A Compiler for Lazy ML

Lennart Augustsson

Programming Methodology Group
Department of Computer Science
Chalmers University of Technology
$-412 96 GBteborg, Sweden

Abstract

LML is a strongly typed, statically
functional Llanguage

scoped
with Llazy evaluation.

It is compiled trough a number of program
transformations which makes the code gen-
eration easier. Code is generated 1in two

steps, first code for an abstract graph
manipulation machine, the G-machine. From
this code machine code is generated. Some
benchmark tests are also presented.

1. Introduction

The LML compiler project is an attempt to
produce efficient code for a functional

Language with lLlazy evaluation for an ordi-
nary von Neumann machine. When we started
we knew of no other attempt to do this, but
since then some similiar things have
appeared Like ([Huda841, and CFaird2?l.
There are several compilers for non-lazy
functional Llanguages, eg. [Card847.

The LML compiler is written in LML and
it produces (as an intermediate step) G-
code, code for an abstract graph manipula-
tion machine, from which machine code gen-
eration is fairly easy. This makes the LML
compiler easy to port to other machines.
in the is

The approach used compiler

to perform many transformation on the pro-
gram ("source to source"” transformations)
to get a program for which generation of

efficient code is less complicated.

is based

The graph represents
is evaluated, and it is
it is din a printable

The execution of the program
on graph-reduction,
the expression that
transformed wuntil

Permission to copy without fec all or part of this matcrial is granted
provided that the copics are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1984 ACM 0-89791-142-3/84/008/0218 $00.75

218

form. During execution there 1is also an
ordinary stack on which computations are

performed (as in ordinary Llanguages) when
this can be done without violating the lazy
evaluyation semantics.

2. LML Language Description

Lazy ML, or LML for short, and
completely functional variant of ML,
CMiln841 and C[Gord791. The syntax wused
here is slightly different from Standard
ML. The main differences between LML and
ML is that LML has lazy evaluation, there
are no references type nor assignments and
no exception-mechanism; strings are lists
of characters, and there are no explicit
input/output procedures.

is a lazy

whose
is exe-

An LML program is an =xpression
value 1is printed when the program

cuted.

Function definitions may wuse pattern
matching, which makes programs both easier
to write and understand. Such a definition
contains a number of equations for a func-
tion separated by ||, e.g.

1
n * fac(n-1)

Let rec fac 0
|| fac n
in fac 10

bind
in'.
pat~

Pattern matching can also be used to
multiple wvatues Llike “let (a,b) = f x
There is also a case expression to do
tern matching.

An important concept in LML is Llocal
defigitions. A Llocal definition has the
forg* “Let D in e' where D is a declara-
tor . In a let expression the declarator
defines the meaning of a number of identif-
iers that <can be wused in the expression
part of the let.

* Appendix A describes the terminology

used in the following descriptions.

x* peclarator syntax is described in

appendix B.

2.1 Pattern matching semantics

is translated into
case expressions (as described below), so
this explanation need only concern the
semantics of case expressions.

ALl pattern matching

The case expression is evaluated by
finding the first pattern that matches.
The patterns are check from top to bottom,
and each patters is checked from left to
right. The checking is stopped as soon as
a subpart fails to match. This rather
explicit top-down, left-right ordering is
perhaps unfortunate, but some ordering must
be imposed to avoid the necessity of paral-
Llel evaluation of the subparts of the
expression that is to be matched.

2.2 Type definitions

It is possible to define new types in LML,
the mechanism for this is very similar to
the one proposed for Standard ML (SML).
The type definitions resemble those of
Hope, [Burs801., It would be possible to
have no predefined types (except the func-~
tion type) and instead let the user define
all types. This would give the same per-
formance as having them predefined, except
for the integers which are implemented with
the machine arithmetic.

A new type is introduced by
‘let type T in e’
where T is a type dectarator, which s
similar to an ordinary declarator, ie. it
can be
'T] and TZ' mutual definition
‘rec T' recursive definition.
Tilv seeV _)=C,(t P P L R N S
17 1 r.ts c
n where i is tﬂl name gf the
n2w type and Vi++. are type
variables, C1...C are the
new constructors, t are
type expression possibly

containing v

Using this the booleans coutd be defined by

Let type bool = true + false in
3-tuples
Llet type tuple3d(xa, *b, *c) =
T3(xa, *b, *c)
and Llists by
Let type rec List(xa) =
nil + cons(*a, List(*a)) in
(To make things more readable nullary con-
structors are written without “()'.) ALl of
these are predefined are of <course prede-

fined.

