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1 Introduction

Using the dividend process of a stock, we fully characterize the relations between expected
returns, stock volatility, and price-dividend ratios, and derive over-identifying restrictions on
the dynamics of these variables. We show that given the dividend process, one of the expected
return, the stock return volatility, or the price-dividend ratio completely determines the other
two. These relations are not merely technical restrictions, but they lend insight into the nature
of the risk-return relation and the predictability of stock returns.

Our method of using the dividend process to characterize the risk-return relation requires
no economic assumptions other than transversality to ensure that the price-dividend ratio exists
and is well defined. In deriving our relations, we do not require the preferences of agents,
equilibrium concepts, or a pricing kernel. This is in contrast to previous work that requires
equilibrium conditions, in particular, the utility function of a representative agent, to pin down
the risk-return relation. For example, in a standard CAPM or Merton (1973) model, the expected
return of the market is a product of the relative risk aversion coefficient of the representative
agent and the variance of the market return.

The intuition behind our risk-return relations is a simple observation that, by definition,
returns equal the sum of capital gain and dividend yield components. Hence, the return is
determined by price-dividend ratios and dividend growth rates. In particular, if we specify
the expected return process, we can compute price-dividend ratios given the dividend process.
Going the other way, the price-dividend ratio, together with cashflow growth rates, can be used
to infer the process for expected returns. Given the dividend process, these relations between
expected returns and price-dividend ratios arise from a dynamic version of the Gordon model.

Less standard is that, given cashflows, the volatility of returns also determines price-dividend
ratios and vice versa. The second moment of the return is also a function of price-dividend ratios
and dividend growth rates. Thus, using dividends and price-dividend ratios, we can compute
the volatility process of the stock. Going in the opposite direction, if dividends are given and
we specify a process for stochastic volatility, we can back out the price-dividend ratio because
the second moment of returns is determined by price-dividend ratios and dividend growth. In
continuous time, we show that expected returns, stock volatility, and price-dividend ratios are
linked by a series of differential equations.

Our risk-return relations are empirically relevant because our conditions impose stringent

1 We use the terms dividend and cashflows interchangeably and define them to be the total payout received by a

holder of an equity (stock) security.



restrictions on asset pricing models. Many common empirical applications often directly spec-
ify only one of the expected return, risk, or the price-dividend ratio. Often, this is done without
considering the dynamics of the other two variables. Our results show that once the cashflow
process is determined, specifying the expected return automatically pins down the diffusion
term of returns and vice versa. Hence, specifying one of the expected return, risk, or the price-
dividend ratio makes implicit assumptions about the dynamics of these other variables. Our
relations can be used as checks of internal consistency for empirical specifications that usually
concentrate on only one of predictable expected returns, stochastic volatility, or price-dividend
ratio dynamics. More fundamentally, the over-identifying restrictions among expected returns,
volatility, and prices provide additional restrictions, even before equilibrium conditions are im-
posed, on stock return predictability and the risk-return trade-off. Thus, our relations allow us to
explore the implications for the joint dynamics of cashflows, expected returns, return volatility,
and prices.

We illustrate several applications of our risk-return conditions with popular empirical spec-
ifications from the literatures of the predictability of expected returns, time-varying volatility,
and estimating the risk-return trade-off. For example, Poterba and Summers (1986) and Fama
and French (1988b) estimate slow, mean-reverting components of returns. Often, empirical
researchers regress returns on persistent instruments that vary over the business cycle, such
as dividend vyields or risk-free rates to capture these predictable components. We show that
with 11D dividend growth, the stochastic volatility generated by these models of mean-reverting
expected returns is several orders too small in magnitude to match the time-varying volatility
present in data. A second example is that many empirical studies model dividend yields, or log
dividend yields as a slow, mean-reverting process. If dividend growth is IID, an AR(1) process
for dividend vyields surprisingly implies that the risk-return trade-off is negative. This result
does not change if we allow dividend growth to be predictable and heteroskedastic, where both
the conditional mean and conditional volatility are functions of the dividend yield.

Third, it is well known that volatility is more precisely estimated than first moments (see
Merton, 1980). Since Engle (1982), a wide variety of ARCH or stochastic volatility models
have been used to successfully capture time-varying second moments in assét pfioes.

2 Most of the stochastic volatility literature does not consider implications of time-varying conditional volatility
for expected returns. Exceptions to this are the GARCH-in-mean models that parameterize time-varying variances
of an intertemporal asset pricing model. Bollerslev, Engle and Woodridge (1988), Harvey (1989), Ferson and
Harvey (1991), Scruggs (1998), and Brandt and Kang (2004), among others, estimate models of this type. In
contrast, most stochastic volatility models are used for derivative pricing, which only characterize the dynamics of



specify the diffusion of the stock return, then, assuming a dividend process, stock prices and
expected returns are fully determined. Hence, assuming a process for the stock return volatility
provides an alternative way to characterize the risk-return trade-off, rather than directly estimat-
ing conditional means as a function of return volatility that is commonly done in the literature
(see, for example, Glosten, Jagannathan and Runkle, 1993).

The idea of using the dividend process to characterize the relationship between risk and re-
turn goes back to at least Grossman and Shiller (1981) and Shiller (1981), who argue that the
volatility of stock returns is too high compared to the volatility of dividend growth. Campbell
and Shiller (1988a and b) linearize the definition of returns and then iterate to derive an ap-
proximate relation for the log price-dividend ratio. They use this relation to measure the role of
cashflow and discount rates in the variation of price-dividend ratios by assuming that the joint
dynamics are homoskedastic. Our approach is similar, in that we use the definition of returns
to derive relations between risk, return, and prices. However, our relations link expected re-
turns, stochastic volatility, and price-dividend ratios more tightly than the log-linearized price-
dividend ratio formula of Campbell and Shiller. Furthermore, we are able to provide exact
characterizations between the conditional second moments of returns and prices (the stochastic
volatility of returns, and the conditional volatility of expected returns, dividend growth, and
price-dividend ratios) that Campbell and Shiller’s framework cannot easily handle.

Our risk-return conditions are related to a series of papers that characterize the risk-return
trade-off in terms of the properties of a representative agent’s utility function or the properties
of the pricing kernel (see, among others, Bick, 1990; Stapleton and Subramanyam, 1990; Pham
and Touzim 1996; Decamps and Lazrak, 2000gérs and Franke, 2004; Mele, 2005). In
particular, He and Leland (1993) show that the risk-return relation is a direct function of the
curvature of the representative agent’s utility and derive a partial differential equation that the
drift and diffusion term of the price process must satisfy. In contrast to these papers, we in
essence use dividends, rather than preferences, to pin down the risk-return relationship. This
has the advantage that dividends are observable, which allows a stochastic dividend process to
be directly estimated. Indeed, a convenient assumption made by many theoretical and empirical
asset pricing models is that dividend growth is IID. In comparison, there is still no consensus
on the precise form that a representative agent’s utility should take.

