VaR and mean–CVaR efficient frontiers is also addressed. The
proposed approach is illustrated with simulated and real financial time series.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

There has been much work on the extension to the multivariate case of the successful univariate autoregressive
conditional heteroscedasticity (ARCH) and the generalized ARCH (GARCH)models in order to describe temporal dependence
in financial data, see e.g. Bauwens et al. (2006) for a survey on multivariate GARCH models. The usual assumption in most
cases is that the conditional joint distribution of the returns follows a multivariate normal or multivariate t-distribution.
However, it is well known that these elliptical distribution models require a very strong symmetry of the data and might
not be appropriate in many circumstances.
A recent alternative approach to the study of dependence in financial time series is the use of copulas, see e.g. Nelsen

(2006). The main advantage of this approach is that the individual marginal densities of the returns can be defined
separately from their dependence structure. Then, the models for the marginal time series can be firstly specified using
the required univariate characteristics and then, the dependence between the returns can be completely modeled by
selecting an appropriate copula function. Using this approach, many non-elliptical and flexible multivariate distributions
can be obtained. In this context, most researchers have considered copula GARCH models where the marginal series follow
univariate GARCH processes and the dependence structure between them is specified by a copula function, see e.g. Dias and
Embrechts (2004), Rodriguez (2003), Hu (2006), Bartram et al. (2007), Patton (2006), Jondeau and Rockinger (2006), Roch
and Alegre (2006), Liu and Luger (2009).
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Most of previous works using copula GARCH models do not account for the parameter uncertainty simultaneously.
Proposed methods are generally based on a two-stage approach where, in the first step, the marginal series are estimated
assuming independence and then, in a second step, these estimations are plugged in the copula function in order to estimate
the copula parameters. Although two-steps approaches are usually straightforward to implement for copula models, they
may produce inadequate measures of uncertainty. In fact, it can be shown that two-stage maximum likelihood estimation
approaches lead to consistent but not efficient estimators, see Patton (2006). Recently, Liu and Luger (2009) have proposed
an algorithm to improve efficiency in copula GARCH models using maximum-likelihood estimation.
One of the main interests in modelling multivariate financial time series is portfolio management. The Value-at-Risk

(VaR, see e.g. Jorion (2000)) and the Conditional Value-at Risk (CVaR, see e.g. Artzner et al. (1997)) have become important
and widely used measures of the risk inherent in asset portfolios. The CVaR, which is also known as Mean Excess Loss,
Mean Shortfall, or Tail VaR, is a coherent risk measure, while VaR is coherent only when it is based on normal distributions,
e.g. Artzner et al. (1997). Clearly, the VaR and the CVaR of a portfolio depends on the behavior of the individual assets in the
portfolio and also on the dependence structure between them. In particular, the dependence in the tails of the distribution
strongly influences the VaR and CVaR calculation, see e.g. Embrechts et al. (1999a,b) and Kiesel and Kleinow (2002). Thus, the
correlation coefficient, which is not adequate to measure the dependence in the tails, may lead to inaccurate estimations
of VaR and CVaR. Alternatively, copulas provide a useful tool to model tail dependence and obtain precise VaR and CVaR
estimations.
Besides the applications of VaR and CVaR in risk measurement, they also provide useful tools in optimal portfolio

selection. Investors are mainly interested in how to allocate their investments between different assets so as to minimize
the overall risk for a given expected return. The classical portfolio optimization approach follows the pioneering work
of Markowitz (1952) based on the variance–covariance matrix. As pointed out in Embrechts et al. (1999a), Markowitz
optimization makes sense for elliptical distributions, as the variance–covariance matrix is only valid to measure linear
dependence, butmay be insufficient to capture other dependence structures between portfolio assets. The use of the VaR and
CVaR in portfolio optimization is a relatively novel alternative, see e.g. Gaivoronski and Pflug (2005), Winker and Maringer
(2007) and Rockafellar and Uryasev (2000). Using this approach, the optimal portfolio is the onewhichminimizes the VaR or
the CVaR, respectively, subject to achieving a specified level of expected return. The analogous to the classicalmean–variance
efficient frontiers are the mean–VaR and mean–CVaR efficient frontiers which give the minimum VaR and minimum CVaR,
respectively, for given expected return. Note that for the case of elliptical distributions, the portfolio minimizing VaR and
CVaR coincides with the Markowitz variance minimizing portfolio.
In this paper,wepropose a Bayesianmethodology tomake inference andprediction in copulaGARCHmodels.Wedevelop

a one-step Bayesian procedure where all parameters are estimated simultaneously using the whole likelihood function.
Copulas are modelled to be time-varying in order to capture the time evolution in the dependence structure. This allows
us to identify contagion effects or changing dependence structures during periods of financial instability, see e.g. Rodriguez
(2003) andArakelian andDellaportas (2008).Moreover,we describe how to obtain Bayesian estimation of portfolio variance,
VaR and CVaR and predictive intervals, which are much more informative than simple point forecasts. We also show how
to obtain optimal portfolios based on minimizing the variance, the VaR and the CVaR and how to obtain confidence regions
for the mean–variance, mean–VaR and mean–CVaR efficient frontiers.
The paper is organized as follows. Section 2 briefly reviews the definition,main properties and some examples of copulas.

Section 3 presents the time-varying copula GARCH models considered in this article. Section 4 describes how to carry out
Bayesian inference and prediction for these models making use of the Markov chain Monte Carlo (MCMC) methodology.
The estimation of volatilities, rank correlation and tail dependence is also addressed. Section 5 is devoted to portfolio
management. Predictive mean and intervals for the portfolio variance, VaR and CVaR are obtained and used for optimal
portfolio allocation. Bayesian prediction of efficient frontiers is also addressed. Section 6 illustrates the methodology with
simulated and real financial time series. Section 7 concludes with some discussion and extensions.

2. Copulas

A p-dimensional copula C
(
u1, . . . , up

)
, is a multivariate distribution function in the unit hypercube [0, 1]p, with

uniform U (0, 1)marginal distributions. It can be shown (see e.g. Schweizer and Sklar (1983)) that every joint distribution,
F
(
x1, . . . , xp

)
, whose marginals are given by F1 (x1) , . . . , Fp

(
xp
)
, can be written as,

F
(
x1, . . . , xp

)
= C

(
F1 (x1) , . . . , Fp

(
xp
))
, (1)

for a function C that is called a copula of F . Furthermore, if the marginal distributions are continuous, then there is a unique
copula associated to the joint distribution, F , that can be obtained from,

C
(
u1, . . . , up

)
= F

(
F−11 (u1) , . . . , F−1p

(
up
))
. (2)

Conversely, given a p-dimensional copula, C
(
u1, . . . , up

)
, and p univariate distributions, F1 (x1) , . . . , Fp

(
xp
)
, the function

(1) is a p-variate distribution function with margins F1, . . . , Fp, whose corresponding density function is given by

f
(
x1, . . . , xp

)
= c

(
F1 (x1) , . . . , Fp

(
xp
)) p∏
i=1

fi (xi) , (3)
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provided the density exists, where fi represents the marginal density functions and c is the density function of the copula
which is derived from (2) and is given by

c
(
u1, . . . , up

)
=
f
(
F−11 (u1) , . . . , F−1p

(
up
))

p∏
i=1
fi
(
F−1i (ui)

) .

