
MATHEMATICS OF COMPUTATION
Volume 73, Number 246, Pages 1023–1030
S 0025-5718(03)01501-1
Article electronically published on December 19, 2003

PRIME SIEVES USING BINARY QUADRATIC FORMS

A. O. L. ATKIN AND D. J. BERNSTEIN

Abstract. We introduce an algorithm that computes the prime numbers up
to N using O(N/log logN) additions and N1/2+o(1) bits of memory. The
algorithm enumerates representations of integers by certain binary quadratic
forms. We present implementation results for this algorithm and one of the
best previous algorithms.

1. Introduction

Pritchard in [14] asked whether it is possible to print the prime numbers up to
N , in order, using o(N) operations and O(Nα) bits of memory for some α < 1.
Here “memory” does not include the paper used by the printer. “Operations” refers
to loads, stores, comparisons, additions, and subtractions of O(logN)-bit integers.

The answer is yes. We present a new algorithm that uses o(N) operations and
N1/2+o(1) bits of memory. We also present some implementation results; the new
method is useful in practice.

This paper is not the end of the story. Galway in [8] and [9] started from the
method described here and replaced certain subroutines, namely the algorithms in
Section 4 of this paper, with computational versions of Sierpinski’s theorem on the
circle problem. The resulting algorithm uses somewhat more operations but only
N1/3+o(1) bits of memory.

Strategy. The idea of the sieve of Eratosthenes is to enumerate values of the
reducible binary quadratic form xy. The idea of the new algorithm is to enumerate
values of certain irreducible binary quadratic forms. For example, a squarefree
positive integer p ∈ 1 + 4Z is prime if and only if the equation 4x2 + y2 = p has an
odd number of positive solutions (x, y). There are only O(N) pairs (x, y) such that
4x2 + y2 ≤ N .

We cover all primes p > 3 as follows. For p ∈ 1 + 4Z we use 4x2 + y2 with x > 0
and y > 0; for p ∈ 7 + 12Z we use 3x2 + y2 with x > 0 and y > 0; for p ∈ 11 + 12Z
we use 3x2 − y2 with x > y > 0. Section 6 reviews the relevant facts about these
quadratic forms.

(One can vary the forms and the (x, y)-conditions. For example, for p ∈ 1 + 4Z
one could use x2 + y2 with x > y > 0; for p ∈ 3 + 8Z one could use 2x2 + y2 with
x > 0 and y > 0; for p ∈ 7 + 8Z one could use 2x2 − y2 with x > y > 0. There are
many possible choices; we have not determined the optimal set of forms.)

Received by the editor September 7, 1999 and, in revised form, March 30, 2002.
2000 Mathematics Subject Classification. Primary 11Y11; Secondary 11E25.
The second author was supported by the National Science Foundation under grant DMS–

9600083.

c©2003 A. O. L. Atkin and D. J. Bernstein

1023

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

1024 A. O. L. ATKIN AND D. J. BERNSTEIN

A standard improvement in the sieve of Eratosthenes is to enumerate values of
xy not divisible by 2, 3, or 5; see Section 2 for details. This reduces the number of
pairs (x, y) by a constant factor. Similarly, we enumerate values of our quadratic
forms not divisible by 5; see Section 3 for details.

More generally, one can select an integer W and enumerate values relatively
prime to W . One can save a factor of log logN in the running time of the sieve
of Eratosthenes by letting W grow slowly with N . The same is true of the new
method. In Section 5 we show that one can enumerate the primes up to N using
O(N/log logN) operations and N1/2+o(1) bits of memory.

2. The sieve of Eratosthenes

The following algorithm is standard. It uses B bits of memory to compute the
primes in an arithmetic progression of B numbers.