219

There is a difference in type defini-
tions between L4L and Standard ML. In SML
all constructors take either 2zero or one
argument. To get more arguments a tuple
must be used instead; so the List defini-

tion would be

Llet type rec LlList(*xa)

nil + cons(*a # list(*a)) in
(*#' is used for cartesian product.) This
means that a List on cons form may be
formed by ‘cons e' where ‘e' is any expres-
sion of the right type. We have not
adopted this for two reasons:

- it requires tupels to be predefined,
we can define them in the language.

the
dif-
list

since we have Lltazy evaluation
domain for eg. Llists would be
ferent from the intuitive Llazy

domain. It would be possible to have
Lists of the form ‘cons |', ie. a list
known to be on cons form but neverthe-
Less without head and tail part, since

there 1is a difference between] and
(},]) using our case semantics.
It is of course still possible to define

the types as in SML.

When a type is introduced the new con-

structors, ie. the names introduced on the
right, may be used to form expressions of
that type. An expression 'Ck(e yeeed! is a
canonical value in the new type. A canoni-
cal value is something which yields itself
as value when evaluated.

The new constructors may also be wused
to form patterns. The pattern matching is
the only way to take apart an expression of
the new type.

Eg.
let type rec tree =
teaf{int) + node(tree, tree) in
let rec sumleafs (leaf(n)) = n
|1 sumileafs (node(t1, t2)) =
sumleafs(t1) + sumiteafs(t2)
in ...
5. Compitation

This section describes the different passes
of the compiler.

3.1 Parsing

The parsing is done with a3 ordinary recur-
sive descent parser which builds an
abstract syntax tree. This representation

is then used
generation.

in the compiler until the code

3.2 Scope analysis
The scope analysis (or renaming) assign
unique names to all identifiers in the

program and checks that thee scope rules
are obeyed. Giving unique names to the
identifiers simplLifies subsequent transfor-
mations of the program since parts of the
program can now be moved around without the
risk for name clashes.

Some rewriting of the syntax tree are
also made, because some syntactic construc-
tions are ambigous without further informa-
tion about the symbols involved. They can
only be resolved when the meaning of the
identifiers are known, eg. ‘let s = e, in
e'. If 's' is defined as a constructor in
this scope then 's' is a pattern otherwise
this is a normal variable binding.

The scope analysis traverses the
and keeps a symbol table of the

in the current scope, the tree
where necessary.

tree
identifiers
is rebuilt

3.3 Type checking

The type checking is the based on the algo-

rithm described in [Miln781, but extended
to handle the pattern matching. The
typechecker (or typededucer) deduces the

most general type of each subexpression and
checks that they are used consistently.
The deduced types are also used later on in
the code generation.

The type checking eliminates the need
to do runtime type checking, since at that
run time we know that the program 1is type

correct.

3.4 Pattern matching transformation

the transformations
to reduce all pattern
expressions containing
only simple patters. A simple pattern has
the form °“C(i) (where i are
variables), it's'callednsimple because this
is the basic pattern form and it's also
easy to generate code for.

The purpose of
described here is

matching to case

|

ALl constants in the predefined types
(such as true and S5) are treated as con-
structors in their corresponding types and
they are now written with parenthesis to
indicate their special status (not to con-
fuse them with variables). This means that
a pattern is built up onty from construc-
tors and variables.

There are three different kind of pat-

tern matching beside the case expression
and they are all transformed into case.
First, the declarator for function defini-
tions is transformed from

Py -e- Py T oy
It Pm1 *** Pan © ©n

to

220

f 1, ... 1 .ns In) in

= case tuple (I,
17: e,

tu len(p11, ens B1n

tuple"(pm1, ese pmn) Toen
end

where tuplen is the n~tuple constructor.

In the the second kind of matching,

the value binding, there is a declarator
‘p = e'. This declarator is replaced by
local I = e in (
i1 = case I in
p i
end 1
and iz = case I in
p ¢ i
end 2
and in = case I in
I
end) n
where i,, ... and i_ are the variables in
n
the patzern pP.

