
Functionoi

Editor: Philip Wadler, Bell Laboratories, Lucent Technologies; wadler@ research.beU-labs.com

SSA is Functional Programming
Andrew W. Appel

Static Single-Assignment (SSA) form is an intermedi-
ate language designed to make optimization clean and
efficient for imperative-language (Fortran, C) compil-
ers. Lambda-calculus is an intermediate language that
makes optimization clean and efficient for functional-
language (Scheme, ML, Haskell) compilers. The SSA
community draws pictures of graphs with basic blocks
and flow edges, and the functional-language community
writes lexically nested functions, but (as Richard Kelsey
recently pointed out [9]) they're both doing exactly the
same thing in different notation.

SSA form. Many dataflow analyses need to find the
use-sites of each defined variable or the definition-sites
of each variable used in an expression. The def-use chain
is a data structure that makes this efficient: for each state-
ment in the flow graph, the compiler can keep a list of
pointers to all the use sites of variables defined there, and
a list of pointers to all definition sites of the variables used
there. But when a variable has N definitions and M uses,
we might need N • M pointers to connect them.

The designers of SSA form were trying to make an im-
proved form of def-use chains that didn't suffer from this
problem. Also, they were concerned with "getting the
right number of names:" the programmer might use some
variable i for several unrelated purposes in the same pro-
cedure- for example, as the loop counter for two different
loops - and we can do more optimization if we split i into
different variables il and i2.

In SSA, each variable in the program has only one defi-
nition - it is assigned to only once. The assignment might
be in a loop, which is executed many times; so single-
assignment is a static property of the program text, not a
dynamic property of program execution.

a 4- x + y al 4- x T y
b 4- a - 1 bl 4- a ~ - i
a ~ y + b a2 4- y + b~

b 4- x . 4 b2 4- x . 4
a 4- a + b a3 4- a 2 + b 2

To achieve single-assignment, we make up a new vari-

able name for each assignment to the variable. For ex-
ample, we convert the program at left into the single-
assignment program at right. At left, a use of a at any
point refers to the most recent definition, so we know
where to use al, a2, or a3, in the program at right.

For a program with no jumps this is easy. But where
two control-flow edges join together, carrying different
values of some variable i, we must somehow merge the
two values. In SSA form this is done by a notational
trick, the C-function. In some node with two in-edges,
the expression ¢(a l , a2) has the value al if we reached
this node on the first in-edge, and a2 if we came in on the
second in-edge.

Let's use the following program to illustrate:

i 4 - 1
j 4 - 1
k 4 - 0
while k < 100

i f j < 20
j + - - i
k 4 - k + l

else
j 4 - k
k + - k + 2

return j

First we tum this into a control-flow graph (CFG):

/ / ~ [i f k < 100 l
~ - . ~

/ [i f j<20"] 3 [return j j4

I -":re 6
[[j < - - i I [j<- -k
/Ik~---k+l] [k e - k + 2

17

Programming
Now, the question is, where to put the C-functions and

how to rename the variables. A really crude approach is
to split every variable at every basic-block boundary, and
put C-functions for every variable in every block:

2 ~ O (b , !1) 2
l 0 07,

k2 ~ ¢ (k7,
if k2 < 100

i3 ¢--¢(i2) 13 i4 ~.._¢t(i2) 4
J3 <'-'¢(J2) [j4/"'¢i(J2)
k3 ~¢~(kz) h ~¢(kz)
if j3 < 20 return j4

' : 5 i5 ~---¢(i3) I~ I i6 +--0(i 3) 16
J5 ~"-0(j3) I I J6/~"-¢(J3) I
k: I O(k3)l
J8 ~ 15 [] J9 e--- k 6
k8 ~- ks+l I Ik9 ~ k6+2

i7 ~._ O (i5, i6) 7
J7 e-- ~ (J8, J9)

x ~ _ ~ / ¢ ~ (ks'k9)

Yuck! This isn't "the right number of names!" There
are too many variables and useless copies. More about
this later.

Meanwhile, we can view this program as a set of mu-
tually recursive functions, where each function takes ar-
guments/, j , k:

functionfl 0 =
let il = 1, j l = 1, kl = 1 in f2(i l , j l , k l)

function f2 (i2, j2, k2) =
if k2 < 100 then f3(i2,j2, k2) else f4(i2,j2, k2)

function f3 (i3, j3, k3) =
if j3 < 20 then f~(i3,j3, k3) else f6(i3,j3, k3)

function f4 (i4, j4, k4) = j4
function :5 (i5, j5, k5) =

let js = i5, ks = ks + 1 in fz(is , js ,ks)
function f6(i6, j6, k6) =

let j9 = k6, k9 = k6 + 1 in fT(i6,j9, k9)
function f~(ir, jr, kT) = f2 (i7, j r , kT)

This gives us some insight into what, exactly, is a "C-
function." Compare the expression j2 ~ ¢(j7, j l) (in the
really crude SSA program) with the function-declaration

f~(. . . , j~ , . . .)

and function-calls

f2(.. • ,j7,-..) f2(.-.,jl,.-.)

in the functional program. We see that the left-hand side
of the ¢ assignment is the formal parameter of the corre-
sponding function; and each right-hand side argument of
the ¢ assignment is the actual parameter of some call to
the corresponding function. That's what I mean when I
say that SSA form is a kind of functional programming.
The "C-functions" are not really functions, but they do
correspond (in an inside-out way) to the real functions.