Algorithm 2.1. Given δ ∈ {1, 7, 11, 13, 17, 19, 23, 29}, to print all primes of the
form 30k + δ with L ≤ k < L+B:

1. Set aL ← 1, aL+1 ← 1, . . . , aL+B−1 ← 1.
2. For each prime q ≥ 7 with q2 < 30L+ 30B:
3. For each k with 30k + δ a nontrivial multiple of q:
4. Set ak ← 0.
5. Print 30k + δ for each k with ak = 1.

“Nontrivial multiple of q” in step 3 means “mq for some m > 1” but can safely
be replaced by “mq for some m ≥ q.”

One can run Algorithm 2.1 for each δ, and merge the results, to find all the
primes p with 30L ≤ p < 30L+ 30B. This uses 8B bits of memory, not counting
the space needed to store the set of primes q.

To enumerate the primes p in a larger interval, say 30L ≤ p < 30L+60B, one can
enumerate first the primes between 30L and 30L+ 30B, then the primes between
30L+ 30B and 30L+ 60B, reusing the same 8B bits of memory.

The number of iterations of step 4 of Algorithm 2.1 is approximately B/7 for
q = 7, B/11 for q = 11, and so on. By Mertens’s theorem, the sum B

∑
q(1/q) is

roughly B(log log(30L+ 30B)− 1.465). See [10, Theorem 427].

Implementation results. The second author’s implementation of Algorithm 2.1,
using the gcc 2.8.1 compiler on an UltraSPARC-I/167, takes about 3.3 ·109 cycles
to find the 50847534 primes up to 109. Here B = 128128; the UltraSPARC has
131072 bits of fast memory.

Notes. Singleton in [15] suggested chopping a large interval into small pieces and
applying the sieve of Eratosthenes to each piece. The same idea was published
independently in [4] and later in [2].

Sieving an arithmetic progression is the p-adic analogue of sieving a bounded
interval. Presumably Eratosthenes did not bother writing down even numbers in
his sieve.

Instead of running Algorithm 2.1 independently for each δ, one can handle all
δ simultaneously for each q: find all nontrivial multiples of q between 30L and
30L+ 30B, and translate each multiple into a pair (k, δ). See [12] for details. For
sufficiently large q this saves time despite the added cost of translation.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

PRIME SIEVES USING BINARY QUADRATIC FORMS 1025

One can include composite integers q in step 2 of Algorithm 2.1. For example, it
is easy to run through all integers q > 1 with q mod 30 ∈ {1, 7, 11, 13, 17, 19, 23, 29}.
This saves the space necessary to store the primes q, at a small cost in time.

3. Prime sieves using irreducible binary quadratic forms

The following algorithms are new. Each algorithm uses B bits of memory to
compute primes in an arithmetic progression of B numbers. Algorithm 3.1 requires
each number to be congruent to 1 modulo 4; Algorithm 3.2 requires each number to
be congruent to 1 modulo 6; Algorithm 3.3 requires each number to be congruent
to 11 modulo 12.
Algorithm 3.1. Given δ ∈ {1, 13, 17, 29, 37, 41, 49, 53}, to print all primes of the
form 60k + δ with L ≤ k < L+B:

1. Set aL ← 0, aL+1 ← 0, . . . , aL+B−1 ← 0.
2. For each (x, y, k) with x > 0, y > 0, L ≤ k < L+B, and 4x2 +y2 = 60k+δ:
3. Set ak ← 1− ak.
4. For each prime q ≥ 7 with q2 < 60L+ 60B:
5. For each k with 60k + δ divisible by q2:
6. Set ak ← 0.
7. Print 60k + δ for each k with ak = 1.

Steps 2 and 3 count, for each k, the parity of the number of pairs (x, y) with
4x2 + y2 = 60k + δ. Theorem 6.1 says that 60k + δ is prime if and only if the
number of pairs is odd and 60k + δ is squarefree. Steps 4, 5, and 6 eliminate each
k for which 60k + δ is not squarefree.