The remainder of the paper is organized as follows. Section 2 derives the risk-return and
pricing relations for an economy with an underlying variable that captures the time-varying

the risk-neutral measure rather than deriving the implied expected returns of a stock under the real measure.



investment opportunity set. In Section 3, we apply these conditions to various empirical spec-
ifications in the literature. Section 4 concludes. We relegate most proofs to the Appendix and
some proofs are available upon request.

2 The Model

Suppose that the state of the economy is described by a single state vayjatihéch follows
the diffusion process:
dxy = pg(x)dt + o,(z)dBY, (1)

where the driftu, () and diffusions, (-) are functions of,. For now, we treat, as a scalar and
discuss the extension to a multivariatebelow. We assume that there is a risky asset that pays
the dividend streand,, which follows the process:
dDy L o 2 2 d
D - (ud(xt) + §(Jdm(xt) + ad(xt))) dt + 04, (x)dBf + o4(x)d By, (2)
or equivalently:
D, ' . d
Dy = exp (/0 pa(xs)ds + 04, (x)dBY + Ud(:):s)st> )
Without loss of generality, we assume that? is uncorrelated witkd B¢. Note that the dividend
growth process is potentially correlated wittthrough thes ;. d B term.

By definition, the price of the assé} is related to dividends);, and expected returng,.,
by:
E; [dPtanL Dydt . 3)
t

By iterating equation (3), we can write the price as:

T
P, =E, [/ el mdnp s 4 e=Ui mdw pr | (4)
t

We show how to determine the drjft () and diffusiono, (-) of the return processR; from
prices and dividends:
dR; = p(xy)dt + o, (x)d By, (5)
under a transversality condition.
Assumption 2.1 The transversality condition
lim B, |e~U w0 pl — g (6)

T—o00

holds almost surely.



Assumption 2.1 rules out specifications like the Black-Scholes (1973) and Merton (1973)
models, which specify that the stock does not pay dividends. Equivalently, Black, Scholes,
and Merton assume that the capital gain represents the entire stock return and that there are no
intermediate cashflows in these economies except for the terminal capital gain of the stock. By
assuming transversality, we can express the stock price in equation (4) as the value of discounted
cashflows? N

P, =E, { / e~ mrdn sl (7)
t

The following proposition characterizes the relationships between dividend growth, the drift
and diffusion of the return proceds$?;, and price-dividend ratios, subject to the transversality
condition.

Proposition 2.1 Suppose the state of the economy is describec byhich follows equation
(1), and a stock is a claim to the dividenfls, which follow the process in equation (2). If the
price-dividend ratioP;/D; is a functionf(-) of x;, then the cumulative stock return process,
dR;, satisfies the following equation:

2
+0,(In f) dBF + 04, dBF + 04dBE. (8)

dR, = ((MHUMW/*%%% "+l
f

1
+ g+ 5 (05, + 03)) dt

Conversely, if the returi, satisfies the following diffusion equatién:
dRy = p,(z,)dt + 0pp(2)dBE + 0,4()dBY, (9)
and the stock dividend process is given by equation (1), then the price-dividen®raiwp =

f(z) satisfies the following relation:

1 1
(tz + 0azoa) f' + =02 f" — (ur — Ha — 5(0336 + 03)) f=-1 (10)

3 An alternative way to compute the stock price is to iterate the definition of rettiRps= (dP; + D;dt)/P;
forward under the transversality conditiim_, o, exp(—(ftT dR, — 02du))Pr = 0 to obtain:

P - / U2 dRu*%U?“d“)Ds ds.
t

This equation holds path by path. As Campbell (1993) notes, we can take conditional expectations of both the left-
and right-hand sides to obtain:

t
which can be shown to be equivalent to equation (7).

4Sinced BY andd B¢ are independent, the diffusion tewm(z;) of the return process in equation (5) is given
by /02, (1) + 024 (x1).




and the diffusion of the stock return is determined from the relations:

or(x) = ox(lnf) (11)
Urd(iﬁ) = O0gq. (12)

The most important economic implication of the relations in equations (8) to (12) is that
given the dividend process, specifying one of the price-dividend ratio, the expected stock re-
turn, and the stock return volatility, determines the other two. In other words, suppose that the
dividend cashflows are given. If we dengte=- k& as meaning that the procegsmplies the
process:, then we can write:

f= " both from equation (8).

Org
Thus, parameterizing priceg, determines expected returpg,and stock return volatilityy,...
The expected stock return alone determines both the stock price and the volatility of the return:

f from equation (10)
fhr =

o, from equation (11),
where we solve for,., after solving forf. Finally, given the dividend dynamics (or that; as
a function ofx is known), specifying a process for time-varying stock volatikty,, determines
the price of the stock and the expected return of the stock:

f from equation (11)
Org =

u, from equation (1Q)
where the last implication for,, = u, follows after noting thatr,, determinesf and f
determineg., from equation (8).

Thus, with dividends specified, there is only one degree of freedom between expected re-
turns, return volatility, and price-dividend ratios. More generally, if the dividend process can
also be specified, then we can choose two out of the dividend, expected return, stochastic volatil-
ity, and price-dividend ratio processes, with our two choices completely determining the dynam-
ics of the other two variables.

In Proposition 2.1, expected returns, stochastic volatility, and dividend yields are linked to
each other by a series of differential equations. Thus, by fixing a dividend process and assuming
a process for one of expected returns, return volatility, or dividend yields, we may be able to

6



derive analytic solutions for the dynamics of the variables not explicitly modelled by working
in continuous time. However, the relations in Proposition 2.1 are fundamental, and the same
intuition may be obtained in discrete time, which we now discuss.

