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Abstract. We provide a simple secret-key two-party secure communi-
cation scheme, which is provably information-theoretically secure in the
limited-storage-space model. The limited-storage-space model postulates
an eavesdropper who can execute arbitrarily complex computations, and
is only limited in the total amount of storage space (not computation
space) available to him. The bound on the storage space can be arbi-
trarily large (e.g. terabytes), as long as it is fixed. Given this bound,
the protocol guarantees that the probability of the eavesdropper of gain-
ing any information on the message is exponentially small. The proof
of our main results utilizes a novel combination of linear algebra and
Kolmogorov complexity considerations.

1 Introduction

The most basic problem in cryptography is that of communication over an in-
secure channel, where a Sender S wishes to communicate with a Receiver, R,
while an Eavesdropper, E , is tapping the line. To achieve privacy, the Sender
and Receiver may share a common key. In a seminal work, Shannon [10] proved
that if the eavesdropper has complete access to the communication line, and is
not bounded in any way, then perfect, information theoretically secure commu-
nication is only possible if the entropy of the key space is at least as large as
that of the Plaintext space. In essence, this means that if the eavesdropper is
unbounded then the one-time-pad scheme, where the size of the secretly shared
pad equals the size of the message, is the best possible scheme. This, of course, is
impractical for most applications. Thus, to obtain practical solutions one must
place some bounds on the eavesdropper’s power. Most of modern cryptography
has proceeded along the line of assuming that the eavesdropper is computa-
tionally bounded and devising schemes that are computationally hard to break.
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These results, though unquestionably impressive, suffer from two drawbacks.
First, they are based on unproven complexity assumptions. Second, many of the
methods tend to require considerable computations, even from the Sender and
Receiver. In theory, any polynomial computation is considered feasible for the
participants. In practice, some of the polynomials are so large as to render the
solution impractical. In other cases, even when the solutions are practical (e.g.
RSA), the amount of computation limits their use to high-security applications
or key-exchange sessions.

The Limited Storage Space Model. Recently, there has been development in con-
structing secure communication protocols not based on computational complex-
ity. In this paper we consider the limited storage space model, where the security
guarantees are based on the limited storage space available to the eavesdrop-
per. This model, first introduced by Maurer [7], assumes that there is a known
bound, possibly very large - but fixed, on the amount of storage-space available
to both the Sender and Receiver, and a (possibly much larger but fixed) bound
on the storage space available to the Eavesdropper. It is important to differenti-
ate between this model and the well-known so called bounded space model (e.g.
log-space). The bounded space model considers cases where the space is usually
very limited, and serves as computing space. In this case, the space-bound is in
effect a limitation on computational power. The limited storage space model, by
contrast, allows very large amounts of storage space, placing the limit only to
practically feasible capacities (e.g. a terabyte or several terabytes) of storage. At
the same time we do not stipulate any limitations on the computational power of
the eavesdropper who is trying to subvert the secrecy of the protocol. Given the
bound on the eavesdropper’s storage space, the model enables to obtain results
which are information theoretic, not depending on any unproven assumptions.
Furthermore, the model enables us to construct a very simple and efficient pro-
tocol, requiring very little computation and storage space for the Sender and
Receiver. Informally, the limited storage space model assumes a publicly acces-
sible source of random bits, such as a high rate broadcast of a string α of random
bits, equally accessible to the Sender, Receiver and Eavesdropper. Let the length
of α be |α| = nm, where m is the length of the message to be securely sent. It is
assumed that the Eavesdropper is limited to storing E < n bits, say E = n/5.
The Eavesdropper can listen to the whole of α and compute and store any func-
tion f(α), provided that |f(α)| ≤ E. In one version, the model postulates that
the sender and receiver share a secret key s where |s| = O(logn). Using s and
listening to α, the sender and receiver both read and store ` chosen locations of
α and compute from those bits a one-time pad X, |X| = m. The pad X is used
by the Sender to encrypt a message M, |M | = m. We show that the pad X can
be used as a secure one-time-pad for secret communication between the Sender
and the Receiver.