There is a large number of parametric families of copulas in the literature, see e.g. Nelsen (2006). The basic example is
the Gaussian copula, which is obtained from the multivariate normal distribution with correlation matrix, R, and is given by

CGaR
(
u1, . . . , up

)
=

∫ Φ−1(u1)

−∞

. . .

∫ Φ−1(up)

−∞

1√
(2π)p |R|

exp
{
−u′R−1u
2

}
du,

where u =
(
u1, . . . , up

)
and Φ−1 is the inverse of the cumulative distribution function of the univariate standard normal

distribution. The normal copula assumes that there is no dependence in the tails of the distribution. Therefore, in financial
economics, it is often more useful to consider the t-copula, which is obtained from the multivariate t-distribution with η
degrees of freedom and correlation matrix, R, and is given by

C tη,R
(
u1, . . . , up

)
=

∫ t−1η (u1)

−∞

. . .

∫ t−1η (up)

−∞

0
(
η+p
2

) (
1+ u′R−1u

η

)− η+p2
0
(
η

2

)√
(πη)p |R|

du, (4)

where t−1η denotes the inverse of the cumulative distribution function of the standard univariate Student-t distributionwith
η degrees of freedom. Note that the Gaussian copula is obtained as a special case of the t-copula when η goes to infinity.
It is important to note that various dependence measures between two random variables depend only on their copula

function. For example, an important measure of dependence is Kendall’s tau rank correlation, which is defined by,

τ = E
[
sign

(
X1 − X ′1

) (
X2 − X ′2

)]
,

where (X1, X2) and (X ′1, X
′

2) are two independent and equally distributed pairs of random variables. Kendall’s tau is a very
useful alternative to the linear correlation coefficient because it does not depend on the marginal distributions of X1 and X2.
In fact, Kendall’s tau only depends on the copula function and it can be shown that,

τ = 4
∫ 1

0

∫ 1

0
C (u1, u2) c (u1, u2) du1du2 − 1.

Kendall’s tau admits the same form for the bivariate Gaussian copula and for the bivariate t-copula with correlation
coefficient ρ, and is given by,

τ =
2
π
arcsin ρ. (5)

Other useful dependence measures between two variables are the coefficients of upper tail dependence, λu, and lower
tail dependence, λl, which are defined by,

λu = lim
q→1
P
(
X2 > F−1X2 (q) | X1 > F

−1
X1 (q)

)
, λl = lim

q→0
P
(
X2 ≤ F−1X2 (q) | X1 ≤ F

−1
X1 (q)

)
,

and can be expressed in terms of the copula as follows,

λu = lim
q→1

1− 2q+ C (q, q)
1− q

, λl = lim
q→0

C (q, q)
q

.

As commented above, the Gaussian copula is characterized by zero tail dependence. The t-copula exhibits tail dependence
which is determined by,

λu = λl = 2tη+1

(
−
√
η + 1

√
1− ρ

√
1+ ρ

)
, (6)

where tη+1 denotes the cumulative distribution function of the standard univariate Student-t distributionwith η+1 degrees
of freedom.

3. Copula GARCHmodels

A p-dimensional vector of financial time series, yt =
(
y1t , . . . , ypt

)
, follows a copula GARCHmodel if the joint cumulative

distribution function is given by,

F (yt | µ,ht) = C
(
F1 (y1t | µ1, h1t) , . . . , Fp

(
ypt | µp, hpt

))
,
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where C is a p-dimensional copula, Fi is the conditional distribution function of the marginal series yit , for i = 1, . . . , p, and
yit follows a standard univariate GARCH(1,1)-model,

yit = µi +
√
hitεit ,

hit = ωi + αi
(
yi,t−1 − µi

)2
+ βihi,t−1,

where hit is the conditional variance of yit given the previous information Ii,t−1 = {yi,t−1, yi,t−2, . . .}, εit are independent
and identically distributed random variables with zero mean and ωi, αi, βi > 0 and αi + βi < 1 to ensure positivity of hit
and covariance stationarity, respectively.
We assume that the innovations follow the standard Student t-distribution, εit ∼ tνi , with νi degrees of freedom, zero

mean and variance νi/(νi − 2), for i = 1, . . . , p, given by

f (εit) =
0

(
νi+1
2

)
0
(
νi
2

)√
νiπ

(
1+

ε2it

νi

)− νi+12
,

which is the usual choice to model fat tails in univariate time series, see e.g. Bollerslev (1987). Then, the conditional
distribution function of each marginal series is Fi (yit | µi, hit) = tνi

(
(yit − µi) h

−1/2
it

)
, for i = 1, . . . , p.

We also assume that the dependence structure between the marginal series is described by a time-varying t-copula
function with η degrees of freedom, as defined in (4), whose density for each time, t , is given by,

ctη,Rt
(
u1t , . . . , upt

)
=
f tη,Rt

(
t−1η (u1t) , . . . , t−1η

(
upt
))

p∏
i=1
f tη
(
t−1η (uit)

) ,

where uit = Fi (yit | µi, hit), for i = 1, . . . , p; f
t
η,Rt is the joint density of the standardmultivariate Student-t distributionwith

η degrees of freedom and correlation matrix Rt and f tη is the density of the standard univariate t-distribution with η degrees
of freedom. Note that the resulting joint distribution of the multivariate series is only elliptically contoured if the degrees
of freedom η of the t-copula and the degrees of freedom νi of the marginals coincide, in which case the joint distribution
corresponds to the multivariate t-distribution.
Finally, we assume that the parametermatrix, Rt , of the t-copula varies through time according to the following equation,

Rt = (1− a− b) R+ aΨt−1 + bRt−1, (7)

where a and b are nonnegative parameters, R is a time-invariant p×p positive definite parameter matrix with unit diagonal
elements and Ψt−1 is a p× pmatrix whose (i, j)-th element is given by,