2.1 Discrete-Time Intuition

We now provide some intuition on the relations between dividends, expected returns, price-
dividend ratios, and return volatility in Proposition 2.1 using a discrete-time model. From the
definition of returns, we can write:

Pii1+ D

= lUpt + OrtE ) 13
2 Mrt T OrtEtt1 (13)

Ry =

wherey, ; is the one-period expected retuen, is the conditional volatility, and,., is an IID
shock with unit standard deviation. To determine prices from expected returns, or vice versa,
we take conditional expectations of both sides of equation (13):

p— Ei[Py1+ Dy
t — .
,ur,t

We can iterate this forward to obtain a telescoping sum. Assuming transversality allows us to
express the stock price as the stream of discounted cashflows:

j—1

P, = g;Et [(H L ) Dtﬂ.] . (14)

k=0 Hort+k

Thus, knowing the cashflow series provides a mapping bet#eand they, , process. This is
just a dynamic version of a standard Gordon dividend discount model. Hence, the basic Gordon
model intuition allows us to infer prices from the expected return process, or vice versa, if
dividends are given.

What is more surprising is that the volatility process determines prices, and vice versa, given
the dividend series. To demonstrate this equivalence between volatility and prices in discrete
time, we multiply the definition of the return ky,; and take conditional expectations:

€e41(Pit1 + Dygr)
P,

E, = By [et41 (e + 0rgers1)] = 0rp.

We can rearrange this expression to write the stock price in terms of conditional volatility and

return innovations:
P _ Ei[er11(Pir1 + Diga)]
t —_— .

0_r7t




Iterating forward and assuming appropriate transversality conditions, we obtain:

-3, [(H ﬂ) Dtﬂ] . (15)
j=1 k

0’ .
—qg Tt

Thus, if the dividend stream is fixed, we can invert &ufrom theo,, process, and vice versa,
in a similar fashion to inverting out prices from expected returns from the Gordon model.

We can infer expected returns,;, and stochastic volatilityr, ; from each other by equating
the price process. If expected returns are specified, then equation (14) allows us to invert a price
process. Then, with a price process, we can extract th@erocess from equation (15). Going
from o, to 4, is simply the reverse procedure. Thus, with dividends specified, expected
returns, prices, and volatility of returns are all linked and knowing one process automatically
pins down the other two. Thus, we obtain the same intuition in Proposition 2.1 in discrete
time. In the rest of our analysis, we use continuous time, which allows us to obtain closed-form
solutions.

2.2 Further Comments on the Proposition

The relations between prices, expected returns, and volatility outlined by Proposition 2.1 arise
only through the definition of returns and by imposing transversality. We have not used an
equilibrium model, nor do we specify a pricing kernel, to derive the relations between risk and
return. The conditions (8)-(12) can be easily applied to various empirical applications because
empirical models often assume a process for one or moyg,af,., and f. Proposition 2.1
characterizes what the functional form of the expected return, stochastic volatility, or stock
price must take after choosing a parameterization of only one of these variables.

The relations between prices, expected returns, and volatility in Proposition 2.1 must hold
in any equilibrium model. In an equilibrium model with a (potentially endogenous) dividend
process where transversality holds, prices, returns, and volatility are simultaneously determined
after specifying a complete joint distribution of state variables, agent preferences, and technolo-
gies. Similarly, if a pricing kernel is specified, together with the complete dynamics of the state
variables in the economy, the relations in Proposition 2.1 must also hold. Hence, the relations
(8)-(12) can be viewed as necessary but not sufficient conditions for equilibrium asset pricing
models.

The major advantage of the set-up of Proposition 2.1 over an equilibrium framework is
that many empirical specifications in finance parameterize the conditional mean or variance of



returns (for example, predictability regressions that specify the conditional mean or stochastic
volatility models), without specifying a full underlying equilibrium model. In these situations,
Proposition 2.1 implicitly pins down the other characteristics of returns and prices that are not
explicitly assumed. In a proof available upon request, we show that an empirical specification
of a particular conditional mean, variance or a price process does not necessarily uniquely
determine a pricing kernel. This is especially useful for an empirical researcher who can write
down a particular expected return or volatility process knowing that there exists at least one
(and potentially an infinite number of) pricing kernels that can support the researcher’s choice
of the expected return or volatility process.

In Proposition 2.1, there are two effects if we relax the assumption of transversality. First,
the transversality Assumption 2.1 ensures that the price-dividend ratio is a functiobyof
Feynman-Kacs. The requirement tiay D, = f(x,) is not satisfied in economies that only
assume geometric Brownian motion processes for the stock process and do not specify cashflow
components (like Black and Scholes, 1973; Merton, 1973). In these economies, there is also
no state variable describing time-varying investment opportunities as the mean and variance are
constant. Second, if we relax the transversality condition, the ordinary differential equation
defining the price-dividend ratio in equation (10) may have additional terms with derivatives
with respect to time, and an additional boundary condition. This is due to the fact that when
transversality does not hold, the price-dividend ratio is also potentially a function ot time

Proposition 2.1 also applies to total returns, rather than excess returns. While some em-
pirical studies focus on matching the predictability of total returns (see, for example, Fama
and French, 1988a,b; Campbell and Shiller, 1988a) and the volatility of total returns (see, for
example, Lo and MacKinlay, 1988), we often build economic models to explain time-varying
excess returns, rather than total returns. Time-varying total returns may be partially driven by
stochastic risk-free rates. Short rates could be included as a state variablespecially since
Ang and Bekaert (2006) and Campbell and Yogo (2006), among others, find risk-free rates
have predictive power for forecasting excess returns. In Section 3, we explicitly investigate the
implications of a system where risk-free rates linearly predict excess returns. An alternative
way to handle excess returns is to adjust Proposition 2.1 to solve for conditional excess returns,
since the nominal risk-free rate is known at timever various horizons. Note that with daily
or weekly returns, there is negligible difference between total and excess returns.

Finally, although Proposition 2.1 is stated for a univariate state varigblide equations
generalize to the case whergis a vector of state variables. In the multivariate extension, the



ordinary differential equation (10) becomes a partial differential equation, where,, 14, 04,

0.z, ando,, represent matrix functions af. An integrability condition is required to ensure

that the pricing function is well-defined. This allows the vector of diffusion terms of the return
process to imply a price-dividend ratio and an expected return process that are unique up to an
integration constant. A proof of the multivariate case is available upon request.

3 Empirical Applications

Proposition 2.1 can be used to characterize the joint dynamics of expected ret)rmst(rn
volatility (o) dividend yields (/P) or price-dividend ratios, and dividend growtl,[{/ D).

In Table 1, we provide a brief summary of various model specifications in the finance literature.
We list some possible model specifications betwegrv,, D/ P, anddD/D in each row and

if a particular model specifies the dynamics of one of these four variables, we denote which
variable is specified by bold font in the first column. Thg™marks in the second column
denote which of these four variables are specified, while the “?” marks denote the variables
whose dynamics are implied by parameterizing the other two variables. The third column lists
selected papers that assume a model for the variable in bold font.

