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Abstract
Virtual Machine Monitors (VMMs) are a common tool for imple-
menting honeypots. In this paper we examine the implementation
of a VMM-based intrusion detection and monitoring system for
collecting information about attacks on honeypots. We document
and evaluate three designs we have implemented on two open-
source virtualization platforms: User-Mode Linux and Xen. Our re-
sults show that our designs give the monitor good visibility into the
system and thus, a small number of monitoring sensors can detect
a large number of intrusions. In a three month period, we were able
to detect five different attacks, as well as collect and try 46 more
exploits on our honeypots. All attacks were detected with only two
monitoring sensors. We found that the performance overhead for
monitoring such intrusions is independent of which events are be-
ing monitored, but depends entirely on the number of monitoring
events and the underlying monitoring implementation. The perfor-
mance overhead can be significantly improved by implementing
the monitor directly in the privileged code of the VMM, though at
the cost of increasing the size of the trusted computing base of the
system.

Categories and Subject DescriptorsD.4.6 [Security and Protec-
tion]: Invasive software; K.6.5 [Security and Protection]: Invasive
software

General Terms Security, Performance

Keywords Honeypot Monitoring, Virtual Machine Monitor, IDS,
Intrusion Detection

1. Introduction
Honeypots have become an indispensable tool for system admin-
istrators to detect, analyze and develop defenses for Internet at-
tacks. Honeypots are ephemeral machines–created solely for the
purpose of studying attacks on machines connected to the Inter-
net, and destroyed soon after they are compromised to prevent an
attacker from abusing system resources. Recently, several projects
have used Virtual Machine Monitors (VMMs) as a platform to im-
plement honeypots [4, 13, 25, 26]. While honeypots have tradition-
ally employed VMMs for their ability to create and destroy virtual
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machine instances, as well as roll machines back to a clean state,
we believe that VMMs are also ideal monitoring mechanisms.

Current honeypots either monitor attacks at the network level,
where visibility is limited, or in the honeypot itself where the
monitor is vulnerable to an attacker in control of the honeypot. In
this work, we implement asensormechanism, which uses binary
rewriting of the honeypot kernel to trigger event handlers within
the VMM when specific events occur. Implementing sensors within
the honeypot has several advantages. First, placing sensors within
the VMM strongly isolates them and any collected information
from tampering, but at the same time still gives the sensor full
visibility into the system. Second, the visibility that the VMM
provides, allows our sensors to be only triggered under very specific
circumstances. Having fine-grained control over when sensors are
activated makes the data collected by the VMM less noisy than
that collected by other methods. This allows a honeypot operator to
monitor a larger number of honeypots with considerably less effort.
Finally, by allowing sensors to enable or disable other sensors and
combining information from several points in the monitored kernel,
sensors can collect information passively without perturbing the
kernel. This makes the sensor mechanism considerably simpler and
cheaper than active VMM-based monitors, which modified kernel
state when activated, and thus require additional infrastructure to
undo any perturbations caused by the monitoring [14].

We have implemented our system on two open-source virtual-
ization platforms: User-Mode Linux (UML) [5], and the Xen Vir-
tual Machine Monitor [1]. We will explore and evaluate three im-
plementation options on these platforms, and document our experi-
ences with them. Our main contributions are:

1. We implement a sensor mechanism that monitors honeypots for
intrusions by dynamically rewriting the binary of a running ker-
nel image. Sensors can be made completely passive by exploit-
ing their dynamic nature to have some sensors enable or disable
other sensors.

2. We compare the performance impact, effort taken to add moni-
toring capabilities, and effect on the size and complexity of the
underlying trusted computing base (TCB) across three imple-
mentations built on UML and Xen.

3. We document our experiences with applying our sensor mech-
anism to a honeypot connected to the Internet. Over a three
month period, we observed and detected five separate attacks.
In addition, by monitoring the actions of the attackers we were
able to collect 46 more exploits, which we also tested on our
system.

4. We analyze and categorize the attacks detected by our system,
and find that by monitoring for actions that attackers take after
a compromise, rather than monitoring for exploitation of a
vulnerability, we are able to detect a large number of attacks
with relatively few sensors (only two were needed in our case).



798 asmlinkage long sys_open(const char *filename,
int flags, int mode)

799 {
800 char * tmp;
...

/* copy the name of the file from user
space */

806 tmp = getname(filename);
/*!!! Sensor will be triggered here !!!*/

807 fd = PTR_ERR(tmp);

Figure 1. Linux 2.4.29 open system call handler. The sensor is
configured to invoke the event handler at line 807 just after the
kernel has just copied the name of the file to be opened from the
user process.

int open_sensor(pid_t vm_id, struct pregs regs) {
/* when sensor is invoked:

1. read values from memory */
tmp_addr = get_value("tmp", vm_id, regs);
tmp = read_str(vm_id, tmp_addr);
flags = get_value("flags", vm_id, regs);
/* 2. check the value of the variables */
if (!strcmp(tmp, "/etc/xinetd.conf") &&

((flags & O_RDWR) || (flags & O_WRONLY))) {
return COMPROMISED;

} else {
return OK;

}
}

Figure 2. Event handler for the open system call sensor. When
triggered, theopen sensor checks the valuestmp and flags.
get value acquires the locations oftmp and flags from the
symbol table of the monitored kernel.

We do not claim that the sensors presented in this paper are
complete and will be able to capture every possible attack. Rather,
we show that VMM-based monitoring using our sensors provides
a simple and powerful mechanism with which one can more easily
monitor honeypot activity.

In the next section, we describe the operation of our system and
the three implementation options that we will compare. Section 3
describes the sensors we implemented and the types of data they
record. We then evaluate the monitoring accuracy of our sensors,
and compare the three implementation options on the basis of
performance overhead and increase in the code size of the TCB
in Section 4. We discuss our results in Section 5 and give related
work in Section 6. Finally, we finish the paper with our conclusions
in Section 7.

2. VMM-based Monitor Implementation
We first provide a general overview of our monitoring mechanism
without discussing platform specific details. We will then give
some background on UML and Xen. Finally, we complete this
section by describing our three implementations and highlighting
their differences.