This declarator binds the same vari-
ables as the original one, but uses only
case~matching. The reason behind this
seemingly complex transformation is to
preserve all properties of the declarator,
it may for instance be prefixed by 'rec' to
make it recursive. This works for the
transformed declarator as well. Eg. the
expression 'let rec (a,b) = f a in b' would
be transformed to
let rec

tocal I = f a in (
a = case I in
(a,b) : a
end
and b = case I in
(a,b) : b
end)
in b
The introduced <case expressions can be

viewed as selector functions to select the
different parts of the expression and the
recursion 1is still possible since bindings
are "lazy".

Third,
(ie. “\p.e'
is transformed into

in the case of a lambda pattern
where p is not a variable) it
‘\I.let p =1 in e'.

When all
been applied,
matching left.

these transformations have
there is only case pattern
These must now be changed

into simple patterns, ie. into expressions
of the form
case e in
C1(111’ ees 11n1) 1 ey
C1(1m1' c=« Von) @ e
iz e "
tTd

end

where the last entry may be missing if all
constructors are present 1in the other
entries. This last entry, with a single

variable as the pattern, will be called the
default entry.

The algorithm to transform complex
patterns into simple patterns is as fol-
lows:

a. Sort the patterns by the outermost
constructor and group those with the
same constructor together.

b. Each of the groups is now expanded if
it is not a single simple pattern.
New variables are introduced for the
subparts of the <constructor and an
expression with nested casing of those
variables (with the corresponding
parts of the original patterns as the
new patterns) 1is wused as the right
hand side.

¢c. This process is now repeated for all
the new case expressions until only
simple patterns are Lleft.

This description is simplified as it does
not state how to handle failures to match.
In fact every new case expression must also
have a default entry to handle this. To
make compilation to G-code efficient we
have to introduce two new constructions
used in expressions (they are only used
internally by the compiler): IDEF and ODEF.
IDEF stands for the same value as the

default entry of the nearest enclosing case
(it's only used in non-default entries),
ODEF means the same value as the default
entry of the second nearest enclosing case
(used only in default entries).

An example:
case e in

Ctrue; x1 : e,

Cfalsel : e,
£ ey
het e,

[e p——
O = ———

e

Or with the uniform notation

case e in

vcons(true(), cons(x, nil())) : e,
|| cons(false(), nilQ)) : e,
1 nit () : ey
]| consCh,t)™: e,
nd

e

Sort, group, introduce new variables, and

expand cases

221

case e in
cons(11, Iz).:
case I, in
true() :
case I, in
cons(x, nilQ)) : e,
end
false() :
case I, in
nil(Q : e
end 2
h : case I, in
t T e
end 4
end
nil{) : e
end 3
Since the inner of the introduced cases is
nonexhaustive a default entry dis intro-

The degenerate case (only a default
is changed to eliminate the case.

duced.
entry)

case e in
cons(I1, 12) :

case I,/ in
true() :
case 1, in
cons{x, nilQ)) : e,
I3 : ODEF
end
false() :
case I, in
nil({) : e,
14 : ODEF
end
h : e4[IZIt]
end
nil() : e
end 3
(eAEIZ/t] means e where each free
occurence of t has been changed to 12.)
Repeat with innermost case.
case e in
cons(I1, 12)‘:
case I1 in
true() :
case I, in
cons(I_, I,) :
6" .
case I, in
ni?() : e1[15/x]
17 : ODEF
end
I : ODEF
end 3
false() :
case I, in
nilO : e
I : ODEF
end 4
h : e‘[12/t1
end
nil() : e
end 3

As in the example, complex patterns may be
transformed 1into quite Llarge simple pat-
terns. This does not seem to be much of a

problem in
used in ordinary

practice, since most patterns
programs are simple or
almost simple. Other transformations can
be used to keep the size down, eg. if Large
constants (je. patterns with only construc-—
tors) are matched this may be transformed
into ordinary equality comparison, thus
saving space (but not execution time).

3.5 Other transformations

The transformations described here operates
on declarators (and makes them simpler).
transformed

AlLL Llet-expressions are

into one of two forms

“let D1 and D2 ... and Dn in e

or

. . .
let rec 01 and D2 ... and Dn in e

.

where each Dk has the form "1 = e'.