For example, in the first row of Table 1, Fama and French (1988a and b), Hodrick (1992),
Poterba and Summers (1986), and Cochrane (1991) are examples of studies which parameterize
the expected return process. These authors assume that expected returns are a linear function
of dividend yields, whereas Poterba and Summers assume a slow mean-reverting process for
expected returns. If a dividend process is also assumed together with a model for expected
returns, then the dynamics of stock volatility,] and dividend yields p/ P) are completely
determined by the expected return and dividend growth processes. Another example is the
fourth row, where a large literature assumes a process for stochastic volatility (see, among
others, Stein and Stein, 1991; Heston, 1993). Combined with an assumption on dividends,
Proposition 2.1 completely determines the risk-return trade-off and prices.

Our goal in this section is to illustrate how Proposition 2.1 can be applied to various em-
pirical models that have been specified in the literature. Investigating the joint dynamics of
expected returns, volatility, prices, and dividends produces sharper predictions of risk-return
trade-offs, expected return predictability and delivers strong pricing implications. We work
mainly with the assumption that dividends are IID, which is made in many exchange-based
economic models. Many economic frameworks advocate 11D dividend growth, including the

10



textbook expositions by Campbell, Lo and MacKinlay (1997) and Cochrane (2001). Follow-
ing this literature, in many of our examples, we make the assumption of IID dividend growth
for illustrative purposes. This also highlights the non-linearities induced by the present value
relation without specifying additional non-linear dynamics in the cashflow process. Neverthe-
less, we also examine a system where dividend growth is predictable and heteroskedastic. We
also examine features of the dividend growth process implied by common specifications of the
expected return and stochastic volatility processes.

In Section 3.1, we briefly confirm that Proposition 2.1 nests the special Shiller (1981) case
of constant expected returns, 11D dividend growth, and constant price-dividend ratios. Section
3.2 analyzes the case of specifying expected returns and dividend growth by focusing on a sys-
tem where the risk-free rate can predict excess returns. In Section 3.3, we consider a common
mean-reverting specification for dividend yields combined with IID dividend growth or divi-
dend growth that is predictable and heteroskedastic. Section 3.4 investigates the implications of
the Stambaugh (1999) model for dividend growth and the risk-return trade-off, while Section
3.5 examines the implications for expected returns from various models of stochastic volatility.
Finally, we parameterize the risk-return trade-off and stochastic volatility in Section 3.6.

3.1 |ID Dividend Growth

If dividend growth is IID, then time-varying price-dividend ratios can result only from time-
varying expected returns. The following corollary shows that under 11D dividend growth, time-
varying expected returns, price-dividend ratios, and time-varying volatility are different ways of
viewing a predictable state variable driving the set of investment opportunities in the economy.

Corollary 3.1 Suppose that dividend growth is IID, so that= i, ando,; = 64 are constant

in equation (2). If the state variable describing the economy satisfies equation (1) and stock
returns are described by the diffusion process in equation (9), whegre- 7, is a constant,

then the following statements are equivalent:

1. The price-dividend ratigf = f is constant.
2. The expected return, = i, is constant.

3. The volatility of stock returns is the same as the volatility of dividend growth, o 0
in equation (9).

11



We can interpret the term,, in equation (9) as the excess volatility of returns that is not
due to fundamental cashflow risk. Shiller (1981) argues that the volatility of stock returns is too
high compared to the volatility of dividend growth in an environment with constant expected
returns. Cochrane (2001) provides a pedagogical discussion of this issue and claims that excess
volatility is equivalent to price-dividend variability, if cashflows are not predictable. Corollary
3.1 is the mathematical statement of this claim.

3.2 Specifying Expected Returns and Dividends

In an environment where the price-dividend ratio is stationary, time-varying price-dividend ra-
tios must reflect variation in either discount rates or cashflows, or both. If dividend growth

is IID, then the only source of time variation for price-dividend ratios is discount rates. We
investigate two parameterizations of the expected return process while assuming that dividend
growth is IID. First, we assume that expected returns are linear functions of dividend yields.
Second, we assume that the expected stock return is a mean-reverting function of a predictable
state variable, which we specify to be the risk-free rate.

3.2.1 Dividend Yields Linearly Predicting Returns

A large number of empirical researchers find that stock returns can be predicted by price-
dividend ratios or dividend yields in linear regressién3he following corollary investigates
the effect of linear predictability of returns by log dividend yields on the price process:

Corollary 3.2 Assume that dividend growth is IID, $q = [iq ando, = G4 are constant in
equation (2) and that,, = 0. Suppose that the log dividend yiéld D/ P) linearly predicts
returns in the predictive regression:

dR; = (o + Bay)dt + G, (2,)dBF + 54dBY, (16)

where the predictive instrument= — In f is the log dividend yield andl,. is a constant. Then,
the dividend yield: follows the diffusion:

dxy = pg(x)dt + o,(2)dBY, (17)

5 Papers examining the predictability of aggregate stock returns by dividend yields include Fama and French
(1988), Campbell and Shiller (1988a and b), Hodrick (1992), Goetzmann and Jorion (1993), Stambaugh (1999),
Engstrom (2003), Goyal and Welch (2003), Valkanov (2003), Lewellen (2004), Ang and Bekaert (2006), and
Campbell and Yogo (2006).

12



where the drifiu,, and diffusions,, are given by:

1 1
po(x) = flg+ §6§+§6T2$ —a—fr+e”

0,(x) = —0Ora (18)

In Corollary 3.2 implies the sign of, is negative, indicating that shocks to returns and
log dividend yields are conditionally negatively correlated. Since the relative volatility of log
dividend shocksd;) is small compared to the total variance of returns, the negative conditional
correlation of returns and log dividend yields is large in magnitude. This is true in the data:
Stambaugh (1999) reports that the conditional correlation between level dividend yield innova-
tions and innovations in returns is around -0.9 for U.S. returns, and Ang (2002) reports a similar
number for the correlation between shocks to log dividend yields and returns. Note that log
dividend yields predicting returns makes the strong (counter-factual) prediction that returns are
homoskedastic.