The Limited Storage Space Model - Previous Work. In a ground-breaking work,
Maurer [7] presented the first protocol for private-key secure communication in
the Limited-Storage-Space model described above. However, in [7], the proof of



Information Theoretically Secure Communication 67

the security of the protocol is provided only for the case where the bound on
the eavesdropper is not only on the space available to her, but also on the total
number of random bits she can access. In particular, it is assumed that the eaves-
dropper can only access a constant fraction of the random bits of α. The analysis
of [7] does not provide a proof for the general limited-storage-space case, where
the eavesdropper can access all the bits of α, can perform any computation on
these bits, and store the results of the computation in the bounded space avail-
able to him. It was left as an open question in [7] if any security result can be
proved using the limited-storage-space assumption alone. Recently, Cachin and
Maurer [4] provided a protocol for which they prove security based solely on the
limited-storage-space assumption. However, this protocol is considerably more
complex than the original protocol, employing advanced privacy amplification
techniques. Their proof uses sophisticated Renyi entropy considerations. To as-
sure that the probability of revelation to the eavesdropper of the secret message
M be smaller than ε, the protocol of [4] requires the Sender and Receiver to
store ` log n and transmit ` bits, where ` = 3/ε2. Thus if we prudently require
ε = 10−6, we get that ` = 3 · 1012 ; the length n of the random string α can be
240, so that logn = 40. Thus for this choice of ε, the Sender and Receiver have
to store and transmit very large numbers of bits. Furthermore, the protocol calls
for a multiplication operation in a large field of `-bit numbers.

Our Results. In this paper we return to the simple original protocol of [7], and
show that security can be proved, for a slightly modified protocol, based only on
the limited storage space assumption. Altogether, we obtain a secure secret key
communication scheme secure against any eavesdropper with limited storage
space. The protocol is very simple for the Sender and Receiver, necessitating
only the elementary XOR operations, and minimal storage space. Specifically,
the secret shared key s has k logn bits, where k is a security parameter. For a
secret transmission of a message M of length m, the Sender and Receiver have
each to read from α and store just km bits and the one-time pad X is computed
from those bits, like in [7], by just XOR operations. Finally, the probability of
the adversary Eavesdropper to gain even one-bit information on the message
M , is smaller than 2−k/5, i.e. exponentially small in k. The results are obtained
using novel techniques, employing linear algebra and Kolmogorov complexity
arguments. An exact formulation of the results is provided in Section 2. We note,
however, that our protocol requires a longer random string α, than does that of
[7]. It remains a open problem to reduce this number. It will also be interesting
to see whether the new methods can considerably improve the constants in the
protocol of [4], or some variation of this protocol.

Related Work. In a series of papers, Maurer and colleagues [7,8,2,4] consider
secure communication solutions not based on computation complexity. In [8,2]
the authors consider the setting where all parties (honest and eavesdropper)
communicate over noisy channels. The model of limited-storage-space was first
introduced in [7] and further developed in [4], as discussed above. The limited
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Communication Protocol.

Message M = (M1, . . . , Mm) ∈ {0, 1}m. Secret key s = (σ1, . . . , σk) ∈ {1, . . . , n}k

1 for i = 1 to m do
2 for j = 1 to n do

3 Broadcast random α
(i)
j (either produced by S, R or an outside source).

4 If j ∈ s then

5 R and S store α
(i)
j in memory

end for loop

6 S and R set Xi :=
⊕k

j=1
α

(i)
σj

end for loop
7 S and R set X = (X1, . . . , Xm)
8 S computes Y = X ⊕ M . Sends Y to R.
9 R decryptes M = X ⊕ Y

Fig. 1. Communication Protocol

storage space model in the context of Zero-Knowledge proofs was first studied
by De Santis, Persiano and Yung [5], and then by Aumann and Feige [1].

2 The Protocol

We consider a secret key setting, where the sender and receiver share a small
secret key. Sender S wants to send a message M ∈ {0, 1}m to the receiver R
over an insecure channel. An eavesdropper E may be tapping the communication
line between S and R. We assume that there is a known bound, E, on the total
storage space available to E . Let k be a security parameter, and let n = 5E. Given
a private key of size k logn chosen uniformly at random, our scheme guarantees
information-theoretic secrecy with probability ≥ 1 − 2k/5.

The scheme is essentially that of [7] (with one exception, which is discussed
in the end of this section). First, S and R produce a shared “one-time-pad”,
X = (X1, . . . , Xm). Then S computes Y = X ⊕ M . He then sends Y to R, who
then computes M = X ⊕ Y to obtain the original message.