The condition 4x2 + y2 ∈ δ + 60Z in step 2 implies 16 possibilities (depending
on δ) for (x mod 15, y mod 30). Each possibility can be handled by Algorithm 4.1
below. There are approximately (4π/15)B iterations of step 3.
Algorithm 3.2. Given δ ∈ {1, 7, 13, 19, 31, 37, 43, 49}, to print all primes of the
form 60k + δ with L ≤ k < L+B:

1. Set aL ← 0, aL+1 ← 0, . . . , aL+B−1 ← 0.
2. For each (x, y, k) with x > 0, y > 0, L ≤ k < L+B, and 3x2 +y2 = 60k+δ:
3. Set ak ← 1− ak.
4. For each prime q ≥ 7 with q2 < 60L+ 60B:
5. For each k with 60k + δ divisible by q2:
6. Set ak ← 0.
7. Print 60k + δ for each k with ak = 1.

Algorithm 3.2 is justified by Theorem 6.2. In step 2 there are 12 possibilities
for (x mod 10, y mod 30), each of which can be handled by Algorithm 4.2 below.
There are approximately (π

√
0.12)B iterations of step 3.

Algorithm 3.3. Given δ ∈ {11, 23, 47, 59}, to print all primes of the form 60k+ δ
with L ≤ k < L+B:

1. Set aL ← 0, aL+1 ← 0, . . . , aL+B−1 ← 0.
2. For each (x, y, k) with x > y > 0, L ≤ k < L+B, and 3x2 − y2 = 60k + δ:
3. Set ak ← 1− ak.
4. For each prime q ≥ 7 with q2 < 60L+ 60B:
5. For each k with 60k + δ divisible by q2:
6. Set ak ← 0.
7. Print 60k + δ for each k with ak = 1.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

1026 A. O. L. ATKIN AND D. J. BERNSTEIN

Algorithm 3.3 is justified by Theorem 6.3. In step 2 there are 24 possibilities
for (x mod 10, y mod 30), each of which can be handled by Algorithm 4.3 below.
There are approximately (

√
1.92 log(

√
0.5 +

√
1.5))B iterations of step 3.

Implementation results. The second author’s implementation of Algorithm 3.1,
Algorithm 3.2, and Algorithm 3.3, using gcc 2.8.1 on an UltraSPARC-I/167 with
B = 128128, takes about 2.5 · 109 cycles to find the primes up to 109. For the code
see http://cr.yp.to/primegen.html.

About 87% of the time was spent in steps 2 and 3 of these algorithms: 38%
in Algorithm 3.1 for δ ∈ {1, 13, 17, 29, 37, 41, 49, 53}; 26% in Algorithm 3.2 for
δ ∈ {7, 19, 31, 43}; 23% in Algorithm 3.3 for δ ∈ {11, 23, 47, 59}. About half of the
remaining time was spent in steps 4, 5, and 6.

Notes. One could change the “even, odd” counter ak in Algorithm 3.1 to a “zero,
one, more” counter, and then skip some values of q in step 4. The same comment
applies to Algorithm 3.2 and Algorithm 3.3.

4. Enumerating lattice points

The idea of Algorithm 4.1 is to scan upwards from the lower boundary of the
first quadrant of the annulus 60L ≤ 4x2 + y2 < 60L + 60B. The total number of
points considered by Algorithm 4.1 is (1/450)(π/8)(60B) +O(

√
60L+ 60B). Here

(π/8)(60B) is the area of the quadrant, and 1/450 accounts for the restriction on
(x mod 15, y mod 30). Similar comments apply to Algorithm 4.2 and Algorithm
4.3.

Algorithm 4.1. Given positive integers δ < 60, f ≤ 15, and g ≤ 30 such that
δ ≡ 4f2+g2 (mod 60), to print all triples (x, y, k) with x > 0, y > 0, L ≤ k < L+B,
4x2 + y2 = 60k + δ, x ∈ f + 15Z, and y ∈ g + 30Z:

1. Set x← f , y0 ← g, and k0 ← (4f2 + g2− δ)/60. (Starting in step 3 we will
move (x, y0) along the lower boundary, from right to left, keeping track of
k0 = (4x2 + y2

0 − δ)/60.)
2. If k0 < L+B: Set k0 ← k0 + 2x+ 15. Set x← x+ 15. Repeat this step.
3. (Move left.) Set x← x− 15. Set k0 ← k0 − 2x− 15. Stop if x ≤ 0.
4. (Move up if necessary.) If k0 < L: Set k0 ← k0 + y0 + 15. Set y0 ← y0 + 30.