We calibrate the resulting log dividend yield process by estimating the regression implied
from the predictive relation (16). We use aggregate S&P500 market data at a quarterly fre-
quency from 1935 to 2001. In Panel A of Table 2, we report summary statistics of log stock
returns, both total stock returns and stock returns in excess of the risk-free rate (3-month T-
bills), together with dividend growth and dividend yields. From Panel A, we set the mean of
dividend growth afi, = 0.05 and dividend growth volatility at; = 0.07. The volatility of
dividend growth is much smaller than the volatility of total returns and excess returns, which are
very similar, at approximately 18% per annum. This allows us ta$et= (0.18)% — (0.07)2,
or ., = 0.15. Empirically, the correlation between dividend growth and total or excess returns
is close to zero (both correlations being around -0.08). This justifies our assumption in setting
ogz = 0.

In Panel B of Table 2, we report linear predictability regressions of continuously com-
pounded returns over the next year on a constant and log dividend yields. Since the data is
at a quarterly frequency, but the regression is run with a 1-year horizon on the left-hand side,
the regression entails the use of overlapping observations that induces moving average error
terms in the residuals. We report Hodrick (1992) standard errors in parentheses, which Ang
and Bekaert (2006) show to have good small sample properties with the correct empirical size.
Goyal and Welch (2003), among others, document that dividend yield predictability declined
substantially during the 1990s, so we also report results for a data sample that ends in 1990.

The coefficients in the total return regressions are similar to the regressions using excess
returns. For example, over the whole sample, the coefficient for the log dividend yield is 0.10
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using total returns, compared to 0.11 using excess returns. Hence, although we perform our
calibrations for total returns, similar conditional relations also hold for excess returns. The
second line of Panel B shows that when the 1990s are removed from the sample, the magnitude
of the predictive coefficients increases by a factor of approximately two. To emphasize the linear
predictive relationship in equation (16), we focus on calibrations using the sample without the
1990s. Nevertheless, we obtain similar qualitative patterns for the implied functional form for
the drift of the price process when we calibrate parameter values using data over the whole
sample.

Since the predictive regressions are run at an annual frequency, the estimated coefficients
in Panel B allow us to directly match and 3, since we can discretize the drift in equation
(16) as approximatelyo + fx)At. Hence, we set = 0.81 and = 0.22. Together with the
calibrated values fofi; = 0.05, 54 = 0.07 anda,., = 0.15, we compute the implied drift of the
log dividend yield using equation (18). Figure 1 plots the drift of the log dividend yield, which
shows it to be almost linear. Hence, if log dividend yields predict returns and dividend growth is
[ID, then linear approximations for log dividend yields will be very accufafhis implies that
log-linearized systems like Campbell and Shiller (1988a,b) contain little approximation error
for the dynamics of the log dividend yield.

3.2.2 Predictable Mean-Reverting Components of Returns

As a second example of specifying an expected return process, we assume that excess returns
are predictable by risk-free ratésAng and Bekaert (2006) find that the strength of the pre-
dictability of excess returns by risk-free rates is much stronger at short horizons than dividend
yields, which is confirmed by Campbell and Yogo (2006). Denoting the risk-free rateves
consider the following system where the risk-free rate predicts excess returns:

dRy = (z; + o+ Bxy)dt + 0,0 (,)dBY + G4d B, (19)
where the short rate follows the Ornstein-Uhlenbeck process:

dx; = —r(x; — 0)dt + G,dB; + G,qdBY (20)

6 If we model the level dividend yield as predicting returns in equation (16) similar to Fama and French (1988a),
then the implied drift of the level dividend yield is highly non-linear, becoming strongly mean-reverting at high

levels of the dividend yield, but behaves like a random walk at low dividend yield levels.
" Papers examining predictability of stock returns by risk-free rates include Fama and Schwert (1977), Campbell

(1987), Lee (1992), Ang and Bekaert (2006), and Campbell and Yogo (2006).
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These equations imply that the term structure is a Vasicek (1977) model and that the excess
stock return is predicted by the short rate. The set-up also allows dividend growth and risk-free
rates to be correlated through tig, parameter.

In Panel C of Table 2, we report coefficients of predictive regressions for excess returns
over a 1l-quarter and a 4-quarter horizon. We use annualized, continuously compounded 3-
month T-bill rates as the predictive variable over the post-1952 sample because interest rates
were pegged by the Federal Reserve prior to the 1951 Treasury Accord. The results confirm
Ang and Bekaert's (2006) findings that the predictive power of the risk-free rate is best visible
at short horizons, where the coefficient on the risk-free rate is -1.72 with a robust t-statistic of
2.25. Risk-free rate predictability is slightly stronger in the sample ending in 1990, where the
predictive coefficient is -1.79 with a t-statistic of 2.31. At a 4-quarter horizon, the risk-free
coefficients drop to around -1.06 for both samples and are no longer significant at the 5% level.

For our calibrations, we use the regression coefficients from the 1952-2001 sample at a
quarterly horizon, giving us values of = 0.15 and = —1.72. The unconditional mean of
short rates over this sampledis= 0.053. We also match the annual risk-free rate autocorrelation
of 0.787 = exp(—~), the unconditional risk-free rate volatility 60275, and the correlation of
risk-free rates and dividend growth of 0.214 in the data. Thysnda,, satisfy

~2 =2

0.+ 0.4

(0.0275) = 2= and 0.214 = 224

2K 0,04

We also assume that the mean of dividend growth and the volatility of dividend growth are
constant afi; = 0.05 anda,; = 0.07, respectively.

Our goal is to characterize the behavior of price-dividend ratios and the implied stochastic
volatility induced by the predictability of the excess return by risk-free rates. We can solve for
price-dividend ratios exactly using equation (7) to obtain:

% = E MOO exp (— /ts(xu +a+ ﬁxu)du) exp (fa(s — t) + da(B — Bf))} ds

- /tooexp (— (a—;‘m—%ﬁﬁ) (S—t))

< E, {exp (- /t a4 ﬁ)xudu> exp (—%62(8 — )+ 4(B — Bf))] ds

_ /too exp (_ (a g — %gg) (s — t)) E® [exp <— [(1 + ﬁ)xuduﬂ ds,

where the measur@ is determined by its Radon-Nikodym derivative with respect to the original

1
exp ( / GadBY — §5§dt) :
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By Girsanov’s theorem, the dynamics of the short ratenderq is:
dry = —k(xy — 0 — G404q/K)dt + 5,dB; + 5zddBth.