To produce each shared bit, Xi, i = 1, . . . , m, the protocol employs a long
random “noise” string α(i), of size n = 5E, broadcasted from S to R. Alterna-
tively, the string α(i) may be available to both and R from an outside source,
e.g. random channel noise, or a special public “noise” broadcast. We assume
that E has full access to α(i) while it is being broadcast. In particular, E can
access all the bits of α(i) and perform on them any possible computation, poly-
nomial or non-polynomial. The sole restriction is that the total space available
to E , for storing the output of her computation on α(i) is bounded by E. Let s
be the secret key. We interpret s as a sequence σ1, . . . , σk of integers in [1, n].
As the random string α(i) is broadcasted, both the S and the R retain the k

bits α
(i)
σ1 , . . . , α

(i)
σk . Both players then compute Xi =

⊕k
j=1 α

(i)
σj , to produce the

i-th random bit of the one-time-pad X. A detailed description of the protocol is
provided in Figure 1.

We prove that the bit Xi can be used as a secure one-time-pad bit for com-
munication between S and R. In particular, we show that the probability of E
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computing Xi correctly is ≤ 1/2 +2−k/5. This holds true even if s is revealed to
E after his computation on the string α(i) is completed. Note that for the honest
players the scheme is very simple, requiring only k log n storage space and XOR
computations.

To understand the protocol, consider the case where E can only store original
bits of α, without performing any computations. The storage space available to
E allows her to store at most one fifth of the bits of α. Thus, for any i, the
probability that all bits α

(i)
σi are available to E is exactly 5−k. If E happens to

have stored exactly the right bits, then she knows the value of Xi. Otherwise, it
can be shown that E has no information on Xi, and can only guess its value with
probability 1/2. Thus, if E can only store original bits of α then her probability
of guessing Xi is 1/2 + 5−k. A result in this spirit was proven by Maurer [7]. In
our model, however, we allow E to perform any computation on the bits of α,
and retain any function of these bits, provided that the total size of the output
does not exceed E bits. We prove that the extra computations can give E at
most a very marginal advantage. We prove that in any case, the probability of
E of correctly computing even one bit of knowledge about X is at most 1/2 +
2−k/5. The bound is information theoretic and does not depend on any unproven
complexity assumptions.

The Main Theorem. We prove a strong statement concerning the security of
the scheme. We show that even if the Eavesdropper is provided with the full
key s after α is broadcasted, she still has negligible probability of gaining any
information on the message M . Furthermore, we apply the storage restriction
only at one point in time - namely, the time immediately after α is transmitted.
Thus, the dynamics can be described as follows:

Phase I:
(a) The stream α is generated and transmitted (α ∈ {0, 1}nm).
(b) The Eavesdropper can perform any computation on α, with no restric-

tions on space or time.
Following this phase, the eavesdropper can store n/5 bits. We denote by η,
|η| = n/5, the information stored after this phase.

Phase II: The Eavesdropper is provided with Y = X ⊕ M and the key s.
Based on η, Y and s, the Eavesdropper tries to gain information on M .

Thus, any algorithm, A of the eavesdropper, is actually a pair of algorithms
A = (A1, A2), where A1 is the algorithm for the first phase and A2 is the
algorithm for the second phase (after E receives s). The first algorithm gets α
as an input, and outputs η = A1(α), with |η| = n/5. The second algorithm A2

gets s, η and Y as inputs, and outputs a single bit, δ = A2(η, s, Y ). Accordingly,
we denote the entire eavesdropper’s algorithm as A(α, s, Y ).

We prove that, for any message M , sent from S to R, the probability of E to
gain any additional information on M from the protocol is exponentially small
(in k). Specifically, consider any two possible distributions on messages, D(0)

and D(1). The Eavesdropper wishes to know from which of the two distribution



70 Y. Aumann, M.O. Rabin

the message was drawn. For a message M and an eavesdropper’s algorithm A =
(A1, A2), we denote by A(M) the entire output of the algorithm for a message
M , i.e. A(M) = A2(A1(α), s, X(s, α) ⊕ M), with α and s chosen uniformly at
random.

Theorem 1. For n large enough, for any distributions D(0), D(1), and any
Eavesdropper’s algorithm A, which uses at most E = n/5 storage space,∣∣∣Pr

[
A(M) = 1|M ∈ D(1)

]
− Pr

[
A(M) = 1|M ∈ D(0)

]∣∣∣ ≤ 2−k/5,

where the probability is taken over the random choices of α, the random secret
key s, and the random choices of M from the distributions D(0) and D(1).