Repeat this step.
5. (Now 4x2 + y2

0 ≥ 60L; and if y0 > 30 then 4x2 + (y0 − 30)2 < 60L.) Set
k ← k0 and y ← y0.

6. (Now 4x2 + y2 = 60k + δ ≥ 60L.) If k < L + B: Print (x, y, k). Set
k ← k + y + 15. Set y ← y + 30. Repeat this step.

7. Go back to step 3.

Algorithm 4.2. Given positive integers δ < 60, f ≤ 10, and g ≤ 30 such that
δ ≡ 3f2+g2 (mod 60), to print all triples (x, y, k) with x > 0, y > 0, L ≤ k < L+B,
3x2 + y2 = 60k + δ, x ∈ f + 10Z, and y ∈ g + 30Z:

1. Set x← f , y0 ← g, and k0 ← (3f2 + g2 − δ)/60.
2. If k0 < L+B: Set k0 ← k0 + x+ 5. Set x← x+ 10. Repeat this step.
3. Set x← x− 10. Set k0 ← k0 − x− 5. Stop if x ≤ 0.
4. If k0 < L: Set k0 ← k0 + y0 + 15. Set y0 ← y0 + 30. Repeat this step.
5. Set k ← k0 and y ← y0.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

PRIME SIEVES USING BINARY QUADRATIC FORMS 1027

6. If k < L+ B: Print (x, y, k). Set k ← k + y + 15. Set y ← y + 30. Repeat
this step.

7. Go back to step 3.

Algorithm 4.3. Given positive integers δ < 60, f ≤ 10, and g ≤ 30 such that
δ ≡ 3f2− g2 (mod 60), to print all triples (x, y, k) with x > y > 0, L ≤ k < L+B,
3x2 − y2 = 60k + δ, x ∈ f + 10Z, and y ∈ g + 30Z:

1. Set x← f , y0 ← g, and k0 ← (3f2 − g2 − d)/60.
2. If k0 ≥ L + B: Stop if x ≤ y0. Set k0 ← k0 − y0 − 15. Set y0 ← y0 + 30.

Repeat this step.
3. Set k ← k0 and y ← y0.
4. If k ≥ L and y < x: Print (x, y, k). Set k ← k − y − 15. Set y ← y + 30.

Repeat this step.
5. Set k0 ← k0 + x+ 5. Set x← x+ 10. Go back to step 2.

Notes. Tracing a level curve is a standard technique in computer graphics; see,
e.g., [1, Chapter 17]. It is often credited to [5], but it appeared earlier in [11, Section
3].

5. Asymptotic performance

For large N one can compute the primes up to N as follows.
Define W as 12 times the product of all the primes from 5 up to about

√
logN .

Note that W is in No(1); it is roughly exp
√

logN .
Write ϕ1 for the number of units modulo W . Then ϕ1/W is in O(1/ log logN)

by Mertens’s theorem.
Write ϕ2 for the number of pairs (x mod W, y mod W) such that 4x2 + y2 or

3x2 + y2 or 3x2 − y2 is a unit modulo W . Then ϕ2/W
2 is in O(1/ log logN) by a

standard generalization of Mertens’s theorem.
Select an integer B close to W

√
N . The method described in this section uses

ϕ1B bits of memory, i.e., N1/2+o(1) bits. We leave it to the reader to investigate
how much the memory consumption can be reduced without noticeably affecting
the number of operations.