Hence, we can write the price-dividend ratio as:

P, o0 G 4G v 1
—t —( 0 g — =
) /t exp ( (( + 5) < + - ) +a — fig 2%) s

—KS

—(14 1) (xt —0— 5‘1:"“1) ! _,:
@ +aid>2(1 + )’ (S _2(—er) 1= 2)) ds. (1)
K K 2K

In the top panel of Figure 2, we graph the risk premiumy Sz, and the total expected
return,x 4+ (« + (), as a function of the dividend yield. The top panel of Figure 2 shows that
the expected return is a strictly increasing, convex function of the dividend yield. Thus, high
dividend yields forecast high expected total and excess returns. The bottom panel of Figure 2
plots the implied risk-return trade-off of the excess return predictability system. We plot the
risk premium and total expected returns against= \/o?2,(z) + o2. There are two notable
features of this bottom plot.

First, the range of the implied volatility of returns is surprisingly small, not showing much
variation around 0.084, which is not much different to the volatility of dividend growth at 0.07.
The implied volatility is also much smaller than the standard deviation of returns in data, which
is around 0.18. The intuition behind this result is that large changes in the price-dividend ratio,
f, are required to produce a large amount of stochastic volatility through the retation
a.(In f)" in equation (11) of Proposition 2.1. When expected returns are mean-reverting, only
the terms in the sum (7) close tachange dramatically when changes. One way for small
changes inx to induce large changes jfis for the predictive coefficient to be extremely large
in magnitude, but this causes total expected returns to be unconditionally negative. We can also
generate larger amounts of heteroskedasticity if the mean reversion coefficient in the predictive
variable,x, is close to zero, which corresponds to the case of permanent changes in expected
returns.

Second, the risk-return relation in Figure 2 is downward sloping, so that high volatility
coincides with low risk premia. This is due to the convexity imbedded in the present value
relation. When expected returns are low, price-dividend ratios are high. A standard duration
argument implies that there are relatively large price movements resulting from small changes in
expected returns at high price levels and relatively small price movements resulting from small
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changes in expected returns at low price levels. Hence, the risk-return relation is downward
sloping. This result suggests that we may need an additional volatility factor to explain the
amount of heteroskedasticity present in stock returns. Alternatively, heteroskedastic dividend
growth may change the shape of the risk-return trade-off, which we examine in the next section.

3.3 Specifying Dividend Yields and Dividends

Many studies, like Stambaugh (1999), Lewellen (2004), and Campbell and Yogo (2005) specify
the dividend yield to be a mean-reverting process. We now investigate the implied dynamics
of expected returns and the risk-return trade-off implied by mean-reverting dividend yields.
Our first case uses IID dividend growth, while our second example considers predictable and
heteroskedastic dividend growth.

3.3.1 1ID Dividend Growth

Corollary 3.3 Assume that dividend growth is IID, $q = iy ando, = G4 are constant in
equation (2), and that,, = 0. Suppose that the level dividend yield- 1/ f, wheref = P/D,
follows the CEV process:

dr, = k(0 — z;)dt + ox]dBy. (22)

Then, the driffu,, and diffusions,, of the return procesgR; in equation (9) satisfy:

1 6
pr(z) = K+ fig+ 563 -2 + 022?07 4 g
T

Oe(r) = —oa7 ! (23)

If dividend yields are mean-reverting, Corollary 3.3 shows that returns are heteroskedastic,
aso,, = —ox?~L. For the special case of a Cox, Ingersoll and Ross (1987) (CIR) process where
~ = 0.5, high dividend yieldst tend to coincide with low return volatility, since in this special
caseo,, = —o,/+/z. This is the opposite to the behavior of these variables in data because
during recessions or periods of market distress, dividend yields tend to be high and stock returns
tend to be volatile. For a CEV process with= 1, Corollary 3.3 states that the return volatility
must be constant, even though expected returns are time-varying.

We calibrate the parameters 0, ando in equation (22) to match the moments of the
dividend yield. We match the quarterly autocorrelationg = exp(—«/4); the unconditional
meand = 0.044; and the unconditional variand®.0132)? = ¢26/(2x) for a CIR process.

For a CEV process with = 1, we also calibrate by matching the unconditional variance of
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dividend yields, using the relatiof9.0132)? = ¢%6?/(2x — ¢*). Dividend growth has a low
correlation with dividend yields, at 0.05 in data, so the assumptiorvthat 0 is realistic.

We characterize the behavior of expected returns and the risk-return trade-off implied by
mean-reverting dividend yields in Figure 3. The top panel graphs the drift of returns as a mono-
tonic, increasing function of dividend yields. Both the cases where dividend yields follow a CIR
process or a CEV process with= 1 produce very similar drift functions. However, Corollary
3.3 shows that expected returns may not always be monotonically increasing functions of the
dividend yield. For example, if dividend yields follow a CIR process, thers given by:

1., kO—o?
() :H+Md+§dd—

+x,

which may increase steeply as dividend yieldspproach zero ik > o2.

While low dividend yields do not coincide with high expected returns for the parameter
values calibrated to data, Corollary 3.3 shows that low dividend yields may forecast high returns
in well-defined dynamic economies. To provide some intuition behind this result, we use the
definition of a discrete-time expected return:

E¢ [Pt—H] I E; [Dt+1]
Py P

Hrt =

In a one-period model (or in a setting whete, = 0), y,.+ = E[D;+1]/ P, S0 low prices imply

high expected returns. However, givEf| D, | in a multi-period setting, lowP; can imply low

w1 (i) low prices today imply low conditional prices next period, or (ii) low prices imply a
large positive Jensen’s term. The former does not occur if dividend yields are mean-reverting,
but large Jensen’s terms may arise in practice (see, for exanggmrRand Veronesi, 2006).

The bottom panel of Figure 3 plots the risk-return relation implied by mean-reverting divi-
dend yields and IID dividend growth. The risk-return relation is strongly downward sloping if
dividend yields follow a CIR process. For a CEV process with: 1, the risk-return relation
is degenerate because the implied return volatility is con8tadReasonable economic models
usually imply that the risk premium is a weakly, or strictly, increasing function of volatility, so
downward sloping risk and total expected return relations could arise if the risk-free rate de-
creases faster than the risk premium increases when volatility rises. Without this effect, a much
less restrictive conditional meamn,(-) is required in equation (22), rather than the standard

81n the case where the log dividend yield= — In f follows an AR(1) process and dividend growth is IID (see
Corollary 3.2), the risk-return relation is also degenerate because the return volatility is constant while expected
returns vary over time.
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AR(1) (6 — =) formulation, to order for the risk-return trade-off to be positive when dividend
growth is IID.