In particular the theorem says that if there are only two possible messages, M (0)

and M (1), and the Eavesdropper wishes to know which message was sent, then
she has only an exponentially small probability of success. Note that there is
no limit on the time complexity of the eavesdropper’s algorithm A. The only
limit is that the storage is bounded by E = n/5. Also note that the result is
non-uniform, in the sense that the algorithm A may be tailored to the specific
distributions D(0) and D(1).

We note that, in addition to providing provable secrecy, our scheme pro-
vides two important security features, not usually provided in complexity-based
schemes. First, as noted, the secrecy is guaranteed even if following the trans-
mission the secret-key is fully revealed. Thus, the system is secure against future
leakage of the key. Secondly, the system is also secure against the event in which
the eavesdropper E subsequently obtains more storage space. The bound we have
on E ’s storage space need only be true for her current available storage. Any fu-
ture additional storage will not give her any advantage. Thus, future advances
in storage technology do not threaten the secrecy of current communications.
This is in contrast to most-all complexity-based schemes, were messages can be
stored now and deciphered later, if and when computing technology allows (e.g.
using quantum computers to factor numbers).

How many random bits are necessary? The protocol as described above uses n
random bits for each message bit, for a total of nm random bits. The [7] protocol,
in contrast, uses only n bits in total, for the entire message. This is achieved in the
following way. A single string α of length n is broadcast. The bit X1 is defined as
in our protocol. For the subsequent bits, Xi is defined to be Xi :=

⊕k
j=1 αsj+i−1 .

Thus, all the Xi’s are obtained from a single α of length n. For the model of [7],
where the eavesdropper can only access E = n/5 bits, Maurer proves that the
reduced bit protocol suffices to guarantee security. The proof, however, does not
carry over to our setting, where the eavesdropper can access all the bits and the
sole bound is on the space available to the eavesdropper. Our proof, as described
in the next section, necessitates n random bits for each message bit. It remains
an important open problem to extend the proof to allow for a similar number of
bits as in the original [7] protocol.
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3 The Proof

We provide the proof in several stages. First, we prove that it is sufficient to
prove the theorem for the case where there are only two possible messages.
Next, we prove the theorem for the case of one-bit messages. We do this by
proving that if for a given α, the knowledge of η (|η| = n/5) helps the eaves-
dropper in reconstructing the one-bit message M for many different secret-keys
s, then the Kolmogorov Complexity of α must be small. Since most α’s have
high Kolmogorov complexity, this shows that the eavesdropper’s probability of
being correct is small. Next, having proven the theorem for single bit messages,
we consider the case of long messages that differ in a single bit. Finally, we prove
the full theorem.

Notations: For a string α(i) = (α(i)
1 , . . . , α

(i)
n ), (α(i) ∈ {0, 1}n), and s = (σ1, . . . ,

σk) we denote s(α(i)) =
⊕k

j=1 α
(i)
σj . For α = (α(1), . . . , α(m)), we denote s(α) =

(s(α(1)), . . . , s(α(m))). We also denote X(s, α) = s(α).

3.1 From Distributions to Messages.

Lemma 1. Theorem 1 holds iff for n large enough, for any two messages M (0)

and M (1) and any Eavesdropper’s algorithm A, which uses at most n/5 storage
space, ∣∣∣Pr

[
A(M (1)) = 1

]
− Pr

[
A(M (0)) = 1

]∣∣∣ ≤ 2−k/5,

where the probability is taken over the random choices of α and the secret key s.

Proof. Clearly, if Theorem 1 holds, then in particular it holds when the distri-
bution D(1) is concentrated solely on M (1) and D(0) solely on M (0).

Conversely, suppose that∣∣∣Pr
[
A(M (1)) = 1

]
− Pr

[
A(M (0)) = 1

]∣∣∣ ≤ 2−k/5,

for any two messages. Let D(0) and D(1) be two distributions. W.l.o.g. assume
that

Pr
[
A(M) = 1|M ∈ D(1)

]
− Pr

[
A(M) = 1|M ∈ D(0)

]
≥ 0.