Ψij,t−1 =

m∑
h=1
xit−hxjt−h√

m∑
h=1
x2it−h

m∑
h=1
x2jt−h

,

which gives the sample correlation of {xt−1, . . . , xt−m}, withm ≥ 2, where,

xt =
(
x1t , . . . , xpt

)
=
(
t−1η

(
tν1 (ε1t)

)
, . . . , t−1η

(
tνp
(
εpt
)))
. (8)

Note that xt follows a standard multivariate Student t-distribution with η degrees of freedom. For stationarity to be
guaranteed, we impose the constraints 0 ≤ a, b ≤ 1, a + b ≤ 1 and −1 ≤ rij ≤ 1, where rij is the (i, j)-th element of
the parameter matrix R. The Eq. (7) is based on the dynamics for the correlation matrix proposed by Tse and Tsui (2002) in
a multivariate GARCH model. A similar equation has been also used in Jondeau and Rockinger (2006) in a bivariate copula
GARCH model. Note that the time-varying equation (7) has the advantage that the parameter matrix, Rt , is a well-defined
correlationmatrix i.e., positive definite with unit diagonal elements. Then, there is no need of using any transformation such
as the logistic function considered e.g. in Patton (2006) and Dias and Embrechts (2004) to keep the correlation parameter of
the bivariate t-copula inside the interval [−1, 1].
Thus, using (3), the joint density function of the time series can be computed by,

f (yt | µ,ht) = c
t
η,Rt

(
tν1

(
y1t − µ1
h1/21t

)
, . . . , tνp

(
ypt − µp
h1/2pt

))
p∏
i=1

f tνi

(
yit − µi
h1/2it

)
1

h1/2it

=
f tη,Rt

(
x1t , . . . , xpt

)
p∏
i=1
f tη (xit)

p∏
i=1

f tνi

(
yit − µi
h1/2it

)
1

h1/2it
(9)
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where xit , for i = 1, . . . , p, is given in (8). Therefore, the likelihood is given by,

l (θ | yt) =
T∏
t=1

f (yt | µ,ht)

=

T∏
t=1

0
(
η+p
2

)
0
(
η

2

)p−1
0

(
η+1
2

)p
(
1+ x′tR

−1
t xt
η

)− η+p2
√
|Rt |

p∏
i=1

(
1+

x2it
η

) η+1
2

×

p∏
i=1

0

(
νi+1
2

)
0
(
νi
2

)√
πνihit

(
1+

(yit − µi)2

νihit

)− νi+12
(10)

where θ = {(µi, ωi, αi, βi, νi)
p
i=1 , (a, b, R, η)} and xt = (x1t , . . . , xpt).

4. Bayesian inference and prediction

We want to make inference for the model parameters, θ, constituted by the parameters of the dynamic copula function,
(η, a, b, R), the parameters of the conditional variances’ equations, (µi, ωi, αi, βi), for i = 1, . . . , p, and the degrees of
freedom of eachmarginal series, νi. Firstly, we define prior distributions for θ. For each one of the parameters (µi, ωi, αi, βi),
we assume a uniform prior over their respective domains imposing the stationary condition, αi+βi < 1. For the degrees of
freedom parameters, we assume a half-right side Cauchy prior,

f (νi) ∝
1

1+ ν2i
, νi > 0, (11)

for i = 1, . . . , p. Note that a flat prior on these parameters would lead to an improper posterior distribution, as shown
in Bauwens and Lubrano (1998). For the time-varying copula parameters (a, b, R), we assume a uniform prior distribution
restricted to 0 ≤ a, b ≤ 1, a + b ≤ 1 and −1 ≤ rij ≤ 1, where rij is the (i, j)-th element of R. And finally, we assume a
half-right side Cauchy distribution as the given in (11) for the degrees of freedom η of the t-copula.
Given an observed series, y = {y1, . . . , yT }, and the priors specified above, the evaluation of the joint posterior

distribution f (θ | y) is analytically intractable. Therefore, we make use of the MCMC sampling strategies in order to obtain
a sample from the joint posterior distribution which allows us to develop Bayesian inference. Initially, we propose a Gibbs
sampling scheme which is carried out by cycling repeatedly through draws of each parameter conditional on the remaining
parameters, see Tierney (1994). Given the prior distributions and the likelihood function given in (10), it is straightforward
to see that the conditional posterior distribution of the model parameters are given by,

f (φi | ·) ∝
T∏
t=1

(
1+ x′tR

−1
t xt
η

)− η+p2
√
|Rt |

(
1+ x2it

η

)− η+12
(
1+ (yit−µi)2

νihit

)− νi+12
√
hit

, (12)

for φi = µi, ωi, αi, βi, for i = 1, . . . p,

f (νi | ·) ∝
0

(
νi+1
2

)T
ν
−T/2
i

0
(
νi
2

)T
(1+ νi)2

T∏
t=1

(
1+ x′tR

−1
t xt
η

)− η+p2
√
|Rt |

(
1+ x2it

η

)− η+12 (
1+ (yit−µi)2

νihit

) νi+1
2

, (13)

for i = 1, 2,

f (η | ·) ∝
0
(
η+p
2

)T
0
(
η

2

)T (p−1)
0

(
η+1
2

)Tp
(1+ η)2

T∏
t=1

(
1+ x′tR

−1
t xt
η

)− η+p2
√
|Rt |

p∏
i=1

(
1+ x2it

η

)− η+12 , (14)

and,

f (d | · · ·) ∝
T∏
t=1

1
√
|Rt |

(
1+

x′tR
−1
t xt
η

)− η+p2
, (15)

or d = a, b, rij. Then, using these conditional posterior distributions, the simplest sampling approach that we propose
here is to update each model parameter separately in the MCMC algorithm. For example, we can consider a simple one-
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dimensional random walk Metropolis for each parameter using normal candidate distributions whose variances can be
calibrated to obtain good acceptance rates. However, we have observed in practice that the mixing in the MCMC algorithm
can be significantly improved and the computational cost can be drastically reduced by using simultaneous updating of
highly correlated subvectors of the model parameters θ, as suggested in e.g. Vrontos et al. (2001). More specifically, we
propose to update simultaneously the subset of parametersφi = (µi, ωi, αi, βi)using amultivariateMetropolis step for each

i = 1, . . . , p. We generate a candidate vector from a multivariate normal distribution N
(
φ
(n)
i , cΣ

)
, where φ

(n)
i denotes the

current value of the parameter subvector, Σ is a estimation of the variance covariance matrix associated to this subvector
and c is a constant to calibrate the acceptance rate. The matrixΣ can be obtained, for example, from a moderate number of
iterations from the one-dimensional randomwalkMetropolis algorithm considered previously. Analogously, we can update
simultaneously the subset of parameters (a, b, R) of the copula evolution equations.