2.1 Monitoring Mechanism Overview

To offer a machine that is enticing for an attacker, honeypot admin-
istrators often create several honeypots with different applications,
services, as well as operating system versions and configurations.
We wanted our monitoring system to be applicable to each hon-
eypot independent of what set of applications were running in the

honeypot. To do this, we observe that regardless of which applica-
tion the attacker exploits, she must involve the kernel to make any
persistent changes or perform any externally visible actions. Since
the kernel will be an unwilling participant in every attack, our sen-
sors need only monitor the honeypot kernel to detect any attack.
This aspect allows us to have a lightweight and simple design for
our sensors.

The sensor mechanism is implemented by extending the under-
lying VMM to contain amonitor, which can observe, interpret, and
record activity on the guest kernels of the VMM. The VMM needs
to invoke the monitor when an interesting event occurs during the
execution of the kernel. This is achieved by identifying the section
of code that the kernel executes in response to the event, and re-
placing an instruction within this section with atrap instruction,
which will trigger an interrupt. We call this instruction aninvo-
cation point. We then modify the interrupt handler in the VMM to
catch the interrupt and call the appropriateevent handler. The event
handler can then examine the state of the kernel and determine if
it should take any further actions, such as setting other invocation
points, raising an alert, or simply logging the event. If execution of
the honeypot kernel is to continue after the invocation, the monitor
temporarily removes thetrap and replaces the original instruction.
The honeypot kernel is then single-stepped to execute the original
instruction before trapping back into the VMM, at which point the
monitor replaces thetrap at the invocation point to catch future
occurrences of the same event. We call each invocation point and
its associated event handler asensor. The locations of key vari-
ables and the invocation points are determined dynamically in our
system by examining the symbol table of the monitored kernel. We
find that this allows us to reuse the same sensors for different, but
related kernel versions.

We illustrate usage of our system with a simple example.
xinetd is a network service found on most standard UNIX in-
stallations. It listens to the network and spawns programs to handle
incoming connections. A common technique used by attackers to
leave themselves a way to reconnect to a compromised machine is
to modify thexinetd configuration file,xinetd.conf, to spawn
a shell when the attacker connects to a specific port. To detect this
symptom of an attack, the system administrator sets an invocation
point to report whenever/etc/xinetd.conf is opened for modi-
fication. Figure 1 contains a portion of code from the open system
call handler in Linux 2.4.29, and the accompanying code for the
sensor’s event handler is given in Figure 2. The administrator con-
figures the invocation point of the sensor to be at line 807 in the
sys open subroutine, where the system call handler has just copied
the name of the file to be opened from the address space of the user
process into the variabletmp.

The administrator then sets the event handler of the sensor to the
open sensor subroutine. When invoking theopen sensor sub-
routine, the VMM passes thevm id of the virtual machine that
has triggered the event handler. This is because a single sensor
can monitor multiple virtual machines simultaneously. The VMM
also passes the contents of the registers at the invocation point in
the regs variable. The event handler inspects the contents of the
tmp and flags variables by reading their values using the sup-
plied get value function. This function triggers the VMM to ex-
amine the symbol table of the target honeypot kernel and fetch
the value of the variable from either the registers or the mem-
ory of the kernel (depending on where the desired value is lo-
cated). Becausetmp is a pointer to a string, the event handler
must read the contents of the string using another supplied func-
tion read str. Finally, theopen sensor subroutine checks if the
filename is/etc/xinetd.conf and ifflags indicates the file has
been opened for modification. Theget value function frees the
writer of the event handler from having to know the location of the



variables of interest; she need only specify the name of the variable.
This helps make the event handler easily portable to other versions
of the kernel.

We note that this sensor is naı̈ve and easy to circumvent–
the adversary could make a hard-link to/etc/xinetd.conf
and modify the link instead. A more sophisticated sensor would
invoke the event handler whenever the inode associated with
/etc/xinetd.conf is modified.

2.2 UML and Xen Background

UML is a port of the Linux kernel to run on another Linux operat-
ing system so that the host operating system acts as the VMM. This
involves modifying the architecture dependent parts of the UML
kernel so that they target the Linux API as opposed to a hardware
platform. UML is a widely used platform for implementing honey-
pots because of its ease of deployment and long history. We think
of UML as ahosted VMM, meaning that it runs on top of a full-
featured operating system. We distinguish between theguest op-
erating system, which is the operating system instance running in
UML and thehost operating system, which is the operating system
running on the bare hardware acting as the VMM. UML can be
configured to run in one of two modes: Tracing Thread (TT) and
Separate Kernel Address Space (SKAS). Our implementation uses
UML in SKAS mode since the TT mode does not provide a secure
jail for root on the guest system, and thus is not suitable for a hon-
eypot [6]. In SKAS mode, UML uses three host operating system
processes to emulate a full virtual machine. One process runs the
guest kernel, while another one runs the guest process that is sched-
uled in the virtual environment. Finally, the third process emulates
I/O and block device operations. The UML guest kernel redirects
all system calls made by the guest process to itself using theptrace
facility. Ptrace allows a tracing process (in this case the guest ker-
nel) to perform actions such as redirecting system calls and UNIX
signals, as well as examining and modifying the memory of the
traced process (in this case the guest process).

Xen is anunhosted VMM, where the VMM itself runs on the
bare hardware. As such, Xen is not a full-featured operating system
like the host Linux kernel in UML, and provides only the bare
functionality required to implement a VMM. Xen makes many
optimizations to improve performance. Unlike UML, the guest
kernels and processes use different portions of a single page table,
with the Xen VMM occupying a reserved portion of the guest
kernel address space. This saves having to change page tables
and flush the TLB every time a guest process traps into the guest
kernel. Guest kernels make cross-domain calls to the Xen VMM
via hypercalls, which are conceptually similar to system calls that
a process makes to a regular operating system.

2.3 Implementation Details

We implemented two versions of our system on top of UML and
one version on Xen. We call the two versions implemented on
UML uml-ptraceand uml-kernel, while we refer to the version
implemented on Xen asxen-watch. Architectural diagrams of the
three implementations are shown in Figure 3.