We can express this functional program in a nicer way
using the idea of nested scope. Then the inner-nested
functions won't all need so many parameters; they can
use non-local variables from the functions in which they
are nested. This idea will be familiar to Pascal program-
mers (and Scheme, ML, Haskell programmers), and (if
there are any of you left) Algol-60 programmers as well.

let il = 1, j l ..7- 1, kl = 0
in let function f2 (j2, k2) =

if kz < 100
then let function fT(j4, k4) =

:2 (j4, k4)
in ifj2 < 20

then let j3 = i l , k3 = k2 + 1
in f7 (j3, k3)

else let j5 = k2, ks = k2 + 1
in fz (js, ks)

else return j2
in f2 (jl , kl)

But what's the algorithm for finding the best way of
nesting the functions to eliminate unnecessary argument-
passing? The algorithm is the one for converting pro-
grams to SSA form!

J2 ~'-- : (J4, Jkl~) 2
2 ~-~(k4,

' [if k2 < I 0 0

[ifj2<2013 [retumj2 14

] ~ +... il 5 <__.. k2 6
e-k2+1 [:~ ~- k2+2

J4 ~ ¢ (J3, J5) 7
(k3,ks)

18

Functional
This is the Static Single-Assignment form of the pro-

gram with optimal placement of C-functions. It's much
nicer than the crude version that had too many variables
and too many C-functions. This program has "the right
number of names?' And notice how it corresponds ex-
actly to the nested functional program - function fi cor-
responds to block i, parameter ji corresponds to variable
ji , and so on. Wherever there is a formal parameter of a
function (in the functional form), there is a ¢ (in the SSA
form). Wherever the functional form refers to a non-local
variable, the SSA form has avoided the need for a ¢.

Algorithm for optimal placement of ¢'s. The only
place we really need a C-function in SSA form is where
two different definitions reach (along control-flow edges)
the same point. For example, in the original CFG (the first
diagram above), only one definition of i reaches block 2,
so we don' t need a C-function for i in that block. This is
true even though there are two edges leading into block
2 - it's because the definition of i (in block 1) dominates
block 2. Any path to block 2 must go through block 1.

We use the notion of dominance and dominance fron-
tiers to calculate the minimum set of C-functions. In gen-
eral, node a in a flowgraph dominates node b when any
path from the start node to b must go through a. Now,
consider the region of the graph dominated by a; imagine
that this region has a "border" or "frontier" separating it
from the rest of the graph. We call this the dominance
frontier of a. In particular, whenever there is an edge
b --+ c from a node b dominated by a to a node c not
strictly dominated by a, we say that c is in the dominance
frontier of a.

dominance frontier of 5 is reachable from two different
definitions of z; one in node 5 and one in the start node.
(We assume that every variable has an initializing defi-
nition in the start node.) Therefore, the rule for placing
¢ functions is: Whenever node n contains a definition of
some variable z, then any node in the dominance frontier
o f n needs a C-function for x.

Efficient algorithms for computing the dominator tree
and dominance frontiers can be found in any good com-
piler textbook [3, 4, 5, 10, 15]

Once we have the SSA form, we can make appropriate
linked data structures connecting the uses of each variable
to the definition, and the definition to all the uses. Then
we can run efficient optimization algorithms: instead of
using costly bit-vector dataflow analysis, we can follow
links to quickly find the uses for each definition, and vice
versa, as needed.

Functional programming in Fortran? So now we
know what the SSA conversion algorithm is really do-
ing with its dominance frontiers: it is automatically con-
verting a Fortran or C procedure into a well-structured
functional program with nested scope. Actually, I 've only
shown what to do with the scalar variables. Arrays are
handled in high-powered (parallelizing) compilers using
sophisticated dependence analysis techniques [15], which
is another way of extracting the functional program hid-
ing inside the imperative one.

What SSA users can learn from functional program-
ming. An important property of SSA form is that the
definition of a variable dominates every use (or, in the
case of a uses within a C-function, dominates the a prede-
cessor of the use node). This property is often unstated in
explanations of SSA, but it is necessary for many of the
analyses and optimizations on SSA - it is part of SSA's
semantics. In a functional program with nested scope,
this restriction is explicitly and statically encoded into
the structure of function nesting. The notion of scopes
of variables helps us to structure the intermediate form.

For example, in this graph node 5's dominated region
is shown in grey, and the border of that region is crossed
by e d g e s 6 ~ 4 , 8 ~ 5 , 8 ~ 13, a n d 7 ~ 12. So we
say that nodes 4, 5, 12, 13 form the dominance frontier of

node 5.

