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Abstract. We present a new type of distinguisher, called zero-sum distinguisher, and apply it to
reduced versions of the Keccak-f permutation. We obtain practical and deterministic distinguishers
on up to 9 rounds, and shortcut distinguishers on up to 16 rounds, out of 18 in total. These
observations do not seem to affect the security of Keccak. We also briefly describe application of
zero-sum distinguishers to the core permutations of Luffa and Hamsi.

The Keccak- f permutation operates on a 1600-bit state; it makes 18 rounds, and each
round has algebraic degree 2, with respect to GF(2). Hence the n-round permutation has
degree at most 2". The inverse permutation, however, has degree 3 (cf. [1, §5.9.3.1]).

Suppose one fixes 1600 — 513 = 1087 bits of the initial state to some arbitrary value,
and consider the 2513 states obtained by varying the 513 bits left. Our main observation
is that applying the 9-round Keccak-f permutation to each of those states and xoring the
2513 1600-bit final states obtained yields the zero state. This is because, for each of the
1600 Boolean components, the value obtained is the order-513 derivative of a degree-512
polynomial, which by definition is null. We call exhibition of such sets of values zero-
sum distinguishers, and we call the sets of values zero-sums. More generally, a zero-sum
distinguisher for a function is any method to find a set of values summing to zero such
that their respective images also sum to zero.

Observing that the 5-round inverse permutation has degree at most 3° = 243, one can
do the following for the 14-round Keccak-f permutation:

1. Fix 1600 — 513 = 1087 bits of the intermediate state after 5 rounds to some arbitrary
value.

2. For each of the 25! values of the bit left, compute 5 rounds backwards to obtain
initial states.

2513

One thus obtains 2°13 distinct initial states that have the following remarkable properties:

e They sum (xor) to zero, since the sum is the order-513 derivative of a degree-243
mapping.

e Their images by the Keccak-f permutation sum to zero as well, because the map-
ping defined by 9 rounds of the Keccak- f permutation has degree at most 22 = 512.

This method is deterministic, and costs the equivalent of less than 25'? evaluations of the
Keccak-f permutations (i.e., 213 times 5 inverse rounds) to compute values satisfying
the zero-sum property.

One may do even better by exploiting the fact that the degree increases more slowly
than expected. Indeed, Table 5.4 in [1] reports that the 5-round permutation has degree
at most 17, and that the 3-round inverse permutation has degree 17 as well, with respect
to variables in slice z = 0. Making the (worst-case) assumption that after 5 (resp., 3)
rounds, the degree is multiplied by 2 (resp., 3) at every round, we have that:



e After 9 rounds, the permutation has degree < 272, and after 10 rounds is has
degree < 544.
e After 5 rounds, the inverse has degree 153, and after 6 rounds it has degree < 459.

But the bounds 272 and 153 are incorrect here; this is because bounds in Table 5.4 hold for
bits in a same slice (a slice contains 25 bits), and when more than 25 degrees of freedom
are needed, one needs to use bits in distinct slices, and so the bounds of Table 5.4 do not
apply anymore (idem for bits in a same 64-bit lane from Table 5.5).

Therefore, the above trick to obtain lower upper bounds on the degree works only
with at most 25 variables (resp., at most 64), when considering bounds from Table 5.4
(resp. 5.5). For degrees above those bounds, we shall make the (worst-case) assumption
that the degree is 2" (resp., 3") after n rounds forwards (resp., backwards).

Another trick to reduce the maximal degree (and thus the complexity of our distin-
guishers) is to ensure that the first round backwards has degree one, by avoiding having
more than one variable in each row. There are 64 x 5 = 320 rows, hence this trick works
when 320 or less variables are necessary. Similarly, when more than 320 but less than
640 variables are necessary, one can ensure that the first inverse round has degree one by
setting at most two variable bits in each row, such that they are not adjacent.

Table 1 summarizes the complexity of our distinguishers for various parameter choices.