Our first implementation,uml-ptrace, implements the monitor
and sensors in a separate process running on the UML host ker-
nel. The monitor uses the ptrace facility to attach to and moni-
tor the guest kernel. When the monitored kernel executes one of
thetrap instructions, the hardware interrupt is caught by the host
kernel, which will send a UNIX signal to the monitored kernel.
Ptrace allows the monitor to interpose on all the monitored ker-
nel’s signals, as well as to read and modify arbitrary locations in
the monitored kernel’s address space. The monitor examines every
signal and checks if the delivered signal is aSIGTRAP, which indi-
cates that the monitored kernel executed atrap instruction. If so,

it checks if the current program counter matches one of the invoca-
tion points associated with a sensor. A match causes it to execute
the associated event handler.

Setting the invocation points, as well as operations such as
get value, require the monitor to determine the locations of spe-
cific lines of code and variables in the monitored kernel. The mon-
itor is able to determine these by examining the symbol table of
the kernel binary. We implement all operations that require access
to the monitored kernel’s memory, such asread str, get value,
and setting the invocation points using ptrace system calls, which
involve domain crossings into the host kernel.

We found that while easy to implement, there are an excessive
number of domain crossings inuml-ptrace, which lead to perfor-
mance degradation. High performance overhead limits the number
of honeypots that a single machine can support before the perfor-
mance impact becomes noticeable. There are two sources of per-
formance overhead foruml-ptrace. First, every time the monitor
wants to read or modify the address space of the monitored kernel,
it needs to invoke the host kernel, resulting in domain crossings.
Second, the monitor is invoked every time the monitored kernel
receives a signal. Because UML uses UNIX signals to implement
virtual interrupts, all signals delivered to the guest kernel are caught
by the monitor – not justSIGTRAP signals, which are the only sig-
nals it is interested in. This has a detrimental effect since the cost of
a context switch from the monitored kernel to the monitor is high,
and the monitored kernel is stalled while the monitor is executing.
Unfortunately, ptrace does not allow the host kernel to filter signals
for the monitor.

While enhancing the host kernel with the ability to filter signals
before delivering them to the monitor will reduce the number of
signals handled by the monitor, domain crossings due to reading
and writing the address space of the monitored kernel can only be
reduced by moving the monitor into the host kernel. Ouruml-kernel
implementation moves the monitoring code and sensors into the
host kernel. The mechanism is similar touml-ptrace, except in three
aspects. First, accessing the address space of the monitored kernel
is much simpler because the host kernel is always mapped into the
upper region of every virtual machine’s address space. As a result,
the monitor and the guest kernel can share the same page tables,
removing any need to walk the page tables of the monitored kernel
and copy data between address spaces. Instead of using system calls
to access memory locations in the monitored kernel, event handlers
access guest memory via function calls in the kernel that don’t
require any domain crossings. Second, the monitor is only invoked
when the kernel is about to deliver aSIGTRAP to the monitored
kernel, while in the case ofuml-ptrace, the monitor was invoked on
every UNIX signal.

The third difference is that the monitor no longer has direct ac-
cess to the monitored kernel binary to extract symbols. This is be-
cause file operations in the kernel need to be associated with a pro-
cess context. Since the monitor is now part of the host kernel, there
is no process associated with it, so it cannot use the same facilities
to access files that processes use. Instead of further modifying the
kernel, we implement the part of the monitor that parses the symbol
table as aclient processon the host kernel. On start-up, it reads the
symbol table, extracts the necessary information for all sensors and
passes it down to the monitor in the kernel via a new system call.
While this takes some time, it is only done when the monitor starts
up or when a new kernel or sensor is added during runtime, all of
which are infrequent events.

Since UML relies on the Linux kernel, it incurs overheads
because the Linux kernel is not designed to be used as a VMM. For
example, whenever the guest kernel needs to interact with a guest
process, TLB flushes and domain crossings must occur, making the
virtualization of Linux in UML slower. Porting our system to Xen,



(a) uml-ptrace (b) uml-kernel (c) xen-watch

Figure 3. Architectural diagrams ofuml-ptrace, uml-kernelandxen-watchillustrating the placement of the monitor and client process in
relation to the monitored guest kernel and underlying VMM.

a VMM designed to run on the bare hardware, removes the inherent
performance drawbacks of UML. While the Xen VMM has the
ability in theory to support a ptrace-like interface, such an interface
is not required for VMM operation so no such facility exists.

One difference betweenxen-watchand the UML-based imple-
mentations is that thetrap instruction generates a hardware inter-
rupt as opposed to a software signal. This exposes more of the hard-
ware state to the monitor implementation, making it easier for the
monitor to determine the cause of the interrupt. Thetrap interrupt
handler invokes the monitor, which will then find the right event
handler and call it. Code similar to that of ptrace was then used to
find the register state of the interrupted virtual machine and pass
that to the event handler. Another difference is that we must imple-
ment the client process that reads the symbol table of the monitored
kernel in its own guest operating system, since it still requires a full
operating system environment to function. Thus, we enhance the
kernel supporting the client process to pass the symbol information
from the process down into the Xen VMM by adding a new Xen
hypercall.

3. Sensors
We have designed several sensors to detect the symptoms of ma-
licious or questionable activity, and collect information on those
events. High visibility into the kernel allows sensors to check for
very specific conditions, and thus reject a lot of monitoring noise.

3.1 Socket Sensor

This sensor detects a process listening on a port that is not on a
list of authorized ports. It is common for attackers to implement
backdoors this way by having a process listen for a connection and
open a root shell if the right passphrase is given. The invocation
point of this sensor is in thesys bind handler, which is called
whenever a process binds a socket to a local address. The sensor’s
event handler determines the network port that is being bound. If
this port is not in a list of authorized ports provided to the sensor,
the monitor logs the relevant information such as the identity of the
application and the port number it was trying to bind to, as well as
typical information such as the date and time.

3.2 Inode Access Sensor

The inode access sensor detects modification of sensitive files,
such as those containing user passwords, cryptographic keys, or
configuration files. It addresses the shortcomings of the simple
sensor described in Section 2. To achieve this, we position the
sensor at the virtual file system level instead of at the system call
interface.

This sensor places an invocation point in the virtual file system
subroutine that gets the directory entry for the file being opened.