4.1. Two-step Bayesian approach

In order to compare our approachwith an analogous two-stage estimation procedure,wedesign here a two-step Bayesian
algorithm. Firstly, we estimate each marginal series independently considering a univariate GARCH model with Student-t
innovations. For each marginal series, we have five parameters to estimate θi = (µi, ωi, αi, βi, νi), for i = 1, 2, and the
likelihood is given by,

l (θi | yt) ∝
T∏
t=1

0

(
νi+1
2

)
0
(
νi
2

)√
νihit

(
1+

(yit − µi)2

νihit

)− νi+12
.

Then, it is straightforward to define an MCMC algorithm to sample from the joint posterior of θi for each series with a Gibbs
sampling scheme, where each parameter is updated using a Metropolis–Hastings step as described before.
Note that for each element of the Monte Carlo sample of size N , we can obtain a set of residuals,

µ
(n)
i , ω

(n)
i , α

(n)
i , β

(n)
i , ν

(n)
i H⇒ ε

(n)
it =

yit − µ
(n)
i√

h(n)it

, for t = 1, . . . , T

for n = 1, . . . ,N . Thus,we can estimate the residual for each time t and the degrees of freedomof themarginal t-distribution
for each series as follows,

ε̂it =
1
N

N∑
n=1

ε
(n)
it , and ν̂i =

1
N

N∑
n=1

ν
(n)
i ,

for i = 1, 2. In order to estimate the copula parameters, θc =
(
a, b, rij, η

)
, we plug in these estimations in the likelihood

(10) by approximating
x̂it = t−1η

(
tν̂i
(
ε̂it
))
,

and obtaining the following pseudo-likelihood function for θc ,

l (θc | yt) =
T∏
t=1

0
(
η+p
2

)
0
(
η

2

)p−1
0

(
η+1
2

)p
(
1+ x̂′tR

−1
t x̂t
η

)− η+p2
√
|Rt |

p∏
i=1

(
1+

x̂2it
η

) η+1
2

, (16)

where x̂t = (x̂1t , . . . , x̂pt). Now, we can construct another Markov chain to sample from the posterior distribution of θc
using analogous Metropolis–Hastings steps as the previously considered for updating a, b, rij and η but now based on the
pseudo-likelihood (16).

4.2. Prediction of volatilities and dependence measures

In financial time series, one frequently observes changes in the temporal dependence during periods of high volatility.
This effect is known as financial contagion, see e.g. Rodriguez (2003) and Arakelian and Dellaportas (2008). Thus, in
multivariate GARCH models, it is important to estimate the dependence measures and volatilities as a function of t . Given
the MCMC output, we can obtain samples from the posterior distribution of the individual volatilities, hit , by evaluating
their values h(n)it for each draw θ(n) of the model parameters in the MCMC sample. Then, we can approximate their posterior
means using,

E [hit | y] ≈
1
N

N∑
n=1

h(n)it .

Also, we can approximate the posterior median and 95% Bayesian confidence intervals for hit by just calculating the median
and the 0.025 and 0.975 quantiles, respectively, of the posterior sample of hit .
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Analogously, we can obtain samples from the posterior distribution of the individual elements, rijt , of the parameter
matrix Rt by evaluating their values r

(n)
ijt for each draw θ(n) of the MCMC sample. For the particular case of having a bivariate

times series, we can easily estimate the posterior mean of Kendall’s tau correlation, given in (5), for each time t using,

E [τt | y] ≈
1
N

N∑
n=1

2
π
arcsin ρ(n)t , (17)

where ρ(n)t = r
(n)
12t , which is the off-diagonal element of the time-varying matrix given in (7) evaluated for each draw θ(n)

of the model parameters in the MCMC sample of size N . Also, we can approximate the posterior median of τt and Bayesian
confidence intervals as before. Analogously, we can estimate the posterior mean, median and Bayesian confidence intervals
for the coefficient of tail dependence λt as a function of t using (6) as follows,

E [λt | y] ≈
1
N

N∑
n=1

2tη(n)+1

−√η(n) + 1
√
1− ρ(n)t√

1+ ρ(n)t

 . (18)

Finally, note that using this approach we can also estimate the predictive distribution and intervals for the one-step-
ahead volatilities, hi,T+1, the one-step-ahead Kendall’s tau, τT+1, and the one-step-ahead coefficient of tail dependence,
λT+1, which are of particular interest for prediction purposes.

5. Estimation of risk measures and portfolio allocation

In this section, we consider three of themost usual measures of the risk of a portfolio, namely, the portfolio variance, VaR
and CVaR.
The VaR of a portfolio is defined as a low order quantile of the portfolio return in a given period of time. As the losses

should exceed VaR only a small percentage of time, it can be thought as theworst case outcome of the portfolio performance.
More specifically, given a portfolio obtained from a log return series,

p∑
i=1

δiyit , where
p∑
i=1

δi = 1, (19)

the t-period q% VaR is given by,

q = Pr

(
p∑
i=1

δiyit ≤ −VaRt

)
, (20)

where q is supposed to be a small probability such as 0.01 or 0.05.
As an alternative measure of risk, the CVaR is known to have better properties than VaR, see Artzner et al. (1997). By

definition, with respect to a specified probability level, q, the CVaR is the conditional expectation of losses above the q% VaR.
More specifically, given the portfolio (19), the t-period q% CVaR is given by,

CVaRt = −E

[
p∑
i=1

δiyit

∣∣∣∣∣ p∑
i=1

δiyit ≤ −VaRt

]
,

where VaRt is the q% VaR at time t given in (20).

5.1. Bayesian procedure for the estimation of risk measures

Given the observed series, y = {y1, . . . , yT }, it is particularly interesting the estimation of the one-step-ahead VaR and
CVaR, that is, the (T + 1)-period VaR and CVaR. We can obtain consistent estimators of these quantities using,

E [VaRT+1 | y] ≈
1
N

N∑
n=1

VaR(n)T+1, (21)

and

E [CVaRT+1 | y] ≈
1
N

N∑
n=1

CVaR(n)T+1, (22)

where VaR(n)T+1 and CVaR
(n)
T+1 are the one-step-ahead VaR and CVaR, respectively, given the model parameters θ

(n) of the n-th
MCMC iteration. Although the conditional distribution of the multivariate series

(
y1,T+1, . . . , yp,T+1

)
is explicit given the

model parameters, it is not straightforward to derive the distribution of the portfolio (19). Therefore, it is complicated to
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obtain an analytic expression for VaR(n)T+1 and CVaR
(n)
T+1 given θ(n). However, these can be easily approximated by generating

values from our copula GARCH model as follows. For each value of the parameters θ(n), the values of (h(n)1,T+1, . . . , h
(n)
p,T+1)

and R(n)T+1 are known and then, we can generate M replications {(y
(n,m)
1,T+1, . . . , y

(n,m)
p,T+1)}

M
m=1 from the one-step-ahead density

of the series using the following two steps.
For eachm = 1, . . . ,M:
1. Simulate

(
x(n,m)1,T+1, . . . , x

(n,m)
p,T+1

)
from a multivariate-t with parameters η(n) and R(n)T+1.