Function definitions are transformed

from

to
1= 11.12....1n

Local declarators can now removed by:

‘Let locat D, in D, in e' becomes

‘let D, in Llet D, Tn e'

because of the “"renaming which made all

identifiers unique. Having unique identif-
does not

iers means that pulling D out
violate any scope rules (lny names defined
in b, are not used in e).

ALL Let bindings can then be flattened
out to the form above,

3.6 Lambda lifting

The input to the code generator should be

an expression of the form

where each e, may begin with a number of
Lambdas, bu% must otherwise contain no
Lambda-expressions. The only free wvari-
ables in each e must be the predefined
functions or one o¥ the f, :s. Furthermore
the expression ‘e’ mus% not contain any
Lambdas. The expression may still contain
‘let' and ‘let rec' -expressions.

The purpose of the lLambda Lifting s
to Lift out all Lambda expression to the
outermost level, which is the only place
were thay may occur in the final expres-
sion. Any lambda expression not containing
any free variables can simply be moved to
the global level, so the main work of the
Lambda Lifting is to remove free variables.
This elimination of free wvariables is
analogous the the abstraction wused with

222

combinators in [Turn79Y and supercombina-
tors in [Hugh82] except we do not enforce
“fully Lazyness" (see LHugh821 for
details). The elimination is done by pass-
ing each free variable as an argument, and
adding the corresponding parameter, to the
function in which it s used. A simple
example of Lambda Lifting is shown below.

(a) let x = 5
in let f = \y.x
in f 3
(b) let x = 5
in let f = \y.\x.x
in f x 3
(c)
global definition: f = \y.\x.x
expression: Let x = 5
in f x 3

3.7 Code generation

The abstract machine and the code genera-
tion is described in detail in [John84Y and
will only be briefly outlined here.

The code generation is performed in
two steps. First code for an abstract
machine, the G-machine, 1is generated and
then from this code, the G-code, machine
code for the specific machine (in our case
the VAX11) is generated.

Code is generated separately for each

definition 1in the global definition List.
The purpose of the code for a function s
that when given a graph, corresponding to
the Lleft hand side of the definition,
transform this to the <canonical value
corresponding to the right hand side. This
is 1in contrast to most other approaches to
lazy evaluation with graph reduction where
the returned value may be non-canonical and
the evaluation must proceed after a func-
tion has returned (cf. CTurn?791).

f xy = x + 2y

|t 1e]

Fig 1.
the graph has the canonical value ¢
and ZC& the value S.

As shown in figure 1, the code for f
when given the first graph, transform
into the second graph.

will,
it

A program is executed by
(and printing) of the expression part of
the program. EVAL always searches down the
spine of the graph until a function node is
found, while going down pointers to the
spine nodes are pushed so that they are
easily accessible to the function (this is
called wunwinding). The function code is
then invoked and when it returns (to the
calter of EVAL) it has transformed a piece
of the graph to canonical form.

doing EVAL

As said above purpose of the code for
the function is to produce the canonical

value of the right hand side, and so there
must be a code generation scheme to produce
code which computes the value. But often
the wunevaluated expression must be used,
eg. when passing parameters or as arguments
to constructors, so there must also be a
code generation scheme that will produce
the graph for an expression. These schemes
are called E and C respectively. The conm-
pilation is rule based, there are rules for
how to compile the different wvariants of
the syntax tree for each of the code gen-
eration schemes, see figure 2 for some
(simptified) rules.

cCil = PUSHINT i

clx? = PUSH n

Clcons(x,y)] = cCyl; cOx?; CONS

CCx y1 = ¢Ly™; ¢cCx?; MKAP

ECx] = PUSH n; EVAL

ECmul x y? = gClx1; GET; ECLyY; GET;
MUL; MKINT

EChd x] = gCx1; HD; EVAL

ECx y1 = cEx yY; EVAL

ECif x then y else 21 =
ECx1; GET; JFALSE L1;
ECyl; JUMP L2; L1: EL21; L2:

Figure 2

8y propagating the E scheme in the right
way a lot of the produced code is for com-
puting a value and not building a graph.
The 4if expression, for instance, for which
the value is wanted generates code that
first evaluates the condition and then
jumps to the code for the “then' or ‘'else’
branch. The code there will produce the
value of the corresponding expressions,

An example:

fac n = if n = 0 then 1
else n*fac(n-1)

would give the code

fac:PUSH 1; EVAL; PUSHINT 0; GET; EQ;
JFALSE L1; PUSHINT 1; JUMP L2;

L1: PUSH 1; EVAL; GET;
PUSHINT 1; PUSH 2; PUSHFUN sub; MKAP;
MKAP; PUSHFUN fac; MKAP; EVAL;
GET; MUL; MKINT; JUMP L3;

L2: UPDATE 2; RET 1;

The PUSH instruction pushes a value from

the pointer stack on top of the pointer
stack, the number indicates the offset from
the current stack pointer. EVAL causes the
graph pointed to by the pointer stack top
to be evaluated. PUSHBASIC pushes a con-
stant of the value stack. PUSHINT pushes a
reference to a constant on the pointer

stack. GET transfers the value pointed out
by the pointer stack top to the value
stack. MKAP pushes a reference to applica-

tion node containing two entries from the
pointer stack. EQ, MUL etc. operate on the
value stack. UPDATE updates a node in the
graph.

3.8 Imsprovements

There are a number of thing that can are

done to improve the code. Many of these
imprivements are made by instroducing
several different code generation schemes

used in different contexts (eg. for return
value computation, compataion of values on
the value stack).

- By keeping track of what variables
have already been evaluated in a cer-
tain context unnecessary EVAL instruc-
tions are avoided thereby saving time.

- When all arguments to an integer
operation, for which a graph building
code should be produced, are already
evaluated the operation is performed
in line instead. This is safe except
for overflow and division by zero, but
we do not handle those anyway.

- By using the type information some
calculations can be simplified, eg. if
two integers are compared the code for
this can be emitted in line instead of
calling a general value comparator.

- "Tail-call" elimination, ie. when the
last thing in the code for a function
is a call to another function this s

done by rearranging the stack and
doing a jump. This achieves tail-
recursion elimination as a special
case.

~ When the value of an application is
needed the graph corresponding to this
is not built, instead the function is
called the stack set up as if it would
have lLooked if called with EVAL.,

The code for the else part of the factorial
function in the example above becomes:

PUSH 1; GET; PUSH 1; GET; PUSHBASIC 1; suB;
MKINT; CALLFUN fac; MUL;

instead of the previous longer and slower

code.
5.9 Machine code generation

Machine code generation from the G-code is
rather straightforward since the G-code is

well suijted for execution on a von Neumann
machine. A simple <code generator would
just do ‘wmacro-expansion" of the G-code;
each G-instruction is replaced by a fixed
piece of machine code. We use a more ela-
borate code generator which tries to avoid
stack references and thereby memory refer—
ences.

3.9.1 Node layout

In the current implementation each node has

a tag field of one word followed by 0, 1,
or 2 more words. The tag serves two pur-
poses, first it indicates if the node has

canonical form or not and second it tells
the garbage collector how to treat the rest
of the node. The tag part is not just a
small number as is often the case in other
implementations, but instead its an address
into the machine code. By jumping to this
address with different offsets different
things can be done with the node, such as
evaluation, garbage collection and print-
ing. The evaluation of a node is accom-
plished by making a subroutine call to a
certain offset from the tag, if the node is
already on canonical form this address will
contain a return instruction which then
immediately returns, otherwise it will con-
tain code to initiate the unwinding.

3.9.2 HMemory allocation

graph is allocated on a
heap. Garbage collection is performed by
copying the used part of the heap into
another equally sized area.

Memory for the

During execution one machine register
always points at the next free heap loca~-
tion, allocation of a cell is done by sim-
ply adding the cell size to the register.
Heap overflow need not be tested before
every allocation, instead it's tested once
before a number of consecutive allocations.
This brings down the allocation overhead.
A normal (whatever that is) program allo-
cates about 300 kbytes/sec.
used

The copying garbage collection

has some advantages:

- cells of varying sizes are easily han-
dled.

storage gets compacted at garbage col-
lection, which is important when using
virtual memory.

the time spent in g.c. is proportional
to the size of the used part of the
heap, not the size of the heap as with

mark-scan. This 4is 1important since
the memory allocation 1is very Llarge
compared to the size of the wused

memory.