The event handler inspects the directory entry data structure to get
the absolute path of the file being opened as well as the inode
number associated with it. In addition, the handler also inspects
the flags used to open the file. This indicates whether the file has
been opened for modification or not. Trapping at this location has
two advantages. Potential problems with path resolving schemes
faced by systems inspecting system calls arguments [8] cannot
occur. Moreover, we avoid duplicating the kernel code in charge
of resolving the path.

The handler raises an alarm if either of two situations occur: if
the file being opened is sensitive, but its inode number does not
match the inode number that has been recorded for this file by the
monitoring engine at startup; or the file being opened is sensitive
and is being opened for modification. The first test is there to detect
a wily attacker that might have reallocated the monitored file to
be stored at a different inode–something that she can achieve by
deleting and recreating the file.

3.3 Stream Redirection Sensor

Another approach is to monitor the use of network resources. Often,
when an attacker remotely hijacks a process she will redirect the
input/output streamsstdin, stdout, andstderr to a socket, and
then spawn a shell with anexec system call to obtain a remotely-
controllable login shell on the system. An alternative is to modify
the configuration files of a program likexinetd to do essentially
the same thing. The observation here is that the backdoor is sim-
ply a shell that is executed with its input and output streams con-
nected to a socket instead of a standard terminal (such as atty
or pts). Thestream redirection sensoris invoked whenever a pro-
gram is started with theexec system call. This sensor first checks
whether the program being invoked was an interactive shell (such as
/bin/sh, /bin/csh, etc...). This check is necessary because cer-
tain legitimate programs spawned byxinetd, such asin.ftpd,
communicate with remote clients through theirstdin andstdout
file handles. If the spawned program is a shell, the sensor then in-
spects the program’s open file handles and checks if any ofstdin,
stdout or stderr (file descriptors 0, 1 and 2) are bound to a
socket. The sensor finally checks that the socket itself is directed
at an external IP address. This last check is necessary because cer-
tain programs routinely spawn shells connected to a local network
socket. An example isscp, which causes the remotesshd server
to spawn a shell bound to a local TCP port.

If the sensor only uses the name of the program being executed
to identify whether a shell is being started or not, an attacker could
trivially circumvent this sensor by renaming an existing shell to
have a different name. To guard against this, the sensor identifies
programs by taking a hash of the ELF header, which is used by the
kernel to load the program. We find that by taking a SHA1 hash of



the ELF header we can uniquely identify shell binaries, even if the
attacker changes the name of the shell program.

3.4 Argument Capture Sensor

Once attackers gain access to a system, they will often download
and install tools with which they can re-access the system again
(backdoors), hide their presence (rootkits) or attack other machines.
To do this, they usually use programs such as “wget” or “ftp” to ac-
cess another machine where they keep a repository of their tools.
We found it useful to get a list of machines hosting such reposi-
tories. To do this, we created a sensor that records the arguments
passed to such programs every time they are invoked.

This sensor needs to activate and deactivate several sub-sensors
at certain times. To understand the reason for this, we first describe
how new programs are started by a command shell. When a user
invokes a program from a command shell, the shell typically forks
a new process and uses theexec system call to execute the indi-
cated binary.exec takes the name of the binary and a pointer to an
array of arguments to be passed to the newly started process. The
kernel passes the arguments by individually copying them from the
parent’s address space into the stack of the new process, so that
they are located in theargv argument of the new process’main
subroutine. Before capturing arguments, we need to check if the
new program is one of interest. The problem for the sensor is that
there is no point in the kernel where we can capture both the iden-
tity of the program and its arguments. The identity of the program
is known in theexec system call handler, but the arguments are not
read in and copied to the new process’ stack until much later. An-
other complication is that we do not know beforehand how many
argumentsexec will pass to the new program.

One solution would have been to implement everything in one
sensor, and have the sensor determine the location and values of
the arguments itself. However, by doing this, we found that our
sensor essentially ended up duplicating the code that the kernel
uses to locate and copy the arguments from the calling process to
the new process. Such duplication is error prone and not portable if
the kernel implementation changes slightly. Instead, we decided to
leverage the way the kernel finds the arguments. To do this, we
enhanced our sensors with the ability to activate and deactivate
other sensors. A deactivated sensor does not have its invocation
point replaced by atrap instruction, so execution of the invocation
point will not trigger the VMM. The argument capture sensor
actually requires two separate sensors. We placed the first sensor
at the entry into theexec system call handler, and checked the
identity of the program that is to be started. If the program is one
of interest, the sensor activates the next sensor, which was located
in a loop that copies all the elements of the argument array into
the new process’ stack. It also notes the number of arguments and
after the second sensor has captured all the arguments, it deactivates
itself. This was necessary because leaving the sensor in the loop
body activated would have unnecessarily recorded all arguments of
all programs executed on the monitored machine. By selectively
activating and deactivating the sensor based on the results of other
sensors, we were able to filter the recorded events to keep only the
interesting ones.

4. Evaluation
We evaluated three different aspects of VMM-based intrusion mon-
itoring. First, we evaluated the accuracy of the information col-
lected by the monitor. If the monitoring system can distinguish
events generated by attackers from those generated by legitimate
activity, this helps reduce the amount of effort that the adminis-
trator must expend in analyzing attacks. Second, we evaluated the
performance overhead the kernel monitoring imparts over a set of
microbenchmarks and application benchmarks. Our goal was to de-

termine the performance impact as more sensors are added to the
system for our different implementations. Finally, we give mea-
surements on how many lines of code we added to the VMM in
each case to implement the required functionality. The amount of
code added to the VMM is important because the VMM consti-
tutes a critical component of the trusted computing base (TCB) of
our system. If a large amount of code is added, this decreases the
level of assurance of the VMM, and reduces the overall security of
the system.

4.1 Detection and Monitoring Accuracy

Since the functionality of all implementations are very similar, we
only used theuml-ptraceimplementation to evaluate the effective-
ness of our system at detecting intrusions. We performed two ex-
periments to evaluate detection and monitoring accuracy. In the
first experiment, we created two honeypots that were monitored by
our system, and put them online outside of our department firewall
where they would be exposed to real attackers. We compared the
results against that of Snort [2], a popular network-based IDS. The
other experiment involved providing a virtual machine monitored
by our system to a group of undergraduates who used it to install
and play several games. The machine was firewalled from the In-
ternet so the only activity on the machine was from the group of
students. This gave us an idea of the rate of false positives that our
system produces.