2. Set,

y(n,m)i,T+1 = t
−1
ν
(n)
i

(
tη(n)

(
x(n,m)i,T+1

))√
h(n)i,T+1 + µ

(n)
i , for i = 1, . . . , p.

Then, the value of VaR(n)T+1 can be approximated by the negative value of the empirical q-quantile of the sample of portfolios{∑p
i=1 δiy

(n,m)
i,T+1

}M
m=1
. Also, the value of CVaR(n)T+1 can be approximated by the negative value of the empirical mean of the

following conditional sample of portfolios,{
p∑
i=1

δiy
(n,m)
i,T+1 such that

p∑
i=1

δiy
(n,m)
i,T+1 ≤ −VaR

(n)
T+1

}M
m=1

.

Now, we can estimate the posterior means (21) and (22) and obtain 95% predictive intervals for VaR and CVaR using the
0.025 and 0.975 quantiles of the posterior sample of VaR(n) and CVaR(n), respectively, for n = 1, . . . ,N . A similar simulation
procedure is considered in Ausin and Galeano (2007) to obtain predictive intervals for the VaR in univariate GARCHmodels.
Finally, note that by using a similar approach we can also approximate the variance of the one-step-ahead portfolio using

the empirical variance of the sample of portfolios
{∑p

i=1 δiy
(n,m)
i,T+1

}M
m=1
, for n = 1, . . . ,N .

Suppose now that we are interested in the prediction ofmulti-step-ahead variance, VaR and CVaR estimation.We cannot
obtain samples directly from themultiple-step-ahead portfolio using the sameprocedure as for the one-step-ahead portfolio
because the values of R(n)T+s and h

(n)
i,T+s given θ(n) are unknown for s > 1. However, we can use a simulation procedure similar

to the proposed in Ausin and Galeano (2007) as follows. For each θ(n), the values for R(n)T+1 and h
(n)
i,T+1 are known and a sample

y(n,m)i,T+1 can be generated as before. Sequentially, given y
(n,m)
i,T+s−1, the values for R

(n,m)
T+s and h

(n,m)
i,T+s are known and a sample y

(n,m)
i,T+s

can be generated leading to the sample of portfolios
{∑p

i=1 δiy
(n,m)
i,T+s

}M
m=1
, for n = 1, . . . ,N , which allows us to estimate the

s-step-ahead variance, VaR and CVaR as before.

5.2. Bayesian procedure for portfolio allocation

We have shown how to estimate the one-step-ahead variance, VaR and CVaR of a given portfolio. A different problem is
how to choose the optimal portfolio which minimizes the one-step-ahead variance, VaR or CVaR. Unfortunately, given the
model parameters, it is not easy to obtain a closed expression for the optimal weights,

δopt,V = argmin
δ

{
V

(
p∑
i=1

δiyi,T+1

)
:

p∑
i=1

δi = 1

}
, (23)

δopt,VaR = argmin
δ

{
VaRT+1 :

p∑
i=1

δi = 1

}
, (24)

δopt,CVaR = argmin
δ

{
CVaRT+1 :

p∑
i=1

δi = 1

}
. (25)

In fact, it is well known that the solutions to problems (24) and (25) are not analytically tractable even under the Gaussianity
assumption. However, we can make use of numerical optimization procedures to approximate the optimal weights, δ(n)opt,V ,
δ
(n)
opt,VaR and δ

(n)
opt,CVaR for each set of model parameters, θ

(n), and then, obtain consistent estimators of the posterior mean of
the optimal weights using,

E
[
δopt,V | y

]
≈
1
N

N∑
n=1

δ
(n)
opt,V ,

E
[
δopt,VaR | y

]
≈
1
N

N∑
n=1

δ
(n)
opt,VaR,
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and

E
[
δopt,CVaR | y

]
≈
1
N

N∑
n=1

δ
(n)
opt,CVaR.

Also, 95% Bayesian confidence intervals can be obtained by just calculating .025 and .975 quantiles of the posterior samples
of the optimal weights.
Observe that in the definition of portfolio, given in (19), we have not imposed that 0 ≤ δi, i = 1, . . . , p. However, if one

wanted to impose that the portfolio weights are positive in order to prevent investors from short-selling, these restrictions
should be included in (23), (24) and (25), and imposed in the numerical optimization procedure to approximate the optimal
weights, δ(n)opt,V , δ

(n)
opt,VaR and δ

(n)
opt,CVaR for each set of model parameters, θ

(n).
Finally, assume that we are interested in the portfolio which minimizes the variance, the VaR or the CVaR subject to

achieving at least some specified expected gain. The predictive mean of the portfolio expected gain is given by,

g = E

[
p∑
i=1

δiµi | y

]
≈
1
N

N∑
n=1

p∑
i=1

δiµ
(n)
i .

Thus, for a given value of g , we can find the set of values for (δ1, . . . , δp) which lead to that expected gain. Then, for each
set of weights and for each set of model parameters, θ(n), we can approximate the V (n)T+1, VaR

(n)
T+1 and CVaR

(n)
T+1 as before, and

choose the ones which minimizes the portfolio variance, VaR and CVaR. Repeating this procedure for a number of values for
the expected gain, g , we can approximate the mean–variance, mean–VaR and mean–CVaR efficient frontier with associated
predictive regions of credibility.