Let M (1) be the message such that Pr
[
A(M (1)) = 1

]
is the largest, and let M (0)

be the message such that Pr
[
A(M (0)) = 1

]
is the smallest. Then,

Pr
[
A(M) = 1|M ∈ D(1)

]
− Pr

[
A(M) = 1|M ∈ D(0)

]
=∑

M

Pr [A(M) = 1]PrD(1) [M ] −
∑
M

Pr [A(M) = 1] PrD(0) [M ] ≤
∣∣∣Pr
[
A(M (1)) = 1

]
− Pr

[
A(M (0)) = 1

]∣∣∣ ≤ 2−k/5.

ut
Thus, it is sufficient to focus on the case of just two possible messages.
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3.2 Single Bit Secrecy

We now prove the theorem for the case of a single bit message, i.e. m = 1. We
use the following notations. Since m = 1, we have α = α(1). Thus, we omit the
superscript from α and write α = (α1, . . . , αn) (αj ∈ {0, 1}). Similarly, we denote
X = X1. Let K = nk and N = 2n. Let S = (s1 , s2, . . . , sK) be an enumeration
of all possible secret keys, and A = (α1, . . . , αN) be an enumeration of all strings
of length n. For a bit b we denote b̄ = (−1)b (i.e. we replace 1 by −1 and 0 by
1). For a sequence B = (b1, . . . , bK) we denote B̄ = (b̄1, . . . , b̄K). For a sequence
α we denote v(α) = (s1(α), . . . , sK(α)).

Preliminaries. For v ∈ {1,−1}K define the discrepancy of v as d(v) = |∑K
i=1 vi|.

Lemma 2. Let α ∈ {0, 1}n be such that the fraction of 1’s and the fraction of
0’s in α is no less then 1/8, then

d(v(α)) <
K

20.4k
.

Proof. Assume k is odd. Let p be the fraction of 1’s in α. Set q = 1−p. Consider
a random choice of s = (s1, . . . , sk) ∈ S. Since k is odd,

s(α) = 1 ⇔ |{i : αsi = 1}| is odd

For any 0 ≤ t ≤ k,

Pr [|{i : αsi = 1}| = t] =
(

k
t

)
ptqk−t.

Thus,

Pr [s(α) = 1] =
∑

t odd

(
k
t

)
ptqk−t. (1)

Now,

1 = (p + q)k =
∑

t

(
k
t

)
ptqk−t (2)

(p − q)k =
∑

t

(
k
t

)
(−1)k−tptqk−t (3)

Since k is odd, when t is even, (−1)k−t = −1. Thus, adding (2) and (3),

1 + (p − q)k

2
=
∑

t odd

(
k
t

)
ptqk−t.

Together with (1), we get,

1
2
− 1

20.4k+1
< Pr [s(α) = 1] =

1 + (p − q)k

2
<

1
2

+
1

20.4k+1
.
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For k even, an analogous argument works by considering Pr [s(α) = 0] and the
number of zeros in α.

Thus,

D(v(α)) = K|Pr [s(α) = 1]− Pr [s(α) =] | <
K

20.4k
.

ut
Let

D =
{

α ∈ A : d(v(α)) >
K

20.4k

}
(4)

be the set of vectors α with a large discrepancy.

Corollary 3 For c ≥ 0.798, |D| ≤ 2cn .

Proof. For a string α denote by z(α) the number of zeros in α. By Lemma 2,
α ∈ D only if z(α) < n/8 or z(α) > 7n/8. For a random α, E(z(α)) = n/2.
Thus, by the Chernoff bound ([9] p. 70, Theorem 4.2),

Pr [z(α) < n/8 or z(α) > 7n/8] = 2 Pr
[
z(α) <

n

8

]
≤

2 Pr
[
z(α) <

(
1 − 3

4

)
E(z(α))

]
≤ 2 exp

(
−n

2

(
3
4

)2 1
2

)
< 2−0.202n.

for n sufficiently large. ut
Lemma 4. Let α, β ∈ A,

v(α) ⊗ v(β) = v(α ⊕ β),

where ⊗ is the coordinate-wise multiplication.