Table 1. Parameters of the best distinguisher for various total number of rounds. The columns “type of bounds”
gives the type of bounds used, either with respect to bits in a same slice (Table 5.4, only if order < 25), in one
lane (Table 5.5, only if order < 25), at most two per row (3"~!,2", only with order < 640), or anywhere in the
state (3",2"). For consistency, we give the normalized complexity in terms of evaluations of the permutation
(assuming that computing a round has the same complexity as computing an inverse round), e.g., the complexity
given is 2'° x 2/6 = 282 for the attack on the first line, since it requires 2'° evaluations of the two rounds of the
inverse permutations, out of six rounds in total in the permutation considered.

type of backwards forwards total

bounds | #rounds degree < | #rounds degree < | #rounds complexity

1 slice 2 9 4 9 6 2841

1 lane 3 9 3 8 6 2900

1 lane 3 9 4 15 7 2T

1 slice 3 17 5 17 8 21658

1 lane 4 27 5 30 9 22983

1 lane 4 27 6 60 10 25967
1-per-row 5 81 6 60 11 25954
1-per-row 5 81 7 128 12 212778
1-per-row 6 243 7 128 13 924288
1-per-row 6 243 8 256 14 9225577
2-per-row 6 243 9 512 15 9251168
anywhere 6 729 10 1024 16 2102388

We experimentally verified results in Table 1, for practical complexities, by finding
zero-sums on 6, 7, and 8 rounds of the Keccak-f permutation. We also observed that
the bounds on the degree used are not always tight. For example, the distinguisher on 7
rounds exploiting maximal degree 15 worked even when making certain order-10 deriva-
tives (that is, making 2!° evaluations backwards instead of 2'¢). For the distinguishers
exploiting maximal degree 9, however, this degree was reached and order-10 derivatives
were necessary.



The Keccak-f is the main component of the Keccak hash function submitted to the
SHA-3 competition. Our observations do not seem to affect the security of Keccak. To the
best of our knowledge, no deterministic and generic method is known to compute zero-
sums. Our zero-sum distinguishers may be viewed as a measure on how many rounds are
necessary for optimum security guarantees. This suggests that for Keccak-f 17 rounds
would be necessary.

Table 2. Structure of the 10-round distinguisher.

4 rounds 6 rounds
degree < 27 degree < 60

Table 3. Structure of the 16-round distinguisher.

6 rounds 10 rounds
degree < 729 degree < 1024

Generally, zero-sum distinguishers are relevant for any n-bit permutation for which
one can find some set of m < n variables in some intermediate state such that in both
directions all bits of the output are functions of degree strictly less than n in the variables
chosen. Typical targets are algorithms with only bitwise logical operations, while those
making modular additions (like so-called ARX algorithms) are unlikely to be vulnerable
to zero-sum distinguishers.

For instance, one can apply zero-sum distinguishers to the permutation @) of Luffa [2,
3]: each of its eight rounds has degree three, both forwards and backwards, hence 4 rounds
have degree at most 3* = 81. This allows one to find zero-sums by computing order-82
derivatives with variables in the intermediate state after 4 rounds. This does not seem to
affect the security of Luffa, and in fact its designers already noted that “8 step functions
cannot be considered a perfect random permutation” [3, §3.1.2], based on the existence
of a differential path with probability 27224,

The permutation Py of Hamsi [4] is also vulnerable to zero-sum distinguishers: for the
256-bit version of Hamsi, Py works on a 512-bit state, a round has degree 3 (both forward
and backward), and it makes 6 rounds for the finalization. A zero-sum distinguisher on
2x3 thus makes about 2% evaluations of the permutation. For the 512-bit version, Py
works on a 1024-bit state makes 12 rounds, which allows one to find zero-sums in 27,
These distinguishers, however, are not relevant for the compression function of Hamsi,
because of the redundancy in its input. A fortiori, the security of Hamsi seems unaffected.

A detailed exposition of our results will appear in an extended note.
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