Here is how to compute the primes in δ + WZ between WL and WL + WB,
given a positive integer L < N/W and given a unit δ modulo W :

• Define (a, b) = (4, 1) if δ ∈ 1 + 4Z; define (a, b) = (3, 1) if δ ∈ 7 + 12Z;
define (a, b) = (3,−1) if δ ∈ 11 + 12Z.
• Find all possible (x mod W, y mod W) given that ax2 +by2 ∈ δ+WZ. This

can easily be done in WO(1) operations.
• For each possible (x mod W, y mod W), enumerate all (x, y) with WL ≤
ax2 + by2 < WL+WB, as in Section 4, and toggle the appropriate bits in
a B-bit array. The number of operations here is O(B/W) for each possible
(x mod W, y mod W): the choice of B guarantees that

√
WL+WB is in

O(B/W).
• Eliminate numbers that are not squarefree, as in Section 3, to determine

the primes. The number of operations here is O(B).

The total number of operations over all δ, to compute all the primes between WL
and WL+WB using ϕ1 separate B-bit arrays, is WO(1) +O(ϕ2B/W)+O(ϕ1B) =
O(WB/log logN).

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

1028 A. O. L. ATKIN AND D. J. BERNSTEIN

Consequently one can compute all the primes up to N using O(N/log logN)
operations and N1/2+o(1) bits of memory.

Notes. Pritchard in [14] pointed out that, by the method of Section 2, one can
compute the primes up to N using O(N) operations and O(N1/2(log logN)/logN)
bits of memory.

By a similar method one can compute the primes up to N using O(N/log logN)
operations and N1+o(1) bits of memory. Pritchard gave a proof in [12] and a simpler
proof in [13]. Dunten, Jones, and Sorenson in [6] reduced the amount of memory
by a logarithmic factor; of course, N1+o(1)/ logN is still N1+o(1).

The new method uses O(N/log logN) operations with only N1/2+o(1) bits of
memory. No previous method achieves both bounds simultaneously.

6. Quadratic forms

Theorem 6.1. Let n be a squarefree positive integer with n ∈ 1 + 4Z. Then n is
prime if and only if #

{
(x, y) : x > 0, y > 0, 4x2 + y2 = n

}
is odd.

The following proof uses the fact that the unit group Z[i]∗ of the principal ideal
domain Z[i], where i =

√
−1, is {1,−1, i,−i}. The idea is to find representatives

in Z[i] for the semigroup Z[i]/Z[i]∗.

Proof. The statement is true for n = 1, so assume n > 1.
Define S =

{
(x, y) : y > 0, 4x2 + y2 = n

}
. Define T as the set of norm-n ideals

in Z[i]. For each (x, y) ∈ S define f(x, y) ∈ T as the ideal generated by y + 2xi.
Step 1: f is injective. Indeed, the other generators of the ideal generated by

y+ 2xi are −y− 2xi, −2x+ yi, and 2x− yi, none of which are of the form y′+ 2x′i
with y′ > 0.

Step 2: f is surjective. Indeed, take any I ∈ T . Select a generator a + bi of I;
then a2 + b2 = n. Note that b 6= 0 since n is squarefree. If a is even and b > 0 then
I = f(−a/2, b); if a is even and b < 0 then I = f(a/2,−b); if a is odd and a > 0
then I = f(b/2, a); if a is odd and a < 0 then I = f(−b/2,−a).

Step 3: If n is prime then #T = 2 so #
{

(x, y) : x > 0, y > 0, 4x2 + y2 = n
}

=
(#S)/2 = (#T)/2 = 1. Otherwise write n = p1p2 · · · pr where each pk is prime.
The number of norm-pk ideals is even, so #T is divisible by 2r, hence by 4; thus
#
{

(x, y) : x > 0, y > 0, 4x2 + y2 = n
}

= (#S)/2 = (#T)/2 is even. �

Theorem 6.2. Let n be a squarefree positive integer with n ∈ 1 + 6Z. Then n is
prime if and only if #

{
(x, y) : x > 0, y > 0, 3x2 + y2 = n

}
is odd.