6. Illustration

6.1. Simulated data

In this section, we illustrate the proposed methodology with one of the many artificial time series analysis that we have
performed to examine our procedure. We are also interested in comparing the proposed one-step Bayesian approach with
the two-stage Bayesian method described in Section 4.1. We simulate a bivariate time series of size T = 1000 from the
time-varying copula GARCH model described in Section 4 with the following univariate GARCH models,

y1t = 0.08+
√
h1tε1t , ε1t ∼ t3 (0, 1) , y2t = 0.05+

√
h2tε2t , ε2t ∼ t4 (0, 1) ,

h1t = 0.01+ 0.04
(
yi,t−1 − 0.08

)2
+ 0.91hi,t−1, h2t = 0.01+ 0.05

(
y2,t−1 − 0.05

)2
+ 0.9h1,t−1,

and the following pattern for the time-varying copula parameter,

ρt = (1− 0.02− 0.96)× 0.5+ 0.02ξt−1 + 0.96ρt−1,

and η = 4. Note that the conditional distribution of the bivariate series is not elliptical as the degrees of freedom parameters
ν1, ν2 and η take different values.
The proposed MCMC algorithm is run for 20000 iterations discarding the first 10 000 as burn-in iterations. As described

in Section 4, we consider simultaneous updating for the vectors of parameters (µi, ωi, αi, βi), for i = 1, 2, and (a, b, c)
using multivariate normal candidate distributions, whose variance–covariance matrices are estimated with the last 1000
iterations of a previously run single-updating MCMC algorithm with 2000 iterations. The two-stage MCMC algorithm
described in Section 4.1. is also run using the same number of iterations. Both algorithms are programmed in MATLAB (The
MathWorks, Inc.) using the internal Gaussian and uniform random number generators. The resulting samples are checked
for convergence using the test proposed by Geweke (1992). Table 1 shows the values of the Geweke’s statistic for each
parameter obtained for the two algorithms. These indicate that convergence has been achieved in both cases because if
the samples are drawn from the stationary distribution of the chain, the Geweke’s statistic has an asymptotically standard
normal distribution. Also, Fig. 1 shows the traces of the posterior samples of each model parameter obtained with the one-
step Bayesianmethod. These indicate a goodmixing performance of theMarkov chain as itmoves fluidly through all possible
states. The trace plots obtained with the two-step method also indicate good mixing but are not reported to save space.
Table 2 presents the posterior mean and standard deviations for each model parameter obtained from the one-step and

the two-step MCMC outputs. These are compared with the true parameter values in order to show the accuracy of the
estimations. Observe that, although the posterior means obtained with the two methods are similar, the posterior standard
deviations are in general smaller with the one-step approach than with the two-stage procedure, indicating that the full
Bayesian approach leads to more precise estimations. We have also observed that the posterior distributions have shorter
tails using the one-step method rather than the two-step procedure. This is illustrated in Fig. 2(top), where the histograms
of the posterior samples of the parameter a obtainedwith the twomethods are shown. Furthermore, there are also essential
differences in the joint posterior distribution obtained with the one and the two-step procedures. This is also illustrated in
Fig. 2(bottom), where the scatter plots of the posterior samples of the parameters µ1 and µ2 are shown for the one and the
two stage approaches. Note that the posterior relationship existing between these two parameters, which is observed with
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Table 1
Values of the Geweke’s statistic for each parameter obtained for the one- and the two-step algorithms.

µ1 µ2 ω1 ω2 α1 α2 β1 β2

One-step 0.2778 0.4943 0.3195 −0.4189 1.544 1.983 −1.173 −1.803
Two-step 0.3716 0.4838 0.2243 1.251 −0.064 0.2064 0.1634 −0.868

ν1 ν2 a b c η

One-step 0.083 −0.758 1.201 −1.837 −0.4322 −0.5461
Two-step 1.398 −0.091 0.222 0.622 −0.3058 1.076

Fig. 1. Convergence diagrams of the posterior samples of each parameter for the simulated series.

Table 2
Parameter estimation results for the simulated series using the proposed one- and two-step Bayesian approaches.

Parameter True value One-step Two-step
Posterior mean Posterior std. Posterior mean Posterior std.

µ1 0.08 0.1024 0.0309 0.1100 0.0309
µ2 0.05 0.0398 0.0205 0.0474 0.0213
ω1 0.01 0.0187 0.0090 0.0138 0.0094
ω2 0.01 0.0198 0.0065 0.0263 0.0117
α1 0.04 0.0284 0.0085 0.0246 0.0086
α2 0.05 0.0562 0.0125 0.0562 0.0161
β1 0.91 0.9144 0.0242 0.9265 0.0257
β2 0.90 0.8691 0.0262 0.8488 0.0458
ν1 3.00 3.2779 0.3598 3.1437 0.3404
ν2 4.00 5.5228 0.8732 5.3716 0.9235
η 4.00 3.8728 0.6787 3.8935 0.6239
a 0.02 0.0305 0.0103 0.0340 0.0211
b 0.96 0.9527 0.0227 0.9298 0.1108
c 0.50 0.5010 0.1629 0.4933 0.1487

the one-step Bayesian approach, disappears with the two-step Bayesian method. Note that using a two-step procedure, the
marginal series are assumed to be independent and this assumption clearly affects the shape of the joint posterior. Thus,
Table 2 and Fig. 2 suggest that the one-step approach is in a sense more ‘‘efficient’’ than the two-step one. A similar result
was found by Liu and Luger (2009) in a classical context.
Wenowconsider Bayesian prediction for the volatilities and dependencemeasures. Fig. 3 shows the true values, posterior

means and 95% Bayesian confidence intervals for the marginal volatilities, hit , for i = 1, 2, Kendall’s tau, τt , the copula
parameter, ρt , and the tail dependence, λt , for the last 100 observations, t = 900, . . . , 1000, obtained as described in
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Fig. 2. Top: Histograms of the posterior samples of the parameter a obtained with the one- and the two-step methods. Bottom: Scatter plots of the the
posterior samples of the parameters µ1 and µ2 for the one- and the two-step methods.

Fig. 3. True (solid lines), predictive mean (dashed lines) and 95% Bayesian confidence intervals (dotted lines) for the volatilities, h1t and h2t , Kendall’s tau,
τt , copula parameter, ρt , and tail dependence, λt , for t = 900, . . . , 1001, for the simulated series.

Section 4.2. Observe that the Bayesian confidence intervals always include the true values of the volatilities and dependence
measures for all time periods. Predictions for the one-step-ahead volatilities, hi,T+1, and for the one-step-ahead dependence
measures, τT+1, ρT+1 and λt , where T + 1 = 1001, are also shown in Fig. 3. Note that their respective predictive intervals
also include the corresponding true values.
Next,weperformBayesian prediction of portfolio riskmeasures. Fig. 4 shows the Bayesian estimations and 95%predictive

intervals for the CVar, VaR and variance of the one-step-ahead portfolio, δy1T+1 + (1− δ) y2T+1, for different values of δ in
the interval (−1, 1) and q = 0.05 and q = 0.01. These are obtained using the simulation procedure described in Section 5
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Fig. 4. True (solid lines), predictive mean (dashed lines) and 95% Bayesian confidence intervals (dotted lines) for the VaR, CVaR and variance of the one-
step-ahead portfolio, δy1T+1 + (1− δ) y2T+1 , for different values of δ and q = 0.05 (left) and q = 0.01 (right) for the simulated series.