Proof. For each s ∈ S

s(α) · s(β) = (−1)s(α) · (−1)s(β) = (−1)(s(α))⊕(s(β)) = (−1)s(α⊕β) = s(α ⊕ β)

ut

Single Bit Case. For the case of single bit messages the only two possible
messages are M = 0 and M = 1. For a given Y , M = 1 iff X = 1 − Y . Thus,
in order for the Eavesdropper to distinguish between M = 1 and M = 0, she
must be able to distinguish between X = 0 and X = 1. Consider an algorithm
A = (A1, A2) of the Eavesdropper for guessing X = s(α). Given α, let η = A1(α)
be the information stored by the Eavesdropper following the first phase. By
definition |η| = n/5. Next, when provided with s, and η, algorithm A2(η, s)
outputs a bit X, in hope that X = s(α) (note that in this case A2 does not get Y ,
as it only needs to guess X). For a message M , we denote A(M) = A2(A1(α), s),
where α and s are chosen at random.

Definition 1 We say that A2 is good for α if there exists an η ∈ {0, 1}n/5 such
that Pr [A2(η, s) = s(α)] ≥ 1

2 + 1
20.4k/2 , where the probability is taken over the

random choices of s.
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We prove that for any A2, for almost all α’s, A2 is not good.
Let us concentrate on a given η. For the given η, let

B = Bη = (A2(η, s1), . . . , A2(η, sK))

(where s1, . . . , sK is the enumeration of all possible keys). The vector B is an
enumeration of the answers of A2 on input η, given the various keys si. For a
given answer vector B, let

LB =
{

α : |B̄ · v(α)| ≥ 2K

20.4k/2

}
.

LB is the set of α’s for which the answers in B are good. By definition, if A2 is
good for α then α ∈ LBη , for some η. We now bound the size of LB , for any B.

Let V be the K × N matrix, whose columns are v(α1), . . . , v(αN), i.e.

V =




s1(α1) s1(α2) · · · · · · s1(αN)

s2(α1)
...

...
...

...
...

...
...

...
sK(α1) · · · · · · · · · sK (αN)




Consider a specific B ∈ {0, 1}K . Let L+ =
{
α : B̄ · v(α) ≥ 2K

20.4k/2

}
and L− =

LB − L+. We bound the size of L+. The proof for L− is analogous.
Let 1L+ be the characteristic vector of L+ (1L+ ∈ {0, 1}N). For any i, B̄ · V ·

ei = B̄ · v(αi) (where ei is the unit vector with 1 in the i-th coordinate). Thus,
by definition of L+,

B̄ · V · 1L+ ≥ |L+| · 2K

20.4k/2
. (5)

On the other hand, by the Cauchy-Schwartz inequality,

B̄ · V · 1L+ ≤ ∥∥B̄∥∥ · ‖V · 1L+‖ . (6)

Since B̄ ∈ {1,−1}K , we have

∥∥B̄∥∥ =
√

K. (7)

Next, by definition,
‖V · 1L+‖2 = 1T

L+ · V T V · 1L+ .

Consider the matrix H = V T V . Set H = (hi,j). By definition and Lemma 4,
|hi,j| = d(v(αi) ⊗ v(αj)) = d(v(αi ⊕ αj)). Thus,

|hi,j| ≤
{

K αi ⊕ αj ∈ D
K

20.4k otherwise
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(where D is the set of α’s with large discrepancy (eq. (4)). Let

δ(i) =
{

1 αi ∈ L+

0 αi 6∈ L+

We have,

‖V · 1L+‖ = 1T
L+ · V T V · 1L+ =

N∑
i=1

N∑
j=1

|hi,j|δ(i)δ(j) ≤

N∑
i=1

δ(i)


 ∑

j:αi⊕αj∈D
|hi,j| +

∑
j:αi⊕αj 6∈D

|hi,j|δ(j)

 ≤

∑
i:αi∈L+


 ∑

j:αi⊕αj∈D
|hi,j| +

∑
j:αj∈L+,αi⊕αj 6∈D

|hi,j|

 ≤

∣∣L+
∣∣ (2cnK +

∣∣L+
∣∣ K

20.4k

)
(8)

(for c as in corollary 3). Combining Equations (5), (6), (7), and (8), we get,

|L+| · 2K

20.4k/2
≤

√
K
∣∣L+

∣∣1/2
(

2cnK +
|L+|K
20.4k

)1/2

Solving for |L+| gives,
3|L+| ≤ 2cn+0.4k

Similarly, for L−, 3|L−| ≤ 2cn+0.4k.
In all we conclude,

Lemma 5. For any possible answer vector B, |LB| ≤ 2cn+0.4k.