The following proof uses the fact that the unit group of the principal ideal domain
Z[ω], where ω = (−1 +

√
−3)/2, is

{
1, ω, ω2,−1,−ω,−ω2

}
.

Proof. Assume n > 1. Define S =
{

(x, y) : y > 0, 3x2 + y2 = n
}

. Define T as the
set of norm-n ideals in Z[ω]. For each (x, y) ∈ S define f(x, y) ∈ T as the ideal
generated by x+ y + 2xω. If n is prime then #T = 2; otherwise #T is divisible by
4. By calculations similar to those in Theorem 6.1 the reader may verify that f is
a bijection from S to T . �

Theorem 6.3. Let n be a squarefree positive integer with n ∈ 11 + 12Z. Then n
is prime if and only if #

{
(x, y) : x > y > 0, 3x2 − y2 = n

}
is odd.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

PRIME SIEVES USING BINARY QUADRATIC FORMS 1029

The following proof uses the fact that the unit group Z[γ]∗ of the principal ideal
domain Z[γ], where γ =

√
3, is

{
±(2 + γ)j : j ∈ Z

}
.

Proof. Define S =
{

(x, y) : |x| > y > 0, 3x2 − y2 = n
}

. Define T as the set of norm-
n ideals in Z[γ]. For each (x, y) ∈ S define f(x, y) ∈ T as the ideal generated by
y + xγ. As above it suffices to show that f is a bijection from S to T .

Define L = log(2 + γ), and define a homomorphism Log : Q[γ]∗ → R2 by
Log(a+ bγ) = (log |a+ bγ|, log |a− bγ|). Then Log Z[γ]∗ = (L,−L)Z. Note that if
|b| > a > 0 then |u− v| < L where (u, v) = Log(a + bγ); and if |u− v| ≤ L then
either |a| ≤ |b| or |a| ≥ 3|b|.

Injectivity: For (x, y) ∈ S and (x′, y′) ∈ S write (u, v) = Log(y + xγ) and
(u′, v′) = Log(y′ + x′γ). Then |u− v| < L and |u′ − v′| < L, so |u− v − u′ + v′| <
2L. Now assume that f(x, y) = f(x′, y′). Then (u, v) − (u′, v′) ∈ (L,−L)Z, so
(u, v) = (u′, v′), so (x′, y′) ∈ {(x, y), (−x,−y)}; but y and y′ are both positive, so
(x′, y′) = (x, y).

Surjectivity: Given a norm-n ideal I, pick a generator a+bγ of I. Write (u, v) =
Log(a + bγ). Select an integer j within 1/2 of (v − u)/2L, and write y + xγ =
(a+bγ)(2+γ)j. Then Log(y+xγ) = (u+jL, v−jL), and |(u+ jL)− (v − jL)| ≤ L,
so |y| ≤ |x| or |y| ≥ 3|x|. But n = ±(3x2−y2), and n ∈ 11+12Z, so n = 3x2−y2; in
particular 3x2− y2 > 0 so |y| ≤ |x|. Also |y| 6= 0 and |y| 6= |x| since n is squarefree.
If y > 0 then I = f(x, y); if y < 0 then I = f(−x,−y). �

Notes. These theorems are standard. See, e.g., [16, Chapter 11]. We have included
proofs for the sake of completeness.

The function Log in the proof of Theorem 6.3 is an example of Dirichlet’s log
map. See, e.g., [7, page 169].

The approximations (4π/15)B, (π
√

0.12)B, and (
√

1.92 log(
√

0.5 +
√

1.5))B for
the number of lattice points considered in Section 3 and Section 4 are examples of
Dirichlet’s analytic class-number formula. See, e.g., [7, pages 283–294], particularly
[7, page 289].