Table 3
True values, predictivemeans and 95% predictive intervals for the optimal weight, δopt , whichminimizes the VaR, CVaR and variance of the one-step-ahead
portfolio δy1T+1 + (1− δ) y2T+1 for the simulated data.

q = 0.05 q = 0.01
True Mean 95% interval True Mean 95% interval

VaR 0.2219 0.2396 (0.0971, 0.4054) 0.1583 0.1510 (−0.0477, 0.4009)
CVaR 0.1559 0.1617 (0.0038, 0.3388) 0.0917 0.0997 (−0.1296, 0.3632)
Variance 0.1506 0.1599 (0.0151, 0.2976)

with M = 1000 replications for each MCMC iteration. These estimations are compared with the true one-step-ahead VaR,
CVaR and variances which are obtained using the true model parameters. Note that the estimated values are very close to
the true values, which are always inside the predictive intervals.
Table 3 shows the posterior means and 95% Bayesian confidence intervals of the optimal weight, δopt , which minimizes

the CVar, VaR and variance of the one-step-ahead portfolio δy1T+1 + (1− δ) y2T+1, using the initial value δ0 = 0.5 in the
numerical optimization method (other initial values lead to similar results). Observe that the obtained optimal weights are
coherent with the plots shown in Fig. 4. Also note that the posterior means are close to the true values and that the true
values are always inside the predictive intervals. Finally, observe that there are certain differences between the optimal
weights obtained with the three different optimizing criteria based on the VaR, the CVaR and the variance, respectively.
However, these differences do not seem to be statistically significant.
Finally, Fig. 5 illustrates the Bayesian estimations of the mean–VaR, mean–CVaR and mean–variance efficient frontiers

with the corresponding 95% predictive region for q = 0.05 and q = 0.01, obtained as described in Section 5. These are
compared with the theoretical efficient frontiers which are obtained using the true model parameters. Observe that the
estimated curves are very similar to the theoretical ones, which always lie inside the confidence regions.

6.2. Real data

In this section, we apply our Bayesian procedure to the daily closing prices of the Dow Jones Industrial Average and DAX
indices for the period 07/Sep/1998 to 07/Sep/2004. The log return bivariate series, whose sample size is T = 1543, is plotted
in Fig. 6. Table 4 shows some summary statistics. This sample has been analyzed previously in Arakelian and Dellaportas
(2008) using a copula threshold model which changes discretely over time. Their model predicts four structural breaks in
the dependence structure of the series. Alternatively, we showhere that our approach can capture the temporal dependence
of the series using time-varying copula GARCH models, as described in Section 4, which change continuously across time
and that we believe are more natural in economic terms than a copula model which varies discretely over time.
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Fig. 5. True (solid lines), predictive mean (dashed lines) and 95% Bayesian confidence intervals (dotted lines) for the mean–VaR, mean–CVaR and
mean–variance efficient frontiers for q = 0.05 (left) and q = 0.01 (right) for the simulated series.

Table 4
Summary statistics of the daily returns of the DAX and Dow Jones Industrial Average indices.

DAX Dow Jones

Mean −0.0152 0.0164
Std. dev. 1.8255 1.2177
Skewness −0.0300 −0.0369
Kurtosis 4.5419 5.6049
Linear correlation 0.5300

Fig. 6. Daily returns of the DAX (top) and Dow Jones Industrial Average (bottom) indices.

As in the previous section, we run the proposed MCMCmethod for 20000 iterations, discarding the first 10 000 as burn-
in iterations. Table 5 shows the values of the Geweke’s statistic for each parameter, indicating that convergence has been
achieved. Given the sample of residuals, we also check whether a GARCH(1,1) setting is appropriate for our data set or
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Table 5
Values of the Geweke’s statistic for each parameter obtained for the DAX and Dow Jones indices.

µ1 µ2 ω1 ω2 α1 α2 β1 β2

1.637 1.798 1.422 −1.080 1.716 0.5189 −1.430 0.3344

ν1 ν2 a b c η

−0.7018 0.718 0.1210 0.05079 −0.2559 1.065

Table 6
Parameter estimation results for the DAX and Dow Jones indices.

Parameter Posterior Mean Posterior std.

µ1 0.0236 0.0364
µ2 0.0374 0.0249
ω1 0.0441 0.0143
ω2 0.0204 0.0071
α1 0.0724 0.0112
α2 0.0508 0.0099
β1 0.9061 0.0136
β2 0.9181 0.0146
ν1 157.12 1501.2
ν2 10.549 2.4754
η 8.6929 2.5068
a 0.0225 0.0079
b 0.9684 0.0135
c 0.5806 0.1467

whether lags (p, q) of higher order would be necessary. To do that, we perform the hypothesis test proposed by Engle (1982)
which examines the presence of ARCH/GARCHeffects by regressing the squared residuals on a constant and the lagged values
of the previousM = p+q squared residuals. The Engle’s LMstatistics for lagsM = 30 andM = 40 are 18.81 and21.55with p-
values 0.94 and 0.99, respectively, for the Dow Jones index, and 44.27 and 51.58with p-values 0.045 and 0.103, respectively,
for the residuals of the DAX index, concluding that the GARCH(1,1) setting seems appropriate. Moreover, we check if the
choice of a t-copulamodelwith univariate GARCH volatilities is adequate by performing the Kolmogorov–Smirnov goodness
of fit test for tη̂(tν̂i(ε̂it)), for i = 1, 2, where η̂ and ν̂i denote the posterior means of η and νi, respectively, and ε̂it are the
standardized residuals. The p-values of testing if these samples follow univariate Student-t distributions with η̂ degrees of
freedom are 0.2375 and 0.2306 for the residuals of the DAX and Dow Jones indices, respectively.
Table 6 shows the posterior means and standard deviations obtained from this algorithm. We have chosen m = 5 in

the computation of Ψij,t−1 in order to approximate the short-term correlation over one week, as suggested in Jondeau and
Rockinger (2006). However, we have observed that similar results are obtained using different values form such thatm = 10
andm = 20. Also, observe in Table 6 the large value for the posteriormean and standard deviation of the degrees of freedom,
ν1, of the DAX returns, which indicates that the innovations, ε1t , of this marginal series may be normally distributed, while
the relatively small value for ν2 indicates that the tails of the innovations of the Dow Jones returns are longer than the tails
of the normal distribution, which is not appropriate in this case. Then, it is clear that themultivariate normal or multivariate
t-distributions would not be adequate in this case to describe the multivariate distribution of the innovation process.
Now, we examine the temporal dependence between the two time series. Fig. 7 illustrates the posterior means of