224

4. Current state of the compiler

The compiler as described here is not fully
implemented at the moment. We have an
older version of the compiler which does
not do the case transformations described,
but is otherwise very similar.

After completing the compiler we would
Like to test some other possible improve-
ments:

- A global analysis to detect when
call-by-value could be used instead of
call-by-need has been proposed in
CMycr801. This could bring down the
amount of graph construction further.

Vector nodes, ie. nodes with many
parts of the same kind, could be used
to store tuples in an efficient way.

5. Performance

ALl benchmarks below, and the code shown in
the appendicies are produced with the older
version of the compiler (see above).

It is difficult to do fair comparisons
between different Languages, but we have
tried some benchmark programs with dif-
ferent compilers and interpreters. If not
stated otherwise the same algorith has been
used for all Llanguages, this means that
even the C and Pascal programs use lists if
the functional program does. 0f course
this is not "fair" since one would not
write the an imperative program this way,
but if one starts using different versions
for different lLanguages this makes the com-
parison even more difficult. Nevertheless,
in two examples, 8queen and kwic, the pro-
grams in Pascal and C have been written in
an imperative style.

ALl execution times given i table 1
are in seconds of CPU time (garbage collec-
tion included).

Language processors:

LML described in

Lazy evaluation.

The lLazy ML compiler
this paper.

ML The ML/LCF system from Edinburgh,
translates ML to LISP and inter-
prets the LISP. Strict evaluation.

ML-C The compiling ML system by Luca
Cardetli, translates to VAX=-code.
Strict evaluation.,

SASL Turners SASL, translates SASL
SECD code and interprets it.
evaluation.

into
Lazy

LISP Interpreted Franz

Strict evaluation.

Lisp on UNIX.

Table 1.

LML NL ML-C SASL LISP Liszt Pascal c
8queen 3.2 170 9.0 170 48 5.2 1.0 0.4
fib20 0.83 46 0.5 31 21 1.1 0.92 0.46
primes 0.5 29 1.2 20 7.8 1.1 - -
insort 0.37 15 1.0 12 6.4 0.8 - -
tak 10 309 16 - 76 3.0 2.6 1.8
kuic 39 - - - - - 9.7 -
Table 2.
allocated max heap GC
memory (K) used (K) size (K) time (%)
fib20 45 0.3 20 4
prime 88 1.7 10 S
insort 59 4 10 15
8queen 687 6.4 50 6
Liszt Compiled Franz Lisp on UNIX. 6. Acknowledgements
Strict evaluation.
This work was supported by the Swedish
Pascal The VAX/UNIX Pascal compiler pc. 3oard for Technical Development (STU). The
Strict evaluation. LML compiler has been developed in coopera-
tion with Thomas Johnsson. I must also
C The VAX/UNIX C compiler cc. Strict thank the whole of the Programming Metho-
evaluation. dology Group for many helpful comments,
suggestions and ideas.
Programs:
8queen Counting the number of solutions to
the 8 queen problem (actually 7 References
queens are used to limit the execu-
tion time). The Pascal and C ver- {Burs80] R. M. Burstallt, D. B. McQueen,
sions of this program are coded and D. T. Sannella, '"Hope: An
differently (coded in a non- Experimental Applicative
functional style). Language", pp. 136-143 in
Proceedings of the 1980 LISP
fib20 Computation of the 20th Fibonacci Conference, Stanford, CA
number. (August 1980).
[Card84] L. Cardelli, "ML under UNIX",
primes The first 300 primes using Polymorphism: The ML/LCF/Hope
Erathostene's sieve. Newsletter, Vol. 1 no. 3 (Janu-
ary 1984).
insort Insertion sort of 100 elements in a CFair82] J. Fairbairn, "Ponder and its
List (repeated 10 times). Type System", Technical Report
No. 31, University of Cam-
tak The tak function with arguments bridge, Computer Laboratory
18,12,6. (November 1982).
C[Gord79] M. Gordon, R. Milner, and C.
kwic Keyword in context, all significant Wadsworth, “"Edinburgh LCF"”,
rotations of a number of sentences Lecture Notes in Computer Sci-
sorted. The Pascal program was ence, Vol. 78, Springer Verlag
written in the usual Pascal style (1979).
with arrays. [CHuda84) P. Hudak and D. Kranz, "A
Combinator-based Compiler for a
We have also performed some measurements of Functional Language", pp. 122-
memory consumption (of the LML programs) 132 in Proc. 11th ACM Symp. on
which are presented in table 2, Principles of Programming
Languages (1984).
allocated memory: is total amount of memory CHugh821 J. Hughes, "Super Combinators:
allocated by the program. A New Implementation Method for
Applicative Languages"”, pp. 1-
max used: is maximum amount of heap memory 10 in Proceedings of the 1982
in use at any time, ie. the part of ACM Symposium on Lisp and Func-
the heap not containg garbage. tional Programming, Pittsburgh
(1982).
heap size: is the size of the heap (twice CJohn843] T. Johnsson, "Efficient Compi-
this amount wused because of the way Lation of Lazy Evaluation" in
the garbage collector works.) Proceedings of the 1984 Sympo-
sium on Compiler Construction,
GC time: is the time spent in garbage col- Montreal (1984).