References

[1] Michael Abrash, Zen of graphics programming, Coriolis Group, Scottsdale, Arizona, 1995.
[2] Carter Bays, Richard H. Hudson, The segmented sieve of Eratosthenes and primes in arith-

metic progressions to 1012, BIT 17 (1977), 121–127. MR 56:5405
[3] Wieb Bosma (editor), Algorithmic number theory: ANTS-IV, Lecture Notes in Computer

Science, 1838, Springer-Verlag, Berlin, 2000. MR 2002d:11002
[4] Richard P. Brent, The first occurrence of large gaps between successive primes,

Mathematics of Computation 27 (1973), 959–963. MR 48:8360. Available from
http://web.comlab.ox.ac.uk/oucl/work/richard.brent/pub/pub019.html

[5] Jack Bresenham, A linear algorithm for incremental digital display of circular arcs, Com-
munications of the ACM 20 (1977), 100–106.

[6] Brian Dunten, Julie Jones, Jonathan Sorenson, A space-efficient fast prime number sieve,
Information Processing Letters 59 (1996), 79–84. MR 97g:11141

[7] Albrecht Fröhlich, Martin J. Taylor, Algebraic number theory, Cambridge University Press,
Cambridge, 1991. MR 94d:11078

[8] William F. Galway, Dissecting a sieve to cut its need for space, in [3] (2000), 297–312. MR
2002g:11176

[9] William F. Galway, Analytic computation of the prime-counting function, Ph.D. thesis, Uni-
versity of Illinois at Urbana-Champaign, 2001.

[10] G. H. Hardy, E. M. Wright, An introduction to the theory of numbers, 5th edition, Oxford
University Press, 1979. MR 81i:10002

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=56:5405
http://www.ams.org/mathscinet-getitem?mr=2002d:11002
http://www.ams.org/mathscinet-getitem?mr=48:8360
http://www.ams.org/mathscinet-getitem?mr=97g:11141
http://www.ams.org/mathscinet-getitem?mr=94d:11078
http://www.ams.org/mathscinet-getitem?mr=2002g:11176
http://www.ams.org/mathscinet-getitem?mr=81i:10002

1030 A. O. L. ATKIN AND D. J. BERNSTEIN

[11] Herbert B. Keller, J. R. Swenson, Experiments on the lattice problem of Gauss, Mathematics
of Computation 17 (1963), 223–230. MR 29:3445

[12] Paul Pritchard, A sublinear additive sieve for finding prime numbers, Communications of
the ACM 24 (1981), 18–23. MR 82c:10011

[13] Paul Pritchard, Explaining the wheel sieve, Acta Informatica 17 (1982), 477–485. MR
84g:10015

[14] Paul Pritchard, Fast compact prime number sieves (among others), Journal of Algorithms 4
(1983), 332–344. MR 85h:11080

[15] Richard C. Singleton, Algorithm 357: an efficient prime number generator, Communications
of the ACM 12 (1969), 563–564.

[16] J. V. Uspensky, Max A. Heaslet, Elementary number theory, McGraw-Hill, New York, 1939.
MR 1:38d

Department of Mathematics, Statistics, and Computer Science (M/C 249), The Uni-

versity of Illinois at Chicago, Chicago, Illinois 60607–7045

E-mail address: aolatkin@uic.edu

Department of Mathematics, Statistics, and Computer Science (M/C 249), The Uni-

versity of Illinois at Chicago, Chicago, Illinois 60607–7045

E-mail address: djb@pobox.com

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=29:3445
http://www.ams.org/mathscinet-getitem?mr=82c:10011
http://www.ams.org/mathscinet-getitem?mr=84g:10015
http://www.ams.org/mathscinet-getitem?mr=85h:11080
http://www.ams.org/mathscinet-getitem?mr=1:38d

	1. Introduction
	Strategy

	2. The sieve of Eratosthenes
	Implementation results
	Notes

	3. Prime sieves using irreducible binary quadratic forms
	Implementation results
	Notes

	4. Enumerating lattice points
	Notes

	5. Asymptotic performance
	Notes

	6. Quadratic forms
	Notes

	References