We now relate the Kolmogorov complexity of α to the success probability of A2

on α (see [6] for a comprehensive introduction to Kolmogorov Complexity). For
a string α denote by C(α|A2) the Kolmogorov complexity of α, with regards to
a description of A2 .

Corollary 6 For any algorithm A2 and α ∈ {0, 1}n if A2 is good for α, then

C(α|A2) ≤ n

5
+ cn + 0.4k.

Proof. If A2 is good then, given A2, the string α can be fully specified by:

1. η - n/5 bits, and
2. the index iα of α in LBη (in lexicographic order) - at most cn + 0.4k bits,

Given this information, α is constructed as follows. First, using A2 and η, the
answer vector Bη = (A2(η, s1), . . . , A2(η, sK)) is constructed. Next, all possible
strings β ∈ {0, 1}n are constructed one by one, in lexicographic order. For each
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string, β, we check if |B̄ · v(β)| ≥ 2K
20.4k/2 . If so, it is marked as a member of LB .

The desired string α is the iα member of LB . ut
Since c < 0.8, we have n

5 + cn+0.4k < n for n sufficiently large. Thus, only a
negligible fraction (2−Ω(n)) of the α’s have C(α|A2) ≤ n

5
+cn+0.4k. Thus, since

α is chosen at random, there is only a negligible probability that A2 is good for
α, even for an optimal A1.

3.3 Multi-bit Secrecy - The One-more Bit Problem

Next, we consider the secrecy of the “one-time-pad” X for the case m > 1.
Thus, we consider the case where X = (X1, . . . , Xm). We consider the following
problem. Suppose that the Eavesdropper is given all of X except for the last bit,
Xm = s(α(m)). Her aim is to guess the value of Xm. We call this the One-more
Bit Problem.

Thus, we consider the following scenario. First, α = (α1, . . . , αm) is trans-
mitted. The Eavesdropper may compute any function η = A1(α), such that
|η| = n/5, and retain η alone. Next, she is provided with s and Xi for all
i = 1, . . . , m− 1. She must now guess Xm.

As above, let A2 be the algorithm the Eavesdropper uses to guess Xm, given
η, s and the Xi’s. Denote X− = (X1, . . . , Xm−1) and α− = (α(1), . . . , α(m−1)).
Note that X− is fully determined by α− and s. Thus, we write X− = X−(α−, s).

Using A2 we can construct another algorithm Â2 which, given η = A1(α),
s and α− guesses Xm. (The difference between A2 and Â2 is that Â2 gets α−

as input, instead of X−.) Algorithm Â2 works as follows. First, Â2 computes
X− = X−(s, α−). Then, it runs A2(η, s, X−). Thus, the success probability of
any algorithm A2 is at most the success of the best algorithm Â2. We now bound
the success probability of Â2.

For a given η and α−, let B = Bη,α− = (Â2(η, s1, α
−), . . . , Â2(η, sK , α−)).

In other words, B is the enumeration of answers of Â2, for the given η and α−.
Set

LB =
{

αm : |B̄ · v(αm)| ≥ 2K

20.4k/2

}
.

By Lemma 5, |LB| ≤ 2cn+0.4k. Thus,

Lemma 7. If α ∈ LBη,α− , for some η, then C(α|Â2) ≤ (m−1)n+ n
5 +cn+0.4k.

Proof. The sequence α is composed of α− together with α(m). Thus, given Â2

the entire sequence α can be fully characterized by:

1. η - n/5 bits,
2. α− - (m − 1)n bits, and
3. The index of αm in LB

η,α− - cn + 0.4k bits,

The construction of α from this information is analogous to that given in the
proof of Corollary 6. ut
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Corollary 8 For any A1, A2,

Pr
[
A2(A1(α), s, X−) = Xm

] ≤ 1
2

+
2

2k/5
.

Proof. By Lemma 7 and the definition of LB , if C(α|Â2) > (m− 1)n + n
5 + cn +

0.4k, then, for any η

Pr
[
Â2(η, s, α−) = Xm)

]
<

1
2

+
1

20.4k/2
.

Thus, we also have that for such α and any algorithm A2 (which gets X− instead
of α− as input) and η = A1(α),

Pr
[
A2(A1(α), s, X−) = Xm)

]
<

1
2

+
1

20.4k/2
.

For α ∈ {0, 1}nm,

Pr
[
C(α|Â2) ≤ (m − 1)n +

n

5
+ cn + 0.4k

]
� 1

20.4k/2
.