First, we configured two honeypot systems, one running Red-
hat 7.0 and one running Redhat 9.0 installations of Linux, which
were monitored by both our system and Snort. The systems were
unpatched and had all services with known vulnerabilities enabled.
We used Snort as a comparison point. Snort performs content pat-
tern matching against a set of rules and flags any matches as a
possible intrusion. Hundreds of checking rules written by the se-
curity community are shipped with Snort. We installed Snort with
all these rules enabled.

Over a three month period, we observed five separate individ-
uals who compromised the Redhat 7.0 honeypot. Two exploited
wu-ftpd, and the other three exploited the SSL module inhttpd.
Even though there appeared to be only five separate individuals,
there were many more attacks that were successful because two of
the attackers were not able to install backdoors, so they needed to
re-compromise the honeypot each time they returned. Since both
Snort and our system detected the attacks, we conclude that VMM-
based kernel monitoring for intrusions has the potential to be as
sensitive to attacks as a more mature system like Snort. Our system
had no false positives for the three month period. On the other hand,
our Snort configuration generated several hundred false alarms per
day, even after some effort to remove irrelevant rules. We feel that
the additional visibility offered by being able to examine the state
of the honeypot kernel resulted in better attack detection accuracy.

In this experiment, we were also able to collect 46 other exploits
in the form of code and binaries that the attackers left behind. We
manually tried these on appropriately configured honeypots and
found that we were able to detect all attacks with the few sensors we
had implemented. This was surprising, but on closer examination,
we found that a large amount of similarity in the code that the
attacks injected allowed a small number of sensors to detect such
a large number of exploits. We will discuss our analysis of these
attacks in Section 5.1.

Our other experiment was to determine the false positive rate
under regular use. Even on a honeypot, legitimate or innocuous
events may occur, and this experiment determines what types of
activity may falsely trigger a sensor. To do this, we configured a
system that was used by three undergraduate students for approx-
imately 2-4 hours/day each for a period of about a month. The
students performed both development and administrative functions
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Figure 4. Scaling results for four LMBench microbenchmarks. These graphs plot the overhead the microbenchmarks experience as the
number of sensors along the benchmark path was increased. Because Xen normally experiences better performance, the sensor mechanism
introduces a greater amount of overhead.

(requiring root access) on the system. The system was firewalled
and only accessible from a single gateway machine so that all alerts
coming from the machine were likely to be false positives, and
could be confirmed to be so by the undergraduate students. The
number of false positives was about one per week, and resulted en-
tirely from the students performing administrative functions (such
as changing their passwords, installing software or creating new
users). Because only the root user can cause these false positives, it
is easy for the administrator to differentiate between a false positive
and a real attack.

4.2 Performance Evaluation

To detect all the attacks, we only required a small number of
sensors. However, we are interested in the performance overhead as
the number of sensors increases. To evaluate this, we first studied
the behavior of our system under several operating system intensive
microbenchmarks from the LMBench microbenchmark suite. We

then studied the scaling of our system with several applications
as the number of sensors increases. We evaluate the performance
impact for up to 20 sensors, though given the small number we
required, we do not expect to use such a large number of sensors
in practice. Finally, we measured the performance of a system
monitored by the sensors described in Section 3.

We performed all experiments on a 2.4 GHz Pentium 4 with
1 GB of physical memory, and a 1Gb ethernet card. For the runs
involving UML, the guest kernel was Linux 2.4.29, and the host
kernel was Linux 2.4.26. For Xen, we used Xen 2.0.4 with a 2.4.29
Linux guest kernel. We chose four microbenchmarks from the LM-
Bench suite–a NULL system call (getppid), as well as file system
read, write andopen. We placed an increasing number of sensors
along the paths in the kernel exercised by each of the benchmarks
to ascertain the overheads imposed on basic operating system func-
tions when being monitored. We measured the time it takes to cross
from user mode into kernel mode on our processor and found this to
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(a) Webstone Benchmark. There were6.5K invo-
cations/secondin this benchmark.
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(b) Kernel Build Benchmark. There were1.4K in-
vocations/secondin this benchmark.
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(c) Bzip2 Benchmark. There were14 invoca-
tions/secondin this benchmark.

Figure 6. Scaling results for application benchmarks. These graphs illustrate scaling results on the application benchmarks using the same
sensors as the ones applied in the microbenchmarks. The X-axis indicates the number of sensors placed in each of the four monitored system
calls. The rate of invocations is also given.

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

0 5 10 15 20
Number of Sensors

Ti
m

e 
(s

ec
on

ds
)

uml-ptrace-getpid uml-kernel-getpid xen-watch-getpid
uml-ptrace-open uml-kernel-open xen-watch-open
uml-ptrace-read uml-kernel-read xen-watch-read
uml-ptrace-write uml-kernel-write xen-watch-write

xen-watch

uml-kernel

uml-ptrace

Figure 5. Incremental cost of monitoring as compared to the num-
ber of sensors placed along each benchmark execution path in the
kernel.

be about 1000 cycles. Since this boundary needs to be crossed four
times on every sensor invocation (one round trip to invoke the han-
dler and another to single-step past the invocation point), in most
cases, the boundary crossing time will dominate. As a result, the
sensors we used in these benchmarks have very simple event han-
dlers that would just increment a counter. Clearly, from Figure 4,
the scaling in cost is linear with the number of sensors, indicating
that the cost per sensor is approximately independent of the number
of sensors1. Since Xen is the fastest platform, it is most adversely
affected by the inclusion of sensors, and we found that even a single
sensor for these microbenchmarks would double or even triple the
execution time of the system call. UML-based VMMs are slower
to begin with, and suffer a smaller slowdown withuml-ptracebe-
ing able to support about two sensors before doubling in execution
time, anduml-kernelbeing able to support three. Slower operations,
such as file system open, see a proportionally lower overhead as the
operation is slow to begin with.

1 We performed experiments with 50 sensors along each path and confirmed
that even with that many sensors, the overhead still grew linearly with the
number of sensors.
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Figure 7. Execution times of implementations with sensors in Sec-
tion 3 enabled. All execution times are normalized to the execution
time inxen-watch.