lection.

225

[Jone82] N.D. Jones and S.S. Muchnick,
"A Fixed-Program Machine for
Combinator Expression Evalua-
tion"”, pp. 11-20 in Proceedings
of the 1982 ACM Symposium on
is and Functional Program-
ming, Pittsburgh (1982).
R. Milner, "A Theory of Type
Polymorphism in Programming",
Journal of Computer and System
Sciences, Vol. 17 no. 3
pp. 348-375 (1978).
R. Milner, "Standard ML Propo-
sal", Polymorphism: The
ML/LCF/Hope Newsletter,
Vol. 1 no. 3 (January 1984).
A. Mycroft, "The Theory and
Practice of Transforming Call-
by~-Need into Call-by-vValue",
pp. 269~281 in Proc. 4th Int.
Symp. on Programming, <Lecture
Notes in Computer Science,
Vol. 83, Springer Verlag, Paris
(April 1980).
D. A. Turner, "New Implementa-
tion Techniques for Applicative
Languages”, Software - Practice

and Experience, Vol. 9 pp. 31-
49 (1979).

g

E

[MiLn783]

CMiln84]

CMycr80]

CTurn?79]

Appendix A, Terminology
Program parts will (almost)
enclosed in ', Certain
stand for special things:

always be
names inside

are patterns (ie. "expressions”
built wup from constructors and
variables).

variables, ie.

generated
from att
in the pro-

are new unique
they are compiler
variables distinct
other identifiers
gram.

are declarators, ie. the defin-
ition part of a let expression.

0,0,

e,8, are expressions.

Appendix B, beclarator syntax

Declarators can be built up 1in several
ways:

‘D, and D,' the bindings of 01 and D2 are
maée simu%taneously.

‘rec D' makes the bindings in D recursive,

ie. the variables bound in D may be used in
the right hand sides of D.

‘local D, in D,' makes 01 available in DZ’
but not outside DZ'
'p = e' binds the variables in the pattern

p to the corresponding parts of e.

iPgqe- Py =8y

| ?pm1"'pm . . .
i,ik are variables (ie. identifiers defines the Punftion i by a number of equa-
that are not constructors). tions.
C,ck are constructors.
Appendix C, Some benchmark programs
let nsoln nq =
letrec ok [} = true
] ok (x.1) =
letrec safe x d [] = true
Il safe xd (q.1> =x "= q & x ~= qtd &
X "= q-d & safe x {(d+1) 1

in safe x 1 1
in

letrec gen 0 = {[}]

gen n = concmap {\\b.(filter ok (map (\\q.q.b) fcount 1 nq)))) (gen (n-1))

in length {gen nq)
in

nsoln (stoi {hd argv))

Count the number of solutions of the n—queen problem (placing n

queens on a n*n board).
Used functions:

map - apply a function to all elements of a list.

concmap — as map but concatenate the instead of cons.

length - gives the length of a list.

count - generate a list of consecutive numbers between two limits.
stoi - stringto integer.

argv ~ list of arguments to the program.