3.3.2 Predictable and Heteroskedastic Dividend Growth

A number of recent studies suggest that dividend growth is predictable (see Bansal and Yaron,
2004; Hansen, Heaton and Li, 2005; Lettau and Ludvigson, 2005; Ang and Bekaert, 2006) and
that dividend growth exhibits significant heteroskedasticity (see Calvet and Fisher, 2005). In
this section, we examine the implied risk-return trade-off for a system where dividend yields
are mean-reverting but dividend growth exhibits predictable and heteroskedastic components
which are functions of the dividend yield.

Corollary 3.4 Assume that the level dividend yield= 1/ f, wheref = P/D, follows the CIR
process:
dry = k(0 — xy)dt + o+/x:dBY, (24)

and that the log dividend level follows the process:
dIn Dy = (a + B,)dt + by/z, B, (25)

where the correlation betweetB; and B;i is zero. Then, the drift,, and diffusiono,., of the
return processi R, in equation (9) satisfy:

2 1
pe(z) = /~c+a+<am—f€9)+<1+ﬁ+§b2)x

In Corollary 3.4, the level dividend yield is mean-reverting but is constrained to be positive
through the square-root process. In equation (25), dividend growth is predictable by the divi-
dend yield, which is what Ang and Bekaert (2006) find. The conditional volatility of dividend
growth increases as the dividend yield increases. This is economically reasonable, as during
periods of market distress, dividend yields are high because prices are low, and there is larger
uncertainty about future cashflows.

To match the dynamics of the dividend yield, weset 0.16, 6 = 0.044, ando = 0.0365 to
match the autocorrelation, mean and variance of the dividend yield. To calibrate the conditional
mean of log dividend processes in Corollary 3.4, we regress annualized quarterly dividend
growth onto the dividend yield:

4gi41 = a + Bdy; + €441,
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whereg, .1 = In(D,,1/Dy) is quarterly dividend growth, andy; is the level dividend yield.
Over the 1952-2001 sample,= 0.026 and = 0.415, with robust t-statistics of 2.63 and 3.70,
respectively. This result is consistent with the positive OLS coefficients for the dividend yield
predicting dividend growth reported by Ang and Bekaert (2006).

It can be shown that the unconditional variance of dividend growth fert is given by:

E[(In D, — In D, — E[ln D, — In D,])?]

2 2 2
= <b2 + (%‘7) ) (s — )0 — ﬁ,g (1 — e "=t)g.

This formula fors — ¢t = 1 allows us to match the unconditional variance of annual dividend

growth. The volatility of annualized dividend growif ;4 = gi+1+gi+2+91+3+gi+4, 1S 0.0932

in data, which is matched by a valuetot= 0.444. As expected from equations (24) and (25),
the unconditional correlation between dividend growth and dividend yields is controlled by the
parameters. In data, the correlation between annual dividend growth and dividend yields is
0.16, which is only slightly larger than the correlation implied by the model parameters at 0.06.

In the top panel of Figure 4, we plot the drift and volatility of returns implied by predictable
and heteroskedastic dividend growth (equation (26)). In the solid line, the expected return
assumes a concave shape which increases with the dividend yield. For the return volatility in
the dashed line, we plaf/o2, + o2, as a function of the dividend yield, whereo,; = by/z.

The volatility of returns is highest when dividend yields are low (or prices are high). This
implication seems to be counter-factual as stock return volatility increases during periods of
market distress when prices are low and dividend yields are high. However, the conditional
volatility curve is slightly U-shaped and increases also when dividend yields are high.

The bottom panel plots the implied risk-return trade-off. First, the risk-return trade-off does
not have a unique one-to-one correspondence. This is due to the U-shape pattern of return
volatility increasing at high dividend yields. Thus, according to this specification for dividend
cashflows, the risk-return trade-off will be particularly difficult to pin down for low to moderate
return volatility levels. However, the general shape of the risk-return trade-off is downward
sloping, similar to the IID dividend growth case in Figure 3. Thus, either considerably more
heteroskedasticity in dividends is needed, or a richer non-linear specification for the dividend
yield is required to generate an upward sloping risk-return relation.
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3.4 Specifying Dividend Yields and Expected Returns

We take the Stambaugh (1999) model as a well-known example of a system that specifies the
joint dynamics of dividend yields and expected returns. Stambaugh assumes that the dividend
yield x = D/ P follows an AR(1) process and that the stock return is a linear function of the
dividend yield. We modify the Stambaugh system slightly to use a CIR process or a CEV
process with to ensure that prices are always positive. Hence, the Stambaugh model specifies:

dR; = (a+ Bxy)dt + opp(x)dBy + ad(xt)dBf
dr; = k(0 —x)dt + ox]dBY, (27)

wherez is the dividend yieldz = D /P, with~ = 0.5 (y = 1.0) for a CIR (CEV) dividend yield
process. Stambaugh uses this system to assess the small sample bias in a predictive regression
where the dividend yield is an endogenous regressor. By jointly specifying dividend yields
and expected returns, Stambaugh implicitly implies the dynamics of dividend growth and the
risk-return trade-off.

A further application of Proposition 2.1 implies that the driftddd, / D, in equation (2) can
be written as a function of the dividend yield

1 0
pa(x) + 503(95) =a—k+(f—-1)z+ % — aixQ(%l), (28)

assuming that,; = 0, which is true empirically. Hence, by assuming that dividend yields are
mean-reverting and that dividend yields monotonically predict expected returns, Proposition 2.1
implies that dividend yields must predict dividend growth.

We graph equation (28) in the top panel of Figure 5, which shows that dividend growth is
a highly non-monotonic function of dividend yields. For very low dividend yields, dividend
growth is a decreasing function of dividend yields. However, for dividend yields above 3%,
dividend growth is an increasing function of dividend yields. Since empirically dividend yields
have only been below 2% for a short episode during the late 1990s, we should expect that, on
average, dividend yields should positively predict dividend growth. This result is the opposite
to the intuition of Campbell and Shiller (1988a,b) who claim that high dividend yields must
forecast either high future returns or low future dividefds.

91f we model dividend yieldsD/P = z, in equation (27) to be an AR(1) process, then the drift of dividend
growth takes on a concave shape as a function of the dividend yield, which decreasesamthe level dividend
yield approaches zero from the right-hand side.
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To provide some discrete-time intuition on this result, we use the definition of expected
returns to write:

Pt+1+Dt+1:| Dy ( [ 1 ] ) |:Dt+1:|
PR R el e e ) I 8 O L DUIR R I © .
fint t{ P, P\ Dipa/Pis ‘"D

Given the expected returp,,, in a multi-period model, high, / P, implies a hight,[ D1/ D]

if high dividend yields cause a large Jensen’s term or high dividend yields forecast high dividend
yields next period. The latter result cannot occur if dividend yields are mean-reverting. In
contrast, in a one-period setting (or whéie,; = 0), high dividend yields forecast low dividend
growth for a given expected retur, ;:

_Dip [Din
:ur,t Pt t Dt .