Figure 5 shows the incremental execution time of each bench-
mark as the number of sensors is increased. It is interesting to note
that the cost of a sensor does not depend very much on the bench-
mark. This indicates to us that the placement of the sensors has very
little effect on the execution overhead. Rather, the implementation
of the underlying sensor mechanism and the number of sensors exe-
cuted are the determining factors. This indicates that if the user has
a choice of several operations to monitor in order to collect some
information, she should base her decision entirely on the frequency
at which those operations occur. Further, the exact location of the
sensor along an executed path is not important, just the number of
times the path is executed.

We should note that the microbenchmarks suffer extremely high
overheads because they intensively exercise events that trigger sen-
sors. In practice, applications do not trigger these sensors nearly
as often. We examine the scaling of the system as we increase the
number of sensors on runs of three representative applications. We
used the same sensors used in the microbenchmarks, which are ac-
tivated ongetppid, read, write, or open system calls. Our first
application is a webserver, Apache 2.0.48, running the Webstone



benchmark, which measures throughput. This application is rela-
tively I/O intensive and spends a lot of time in the kernel. Our sec-
ond application was a build of a Linux kernel. This involves many
calls to the gcc compiler as well as opening and closing many small
files. However, the gcc compiler itself is relatively computation in-
tensive. Our final application, Bzip2 involves compressing and de-
compressing a large file, and is almost entirely computation with
little operating system interaction. The results are displayed in Fig-
ure 6. The rate of sensor invocations being triggered is given below
the figure, which gives an indication of how much interaction the
benchmark has with the operating system. We note that Bzip2 ex-
periences very little performance overhead, and that the amount of
overhead we measured is comparable to random variations in exe-
cution time that occur due to misses in the file cache. An interesting
observation here is that Xen suffers the lowest percentage overhead
slowdown in the applications as opposed to the highest in the mi-
crobenchmarks. The reason for this is straightforward. All the ap-
plications spend a portion of their execution time doing computa-
tion, which takes the same amount of time regardless of the under-
lying virtualization platform. Thus, compared to microbenchmarks
that are exclusively exercising operating system functions, applica-
tions in Xen do not run proportionally faster than applications in
UML. However, as illustrated in Figure 5, Xen still has the fastest
invocation mechanism. As a result, since applications in Xen are
not running that much faster, but sensor invocations in Xen are sig-
nificantly faster, Xen applications experience less overhead due to
the sensor mechanism than their UML counter parts.

Finally, we measure the overall overhead experienced when
monitoring the applications with the sensors described in Section 3.
We ran the benchmarks with all of the sensors enabled, with the
exception of the Argument Capture sensor. The results are given in
Figure 7. As we can see, the improvements inuml-kernelandxen-
watchare justified, especially on the system-intensive applications,
which derive more benefit. Improving the sensor implementation
from uml-ptraceto uml-kernelbuys some improvement, but the
port from a host-based platform like UML to a specialized unhosted
VMM like Xen imparts the largest performance improvement.

When the number of sensors is small, the overhead of moni-
toring is low. For the three sensors used in the last experiment, the
overhead of monitoring as compared to an unmonitored system was
about 10% foruml-ptrace, and 5% foruml-kernelandxen-watchin
the case of Webstone, and even less for the other applications.

4.3 TCB Impact

An important metric to consider is the impact on the trusted com-
puting base (TCB) of the system. Since we assume that the attacker
will have gained administrative access to the guest operating sys-
tem, our TCB really only consists of the underlying VMM. We
measured the amount of code each implementation requires, and
how much was added directly to the VMM.

We provide line counts of the code we added for each imple-
mentation in Table 1. Foruml-ptrace, the sensors contained all code
that was used to collect symbol information. As a result,uml-ptrace
contains no client code, but has slightly larger sensors. Because
uml-ptraceimplements the entire monitor and sensors in a separate
process on the host-kernel, it has no impact on the TCB of the sys-
tem. However, foruml-kernelandxen-watchwe implemented both
the monitor and sensors in the TCB for performance.

We also note that theuml-kernelimplementation has slightly
more complexity in the monitor than thexen-watchimplementa-
tion even though the two are similar because the monitor is im-
plemented in the TCB. It turns out that hardware interrupts caused
by thetrap instruction are distinct from the interrupts generated
after every instruction by a processor in single-step mode. How-
ever, the Linux kernel takes both these interrupts and abstracts them

Monitor Sensors Client TCB
uml-ptrace 2611 1412 N/A 0/4023
uml-kernel 1603 1011 1709 2614/4323
xen-watch 1392 1320 2008 2712/4720

Table 1. Breakdown of implementation in lines of code. “Moni-
tor” indicates code for calling the event handlers and placing the
invocation points. “Sensors” covers code that implements the four
sensors described in Section 3. “Client” contains code that collects
symbol information and transfers it to the monitor. Finally, “TCB”
indicates what portion of code is actually added to the TCB of the
system.

into a single software signal. Thus, the monitor code inuml-kernel
must disambiguate whether the signal was delivered due to single-
stepping or atrap instruction by examining the program counter
that the trap occurs at. On the other hand, thexen-watchimple-
mentation did not because the two events are caught by different
interrupt handlers. We also experimented with instrumenting the
interrupt handlers in Linux, but this resulted in a more complex
implementation.

While it has no impact on the TCB, we also note that the
client code inxen-watchis larger because additional code needs
to be added to the kernel running in the client VMM to transfer
the information from the client process down into the Xen VMM.
On the other hand, withuml-kernel, the client process can simply
transfer the information directly into the UML host kernel.

5. Discussion
In this section, we discuss observations made during our experience
with VMM-based intrusion detection and monitoring. We will be-
gin by giving more details on our analysis of the attacks. We then
give insights into security and performance trade-offs that we faced
with the different monitor implementations, as well as the security
of the monitoring system against subversion by an attacker. Finally,
we discuss issues with trying to hide the virtualization from an at-
tacker.

5.1 Analysis of Attacks

When trying to exploit a remote machine, attackers typically inject
some malicious code, and then try to redirect execution of a victim
program to execute the injected code. Often, the goal of the injected
code is to create a shell that the remote attacker can control, so
that the attacker can execute arbitrary commands on the victim
machine. As a result, the injected code is commonly referred to
asshellcodein the literature. In 46 exploits that we have analyzed,
we observed four mechanisms used by the shellcode to gain access.