The importance of dominance frontiers is this: If node
5 contains a definition of variable x, then any node in the

What functional programmers can learn from SSA.
People who use SSA tend to draw flowcharts with boxes,
assignments, conditionals, and control-flow edges. This
notation, while subject to abuse, is often better for ex-
plaining ideas and for intuitive visualization of algorithms
and transformations. Functional programmers often get
lost in the notation of functional programming, which is
a shame.

19

Programming
History and literature. SSA form was developed by
Wegman, Zadeck, Alpern, and Rosen [1, 11] for efficient
computation of dataflow problems such as global value
numbering, congruence of variables, aggressive dead-
code removal, and constant propagation with conditional
branches [14]. Cytron et al. [7] describe the efficient
computation of SSA form using dominance frontiers.

Wolfe [15] describes several optimization algorithms
on SSA (which he calls factored use-defchains).

Church [6] invented A-calculus, a language of func-
tions with nested scope. Strachey [13] showed how
to encode control flow as function calls to continua-
tion functions. Steele [12] showed how to use continu-
ations as the intermediate representation of a compiler.
Kelsey [9] showed the correspondence between SSA and
continuation-passing style (CPS), and gave algorithms for
converting each to the other.

Appel [2] improved upon CPS by binding every non-
trivial value explicitly to a variable. Flanagan et al. [8]
showed Administrative-Normal Form (A-Normal Form
or ANF), which binds every nontrivial value to a variable
without being full CPS. The functional notation I have
used in this paper is a variant of ANF or CPS.

Advertisement. Chapter 19 of my new Modern Com-
piler Implementation textbooks [3, 4, 5] has readable and
detailed coverage of many relevant topics:

• SSA form and its rationale;

• Dominance frontiers and calculation of SSA form;

• The Lengauer-Tarjan algorithm for efficient calcula-
tion of dominators;

• Optimization algorithms using SSA: dead-code
elimination, conditional constant propagation; con-
trol dependence; construction of register interfer-
ence graphs;

• Structural properties of SSA form;

• Functional intermediate representations (CPS, ANF)
and their relation to SSA.

For more information about the book, visit
http://www.cs.princeton.edu/- appel/modern.

Acknowedgment. Kenneth Zadeck improved my un-
derstanding of SSA form through many conversations,
and told me all along that SSA is a functional program.

References

[1] Bowen Alpern, Mark N. Wegman, and E Kenneth Zadeck.
Detecting equality of variables in programs. In Proc. 15th
ACM Syrup. on Principles of Programming Languages,
pages 1-11, New York, January 1988. ACM Press.

[2] Andrew W. Appel. Compiling with Continuations. Cam-
bridge University Press, New York, 1992.

[3] Andrew W. Appel. Modern Compiler Implementation in
C. Cambridge University Press, New York, 1998.

[4] Andrew W. Appel. Modern Compiler Implementation in
Java. Cambridge University Press, New York, 1998.

[5] Andrew W. Appel. Modern Compiler Implementation in
ML. Cambridge University Press, New York, 1998.

[6] Alonzo Church. The Calculi of Lambda Conversion.
Princeton University Press, Princeton, 1941.

[7] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N.
Wegman, and F. Kenneth Zadeck. Efficiently computing
static single assignment form and the control dependence
graph. ACM Trans. on Programming Languages and Sys-
tems, 13(4):451---490, October 1991.

[8] Cormac Flanagan, Amr Sabry, Bruce E Duba, and
Matthias Felleisen. The essence of compiling with contin-
uations. In Proceedings of the ACM SIGPLAN '93 Confer-
ence on Programming Language Design and Implementa-
tion, pages 237-247, New York, 1993. ACM Press.

[9] Richard A. Kelsey. A correspondence between continua-
tion passing style and static single assignment form. In
Proceedings ACM SIGPLAN Workshop on Intermediate
Representations, vol. 30, pages 13-22, March 1995.

[10] Steven S. Muchnick. Advanced Compiler Design and Im-
plementation. Morgan Kaufmann, San Francisco, 1997.

[11] Barry K. Rosen, Mark N. Wegman, and E Kenneth
Zadeck. Global value numbers and redundant computa-
tions. In Proc. 15th ACM Symp. on Principles of Pro-
gramming Languages, pp. 12-27, New York, Jan. 1988.

[12] Guy L. Steele. Rabbit: a compiler for Scheme. Technical
Report AI-TR-474, MIT, Cambridge, MA, 1978.

[13] C. Strachey and C. Wadsworth. Continuations: A mathe-
matical semantics which can deal with full jumps. Techni-
cal Monograph PRG-11, Programming Research Group,
Oxford University, 1974.

[14] Mark N. Wegman and E Kenneth Zadeck. Constant prop-
agation with conditional branches. ACM Trans. on Pro-
gramming Languages and Systems, 13(2):181-210, 1991.

[15] Michael Wolfe. High Performance Compilers for Parallel
Computing. Addison Wesley, Redwood City, CA, 1996.

Andrew Appel is Professor of Computer Science at
Princeton University. His research interests include pro-
gramming languages and compilers, functional program-
ming, and language support for modularity and security.

20