Thus, in all,

Pr
[
A2(A1(α), s, X−) = Xm

] ≤ 1
2

+
2

20.2k
.

ut

3.4 Multi-bit Security - Any Two Messages

We consider the case of distinguishing two messages. Let M (0), M (1) be two
distinct messages, M (i) ∈ {0, 1}m. We show that if an eavesdropper’s algorithm
A can distinguish between M (0) and M (1), with probability p, then there is
another algorithm B = (B1, B2), which solves the One-more Bit Problem with
probability ≥ 1/2 + p/2. Specifically, w.l.o.g. assume that

Pr
[
A(M (1)) = 1

]
− Pr

[
A(M (0)) = 1

]
= p ≥ 0.

We construct B(B1, B2), such that for β ∈ {0, 1}mn,

Pr
[
B2(B1(β), s, X−(β, s)) = s(β(m))

]
≥ 1

2
+

p

2
.

Suppose that M (i) 6= 0, for i = 0, 1. Let P be an m×m non-singular matrix
over F2 such that P · M (0) = e1 and P · M (1) = e1 + em, where e1 and em

are the unit vectors with a 1 in the first and last coordinates, respectively. For
β = (β(1), . . . , β(m)) we view β as an m×n matrix. Thus, P ·β is another m×n
matrix. A detailed description of B = (B1, B2), given A = (A1, A2), is provided
hereunder. For the case that M (0) = 0, an analogous proof works, omitting e1

in all its appearances.
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B1: Input: β. Output: η.
1 α := P−1β.
2 η := A1(α).

B2: Input: η, s and X− = X−(s, β). Output: Xm = s(β(m)).
1 Choose r ∈ {0, 1} at random.
2 X := X− ◦ 0 (concatenation).
3 Z = X ⊕ e1 ⊕ rem.
4 Y := P−1Z.
5 Output A2(η, s, Y ) ⊕ r.

First we prove a technical lemma.

Lemma 9. Suppose that

Pr
[
A(M (1)) = 1

]
− Pr

[
A(M (0)) = 1

]
= p ≥ 0.

Consider choosing r ∈ {0, 1} at random and then running A on M (r). Then

Pr
[
A(M (r)) = r

]
=

1
2

+
p

2
.

Proof.

Pr
[
A(M (r)) = r

]
=

Pr
[
A(M (1)) = 1

]
Pr [r = 1] + Pr

[
A(M (0)) = 0

]
Pr [r = 0] =

1
2

(
Pr
[
A(M (1)) = 1

]
+
(
1 − Pr

[
A(M (0)) = 1

]))
=

1
2

+
p

2
.

ut
Lemma 10.

Pr
[
B2(B1(β), s, X−(β, s)) = s(β(m)))

]
=

1
2

+
p

2
.

Proof. Set δ = s(β(m)), and β− = (β1 , . . . , βm−1). By construction Z =
(
s(β−)

◦0)⊕(e1 ⊕ rem) = (s(β) ⊕ δem)⊕(e1 ⊕ rem) = s(β)⊕(e1 ⊕ (r ⊕ δ)em) . Also, by
construction, α = P−1β (B1 line 1), and P−1e1 = M (0) and
P−1 (e1 ⊕ em) = M (1). Thus, P−1 (e1 ⊕ ((r ⊕ δ)em)) = M (r⊕δ). Thus,

Y = P−1Z = P−1 (s(β) ⊕ (e1 ⊕ (r ⊕ δ)em)) = s(P−1β) ⊕ P−1 (e1 ⊕ (r ⊕ δ)em)

= s(α) ⊕ M (r⊕δ).

By construction, B1(β) = A1(α), and B2(η, s, X−(s, β)) = A2(η, s, Y )⊕r. Thus,

Pr
[
B2(B1(β), s, X−(s, β)) = δ

]
= Pr

[
A2(A1(α), s, s(α) ⊕ M (r⊕δ)) = r ⊕ δ

]
=

Pr
[
A(M (r⊕δ)) = r ⊕ δ

]
≤ 1

2
+

p

2
.

ut
Together with Corollary 8 we get
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Corollary 11 For any M (0) and M (1),∣∣∣Pr
[
A(M (1)) = 1

]
− Pr

[
A(M (0)) = 1

]∣∣∣ ≤ 1
2k/5

.

By Lemma 1 this completes the proof of Theorem 1.
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