Account-creation simply creates a privileged account on the
machine with a username and password that is known to the at-
tacker. The attacker can then gain access to this machine by simply
logging in as the user through regular channels.

Bindshell spawns a root shell and binds its input and output
streams to a socket listening on a port of the attacker’s choosing.
The attacker then uses a program such as telnet to connect to the
port to communicate with the shell. We also note that either the
bindshell could be created by the shellcode directly, or by having
the shellcode modify the configuration of TCP wrapper services
such asxinetd to spawn such a shell.

Connect-backinitiates a connection back to the attacker’s ma-
chine, and then starts a shell with its input and output streams tied to
the new connection. This has the advantage that it will bypass fire-
walls that will block incoming connections to unauthorized ports,
but will allow outgoing connections that are initiated from within
the protected network.



Attack Name Description Sensor Activated
awu3 wu-ftpd exploit, modifies xinetd to spawn shell inode access sensor
lprng LPRng exploit, modifies xinetd to spawn shell inode access sensor
msqlx mysql exploit, shellcode does bindshell to configurable portstream redirection sensor
osslec Apache openssl exploit, shellcode does find-socket stream redirection sensor
rsync rsync exploit, shellcode does bindshell to port 10000 stream redirection sensor
samba samba exploit, shellcode does connect-back stream redirection sensor
sambash-release samba exploit, shellcode does bindshell stream redirection sensor
snmpx snmp exploit, shellcode does connect-back stream redirection sensor
squidx squid exploit, modifies xinetd to spawn a shell inode access sensor

Table 2. Description of exploits tested and analyzed. The first column gives the name of the attack. The second gives a description, including
what type of backdoor it uses. The third column indicates which sensor detected the exploit.

Find-socketcleverly reuses the connection the vulnerable ser-
vice had been using and connects the shell’s input and output
streams to that connection. This method is very similar to the bind-
shell, with the exception that it doesn’t create a new socket. Instead,
the shellcode searches for an existing socket and uses that instead.
Since the malicious traffic flows over the same connection that the
attack arrived on, it is able to bypass any firewall defenses, and will
not trigger any detection systems that scan for new network con-
nections.

In many cases, we found that the shellcodes were fairly close if
not identical. Of the 46 exploits we had source code for, we only
found 9 variants of the 4 mechanisms presented above. For several
reasons, shellcode is more difficult than normal code (such as our
sensors) to write–it must be small enough to fit in the vulnerable
buffer, be fully relocatable so as to execute properly regardless
of where the buffer is located in memory, and also contain only
characters that will be accepted by the application (for example, no
NULL bytes if overflowing a string function). Publicly available
shellcode repositories such as Metasploit [20] make it even more
likely that unrelated exploits will share the same shellcodes. As a
result, we do not find it surprising that many exploits are reusing
shellcodes found in other exploits. We tested each of the 9 variants
against our monitor, and tabulate the name of the attack, the type of
shellcode used, and the sensor that it triggered in Table 2. Two of
our sensors, which are easier to write, can detect all the shellcode
variants observed.

5.2 Implementation Trade-offs

There is an inherent trade-off between the scalability of the sys-
tem, in terms of number of sensors and concurrent honeypots that
can be supported, and the impact on the TCB of the system. The
uml-ptraceimplementation option has no impact on the TCB what-
soever, but also suffers the largest slowdown. To reduce the cost
of a sensor, it is best if the monitor and event handlers are imple-
mented directly in the VMM. However, this extra code can increase
the complexity of the VMM and thus reduce its level of assurance.
Since we depend on the VMM to maintain isolation for the hon-
eypots, this is clearly not desirable. In comparinguml-kerneland
xen-watch, we note that the Xen based implementation has both
the cheapest sensors and comparable TCB impact. Being a mini-
mal VMM, Xen does not provide many abstractions and exposes
more of the hardware interface. However, this is beneficial both for
performance and reducing TCB impact since the abstractions pro-
vided by the UML Linux kernel are not the ones needed for this
type of monitoring. Though our experience may be colored by the
fact that our port to Xen was done last, we feel that the implemen-
tation of a monitoring system in Xen is not any more difficult than
in the Linux kernel.

5.3 Using Sensors in Kernel Memory

One of the advantages with using a VMM to monitor systems is that
it protects the monitoring logic, as well as results of the monitoring,
from the attacker. In addition, the ability to arbitrarily place hooks
in the kernel makes it more powerful than kernel-based tools such
as LIDS [18] and SELinux [19], which only have static hooks for
monitoring events.

While the VMM prevents the attacker from modifying data that
the monitor has already collected, one problem that both kernel-
based and VMM-based monitor systems share is that an attacker
who gains privileged access to the kernel can disable sensors and
prevent future monitoring. There are two attacks an intruder could
use to remove our sensors. First, because the VMM needs to add
a trap instruction to the memory image of the running kernel,
the attacker could scan the kernel memory for these instructions
and remove them. However, this attack is easily detectable and
preventable by a VMM. The VMM need only mark any page with a
sensor as read-only. If a write is made to the address where a sensor
hook is located, this is highly suspicious and should be prevented
(there are usually a few instances of self-modifying code that have
to be specially accounted for). We leave the exploration of such a
system to future work.

The other method is if the attacker knows the code path along
which a sensor lies, she can install code into the kernel that per-
forms the same operations as the monitored path, and then alter a
function pointer in the kernel to use the injected code instead. This
is essentially the same technique used by root kits to alter kernel
system call handlers [11]. This code is installed via a kernel mod-
ule or kernel driver, so a solution is to disable the loading of ker-
nel modules2. However, disabling modules is inconvenient and can
make kernels unbootable, so an alternative is to monitor function
pointer tables for changes using coprocessors [21, 27] as well as
VMMs [9]. While making attacks more difficult, these techniques
are not perfect as there are legitimate reasons to change the values
in function pointer tables, which lead to false alarms.