Kendall’s τt , the copula coefficientρt and the tail dependenceλt , as functions of time,which have been obtained as described
in Section 4.2., see (17) and (18). In order to assess the quality of these estimations, following Arakelian and Dellaportas
(2008), we compare in Fig. 8 the posterior means of τt with sample estimates of Kendall’s τt evaluated in two rolling
windows of sizes 100 and 250 observations. Observe that the dynamics of the Bayesian posterior means are very similar
to the sample estimations. However, as opposed to our dynamic model, the moving window is not capable of forecasting
ahead the quantities of interest.
Next, we obtain Bayesian estimations of portfolio riskmeasures. Fig. 9(left) shows the predictivemeans and 95% Bayesian

confidence intervals for the VaR, CVaR and variance of the one-step-ahead portfolio, δ × DAXT+1 + (1− δ)× DowJT+1, for
different values of δ and q = 0.05. Also, Fig. 9(right) shows the Bayesian estimations and 95% predictive intervals for the
mean–VaR, mean–CVaR and mean–variance efficient frontiers for q = 0.05 for the DAX and Dow Jones indices. These
predictions are obtained using the simulation procedure described in Section 5 withM = 1000 replications for each MCMC
iteration. Finally, Table 7 shows the Bayesian estimations and 95% predictive intervals of the optimal weight, δopt , which
minimizes the CVar, VaR and variance of the one-step-ahead portfolio δy1T+1 + (1− δ) y2T+1. Observe that the obtained
optimal weights are coherent with the plots shown in Fig. 9(left). As for the simulated data, observe that there are certain
differences between the optimal weights obtained with the three different optimizing criteria but they are not statistically
significant.
In order to analyze the effect of assuming a time-varying copulamodel instead of a constant copula, Fig. 10(left) compares

the estimated VaR of the one-step-ahead portfolio, δ × DAXT+1 + (1− δ) × DowJT+1, for different values of the weight δ,
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Fig. 7. Posterior means of Kendall’s τt , the copula coefficient ρt and the tail dependence λt , as functions of time, t , for the DAX and Dow Jones indices.

Fig. 8. Posterior means of Kendall’s τt as a function of t compared with two window-based sample estimates, for the DAX and Dow Jones indices.

Table 7
Predictive means and 95% predictive intervals for the optimal weight, δopt , which minimizes the VaR, CVaR and variance of the one-step-ahead portfolio
δ × DAXT+1 + (1− δ)× DowJT+1.

π = 0.05 π = 0.01
Mean 95% interval Mean 95% interval

VaR 0.3192 (0.1984, 0.4407) 0.3473 (0.1855, 0.5224)
CVaR 0.3405 (0.2147, 0.4650) 0.3736 (0.1844, 0.5737)
Variance 0.3223 (0.2395, 0.4036)

obtained with our time-varying copula GARCH model with those obtained assuming a constant copula model, where a and
b are assumed to be equal to zero in (7) and the resulting posteriormean and standard deviation for R are 0.5048 and 0.0217,
respectively. Observe that the predictive means of the one-step-ahead VaR are quite different if we impose that the copula
is constant rather than assuming a time-varying copula function. Note also that our time-varying copulamodel predicts that
the optimal portfolio should assign aweight of approximately δopt = 0.32 (see also Table 7)while the constant copulamodel
predicts that δopt = 0.28. Fig. 10(right) illustrates the Bayesian estimations for the mean–VaR efficient frontiers, assuming
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Fig. 9. Predictivemean (dashed lines) and 95% Bayesian confidence intervals (dotted lines) for the VaR, CVaR and variance of the one-step-ahead portfolio,
δ × DAXT+1 + (1− δ) × DowJT+1 , for different values of δ and q = 0.05 (left) and for the mean–VaR, mean–CVaR and mean–variance efficient frontiers
for q = 0.05 for the DAX and Dow Jones indices (right).

Fig. 10. Bayesian estimations of the one-step-ahead VaR for the portfolio, δ × DAXT+1 + (1− δ)× DowJT+1 , as a function of δ, for q = 0.01, (left) and for
the mean–VaR efficient frontiers (right), assuming a constant and a time-varying copula model.

a constant and a time-varying copula model. Observe that, again, the predictive curves are quite different if we impose that
the copula is constant rather than assuming a time-varying copula function.

7. Conclusions and extensions

In this paper, we have proposed a Bayesian procedure for the analysis of multivariate time series. Time-varying copula
models have been considered to describe the structure of temporal dependence in the joint distributions. Our approach
allows for the simultaneous estimation of the marginal and copula parameters, which is in contrast with the classical two-
stage estimation procedures. We have also addressed the problem of Bayesian prediction of volatilities, various dependence
measures, portfolio VaR and CVaR and efficient frontiers for portfolio selection. The method has been illustrated with
simulated and real financial time series.
Although, in this article, we have considered a t-copula–GARCH model with Student’s t-distributed marginals, the same

approach can be straightforwardly extended to other alternative or more general models. For example, we can assume that
the innovations follow a mixture of two Gaussian distributions instead of a t-distribution, as in Ausin and Galeano (2007).
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This mixture model for the marginals is known to be statistically more stable and avoids the use of informative priors for
the degrees of freedom parameter as in (11). The only inconvenience is that the number of parameters is increased in one
unit for each marginal variable.
Other alternative models can be constructed and compared using the plethora of copula functions existing in the

literature. For example, the t-copula model assumes a symmetric dependence structure and inference could be improved
if it is replaced by the Clayton copula, see e.g. Nelsen (2006). Furthermore, we could construct more flexible models based
on mixtures of copula functions which could capture most of the tail dependence considered in the literature. Inference
for these general families could be performed by defining an MCMC algorithm that visits all the copula functions included
in the mixture, ‘‘chooses’’ the best one or a subset of best models and provide a coherent way of combining results with
different copulas. These ideas are related to the model selection criteria for copulas considered in Huard et al. (2006) and
Silva and Lopes (2008). Mixtures of copulas have been considered for dynamic models in Rodriguez (2003) and Hu (2006),
using classical techniques. Finally, it would be interesting to examine the influence of the copula model in the Bayesian
estimation of VaR and CVaR, as considered by Fantazzini (2009) in a classical context.
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