2

26

letrec fib n =

Note: Zep is an alias for rl0, used as stack pointer for the
if n < 2 then 1 polnter stack.
else fib (n ~ 1) + fib (n -~ 2) Zhp is an alias for rll, use: as heap pointer.
in
fib 20

Vax assebler code:
The 20:th fibonacci number.
Code for function _filcer
.globl C filter

letrec tak x y z = C_filter:
1€ (7 < x) chea 2 CLeio0 tong - cton
else tak fta: gx-l) y 2) 2: movl $CLC100,r0
‘ta y~1) z x) rsb
. (tak (z-1) x y) ;:h; ;bycetozo,o,o,o
n p unprinterr
tak 18 12 6 jmp 20
.globl F filter
F filter: - Entry poiant for call via EVAL
The tak function. FLt100:
subll Zep,(zp) ,r0
capl r0,51
let mod x y = x - (x/y*y) in gﬁ:q :,zmm
let rec filter p 1 = if null 1 then (] 1:
else DLt100:
if mod (hd 1) p = O then -globl D filter tnc for - - eall
filter p (tl 1) D_filter: Entry point for “direct” ca
elsge hd 1 . filter p tl 1) movl 12{Zep),r0 PUSH 3
and count a b = {f a > b then {] movl (r0),rl EVAL
else a . count {atl) b 3sb eval(rl)
in capl $CONS, (r0) NULL; JFALSE L105
letrec sieve 1 = {f null 1 then nil Jeql L105
. elgse hd 1 . sieve (filter (hd 1) (tl 1)) movl (sp)+,Zep RET_NIL
n movl (Zep)+,r0
let primesto n = gsieve (count 2 n) movl $F_nil,(r0)
in rsb
L105: LABEL L10S
primesto 300 cmpl Zhp,ehp Enouza heap left?
bleq 1£f
Generating primes up to a limit. isb GARBMIN no: callect garbage
- nd VAX-code L:
Appendix P, € 1"'°d‘ :th run Time wovl 12(Zep),r2 PUSH 3
This is the essential part o e movl 4(x0) ,c2 HD
machinery of all programs: movl $APPLY,(Zhp)+ PUSH 2; MKAP
movl 4(Zep),(Zhp)+
Sup APPLY_eval thi; i: :;;iYe;z‘]; . movl £2,(Zhp)+
g"'P coen ° P moval -12(Zhp),r0
mp oo
APPLY: movl (Zep),r0 get pointer to apply movl (x0),rl EVAL
movl 8(r0),~(Zep) push argument part jsbl :va(];(tl) JFALSZ L106
movl 4(r0),r0 get function part ;:tl L§.(r)6) ALSE L
movl 0,-{%ep) and push it q
jup *(r0) jump via UNWIND tag cmpl Zhp,ehp
APPLY eval: bleq 1f
~ movl r0,-(Zep) push node pointer isb GARBMIN
movl Zep,-(sp) save current ep 1: o
jbr APPLY enter unwind state N
Function definition: movl 12(Zep),r2 PUSH 3
movl 4(r2),r2 TL
filter p L = novi $APlf’;.I,(th2: +PUSB 2; PUSHFUN filter; MKAP
1f null L then itk g
’ movl $APPLY,(Zhp)+ MKAP
else i1f p (hd L) then moval ~16(Zhp),{Zhp)+
(hd L) . filter p (tl L) movl r2,(Zhp)+
else movl 12(Zep),r2 PUSH
movl 4(r2),r2 HD

filter p 7tl L)
G-machine code: movl (sp)+,rl CONS; UPDATE 5; RET &
movl (rl),r0
movl $CONS , (r0)

PUSH 3; EVAL; NULL; JFALSE 105; aovl r2,4(r0)
RET_NIL; moval -12(hp),8(r0)
LABEL 105; movl rl,%ep
PUSH 3; x;g;ﬂpgsu'ri;);x,;p;zﬁvu; GET; JFALSE 106; Lioe: °°
: ; PUSH 2; PUSHFUN filter; MKAP; MKAP:)
PUSH 4; HD; CONS; UPDATE 5; RET 4; ' ’ :zﬁ ;fg??;éziep) ;Il:’;sa.-:;va 4
LABEL 106; jup D filter JFUY filter

PUSH 3; TL; MOVE 4; JFUN filter.

227