5.4 Preventing Fingerprinting

Through a process referred to asfingerprinting, an attacker gathers
information about a machine they are attacking to try to determine
if it is a honeypot or not. While none of the attackers we observed
tried to do this, recent evidence suggests that there exists automated
exploit tools that check if they are in a virtual environment and alter
their behavior based on the outcome [17].

UML and Xen make modifications to the guest kernel to im-
prove performance. An attacker may scan the image of the kernel,
detect these modifications, and surmise that she is attacking a vir-
tual machine. One possible approach is to try to have the VMM

2 Disabling writes to/dev/kmem is also required, but this is generally not
as intrusive as disabling kernel modules.



emulate real hardware more faithfully so that unmodified kernel
binaries can be used. However, the more realistic level of simula-
tion that is desired from the VMM, the slower the simulation will
be [10]. VMMs do not introduce overhead in a uniform way–certain
operations, such as device access, incur more overhead than other
actions, such as memory access. As a result, an attacker who is able
to accurately measure time will be able to detect these discrepan-
cies.

Previous work has shown that it is possible to fingerprint hard-
ware by measuring the time required to perform certain computa-
tions [23], as well as observing fields in TCP headers that are gov-
erned by time [15]. The common requirement in both these meth-
ods is the ability to measure time relative to a fixed reference over
the network. Since removing the network connection would ren-
der honeypots useless, alternatives such as introducing noise into
network measurements would have to be taken [12].

6. Related Work
Our work is a combination of two related areas: honeypots and
intrusion detection/monitoring systems. The use of honeypots is
currently wide spread, and organizations frequently use VMMs to
implement honeypots. For example, Symantec has been using its
Dionaea Honeypot farm to collect malicious code samples auto-
matically for analysis and signature creation [16]. The Potemkin
honeyfarm also uses VMMs [26]. As attackers try to connect to
machines within the range of IP addresses covered by the honey-
farm, virtual machines are instantiated dynamically to respond to
those requests. Our system would be applicable to these projects.
On the other hand, some projects implement lighter weight low-
interaction honeypots [22], which do not simulate a full machine,
but just a subset of services. Since they do not use VMMs, our
monitoring methods are not applicable to this class of honeypots.

Current analysis techniques for honeypots in the literature still
rely on the manual inspection of logs and traces, which is very time
consuming [24]. The Honeynet Project [25], collects information
using relatively basic tools such as a keyboard logger and packet
sniffers. Similarly, HoneyStat [4] relies on logs collected by the
guest Windows NT kernel as well as user-space mechanisms in the
guest operating system such as Stackguard [3]. Our system reduces
the information logged by only recording very specific events that
occur on the system. This reduces the effort required to extract
information from intrusion logs.

A more sophisticated system, ReVirt, uses a VMM to record
and replay events on systems so that an administrator can time
travel through the history of the system and pinpoint attacks [7].
This system has subsequently been extended to be able to examine
a machine history with a predicate describing a vulnerability and
determine if an exploit has occurred in the past [14]. These predi-
cates focus on detecting when a certain vulnerability is exploited,
and thus only work if the vulnerability is known, while our sensors
focus on symptoms, and thus are able to detect intrusions made
by exploiting unknown vulnerabilities. In addition, predicates may
modify the state of the monitored kernel, requiring a system to roll-
back the changes before continuing modification. Our sensors, on
the other hand, are completely passive and do not change the state
of the monitored system.

Intrusion detection systems (IDS), which monitor systems for
malicious activity, can also be used to collect information for anal-
ysis. For example, various host-based monitoring systems, such as
LIDS [18] and SELinux [19], statically add hooks to the kernel
that will call arbitrary functions determined by the administrator.
While these hooks are similar to our sensors, our system differs in
that the sensors can be dynamically placed anywhere in the kernel.
In addition, the VMM protects the detection logic and information
collected.

Our work is most directly motivated by the Livewire system,
which implements intrusion detection in a modified version of
VMware [9]. Similar to our sensors, the Livewire IDS has the
ability to trigger on specific events in the virtual hardware. The two
examples they give are events triggered by accesses to memory in
a certain range and placing the virtual ethernet card in promiscuous
mode. Instead of only triggering on specific events in the hardware,
our study broadens the events that are captured by triggering off the
execution of particular instructions in the monitored kernel.

7. Conclusion
We have implemented and studied the use of VMM-based monitor-
ing of honeypots on two virtualization platforms: UML and Xen.
Three implementations were made that trade-off performance with
added complexity to the underlying VMM. Monitoring was done
by placing invocation points in the guest honeypot kernel, which
would trigger the execution of sensors within the VMMs. The sen-
sors collect information about the state of the kernel to aid in foren-
sic analysis of intrusions occurring on the honeypot.

We found that this simple mechanism afforded the honeypot ad-
ministrator a lot of power to monitor arbitrary events on the honey-
pot systems, without sacrificing isolation for the monitor logic and
collected information. Our sensors are able to monitor any behavior
that current methods could monitor, and unnecessary code duplica-
tion can be avoided by chaining sensors into several sub-sensors.
The system introduces a modest amount of performance overhead,
less than 10% overhead for the sensors we wrote, which can limit
the number of honeypot systems that can be deployed. Reducing
the overhead requires either modifications to the VMM, which in-
creases the size of the honeypot system’s TCB, or reducing the
number of sensor invocations. However, changing the placement
of the sensors does not affect the performance impact. Fortunately,
with a small number of very specific sensors, we found that a large
number of different behaviors could be detected with very few false
positives. This was due in part to our observation that many attack-
ers try to execute the same shellcodes on victim system, resulting
in similar symptoms of a successful attack. Highly specific sensors
are also executed less frequently. Since the overhead is proportional
to the number of sensor invocations, making sensors more specific
also reduces the monitoring performance impact.

If the attacker is aware of the presence and location of the sen-
sors, she can disable them by corrupting the kernel. This is accept-
able for honeypot systems, since it is reasonable to disable ker-
nel modules in this limited environment. In addition, the frequent
rollback to a fresh system image eliminates any kernel corruption.
However, it is inappropriate for use on production systems where
system state persists for long periods of time, and disabling kernel
modules may make administration and maintenance more difficult.
We feel that an effective online intrusion detection system could
be crafted out of the sensor mechanism if combined with a system
that can detect kernel corruption. We view this as interesting future
work.
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