Hence, the result that dividend yields positively forecast future dividend growth can occur only
in a dynamic model.

The middle panel of Figure 5 plots the return-risk trade-off implied by the Stambaugh
model. If we assume that dividend growth is homoskedastic and;set 0.07, we can in-
vestigate the risk-return trade-off implied by the + Sz) expected return assumption in the
drift of the stock return and the volatility of the stock retusn,= /02, + &2. Since the divi-
dend yield is mean-reverting according to equation (27) in the Stambaugh system, the diffusion
term of the return process takes the farm(z) = —oz7~!, similar to equation (23). Figure
5 shows that the risk-return trade-off is monotonically downward sloping for a CIR dividend
yield process and the return volatility is constant if dividend yields follow a CEV process. We
can induce a positive risk-return trade-off only by relaxing the assumption that dividend yields
non-monotonically predict expected returns, rather than the lipear 5z) drift term in equa-
tion (27), or by assuming a richer conditional mean specification for the dynamics of dividend
yields.

Finally, we consider the implied behavior of dividend growth heteroskedasticity from the
Stambaugh model. Following Calvet and Fisher (2005), we set the conditional mean of div-
idend growth to be constant, a = 0.05, but solve endogenously for dividend growth het-
eroskedasticity. Using equation (28), we plot the conditional volatility of dividend grdeith,
as a function of the level dividend yield in the bottom panel of Figure 5. Interestingly, the
implied volatility of dividend growth is a non-monotonic function of the dividend yield and
increases in periods of both low and high dividend yields, which would roughly correspond to
the peaks and troughs of business cycle variation. A multi-frequency model of dividend growth
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heteroskedasticity, like Calvet and Fisher, where shocks to dividend growth occur jointly over
different frequencies, could potentially match this pattern.

3.5 Specifying Stochastic Volatility and Dividends

The dynamics of time-varying variances of stock returns have been successfully captured by a
number of models of stochastic volatility. If the dividend process is specified, Proposition 2.1
shows that the presence of stochastic volatility implies that stock returns must be predictable.
We now use Proposition 2.1 to characterize stock return predictability by parameterizing the
variance process. Thus, Proposition 2.1 can be used to shed light on the nature of the aggregate
risk-return relation, on which there is no theoretical or empirical consensus. This is an entirely
different approach from the current approach in the literature of estimating the risk-return trade-
off, which uses different measures of conditional volatility in predictive regressions to estimate
the conditional mean of stock returns (see, for example, Glosten, Jagannathan and Runkle,
1996; Scruggs, 1998; Ghysels, Santa-Clara and Valkanov, 2005).

We look at two well-known stochastic volatility models, the Gaussian model of Stein and
Stein (1991) in Section 3.5.1 and the square root model of Heston (1993) in Sectio#’3.5.2.
In both cases, we assume that dividend growth is Wp € 4 andoy; = 7, are constant in
equation (2)), and set,;, = 0 to focus on the relations between risk and return induced by the
non-linear present value relation.

3.5.1 The Stein-Stein (1991) Model

In the Stein and Stein (1991) model, time-varying stock volatility is parameterized to be an
Ornstein-Uhlenbeck process. The Stein-Stein model in our set-up can be written as:

dR, = . (z))dt + 2, dBF + G4dB?
dvy, = k(0 —x)dt + 7,dBy. (29)
The variance of the stock returnig + 52, so the stock return variance comprises a constant

componentz3, from dividend growth, and a mean-reverting componeht! Empirically,
shocks to returns and shocks to volatility dynamics are strongly negatively correlated, which is

101t can be shown that for a log volatility model with 11D dividend growth, the price-dividend ratio is not well

defined because the unconditional dividend yield cannot be computed.
11 Most recently, by using an AR(1) process to generate heteroskedasticity, Bansal and Yaron (2004) use a set-up

that is similar to the Stein-Stein model, except Bansal and Yaron model the variance, rather than volatility.
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termed the leverage effect, 89 is negative. The correlation of dividend growth with squared
returns is almost zero, at -0.07, which justifies our assumption of setiing 0.

The following corollary details the implicit restrictions on the expected return of the stock
w,(+) by assuming that stochastic volatility follows the Stein-Stein model:

Corollary 3.5 Suppose that dividend growth is 1ID, $Q = i, ando, = G4 are constant

in equation (2). If the stock variance is determineddyy(x) = x in equation (9), andr

follows the mean-reverting process (29) according to the Stein and Stein (1991) model, then the

expected stock returm.(z) as a function of: is given by:
pr(T) = fia + %63 + %@ + ;—f:c + (% — %) ? + O texp (—%2—2) : (30)

where(' is an integration constant’ = f(0), where f(0) is the price-dividend ratio at time

t=0.

The expected return in equation (30) is a combination of several functional forms. First, the
expected return has a constant tefip;+ %63 + %535, which is the case in a standard exchange
equilibrium model with [ID consumption growth and CRRA utility. Second, the expected re-
turn contains a term proportional to volatilitggx. This specification is implied by models
of first-order risk aversion, developed by Yaari (1987) and parameterized by Epstein and Zin
(1990). Third, the expected stock return is proportional to the varia@:e f) 2. Aterm
proportional to variance would result in a CAPM-type equilibrium like the standard Merton
(1973) model. Finally, the last ternd;/~' exp(—%2?/5,), can be shown to be the dividend
yield in this economy. Since the price-dividend ratio is only one component of equation (30),
the Stein-Stein model predicts that dividend yields are not a sufficient statistic to capture the
time-varying components of expected returns. We emphasize that the risk-return trade-off in
equation (30) is not derived using an equilibrium approach. The only economic assumptions
behind the risk-return trade-off is the 11D dividend growth process, the transversality condition
necessary to derive Proposition 2.1, and the volatility dynamics of the Stein-Stein model.

To calibrate the parameters in equation (29), wejgset= 0.05, 64 = 0.07, andf =
V/(0.18)2 — 2. We set the parameters= 4 ands, = —0.3. These parameter values are
meant to be illustrative, and are consistent with stochastic volatility models estimated by Cher-
nov and Ghysels (2002), among others. These parameter values imply that the unconditional
standard deviation of volatility is 11%. We s€t= 26.1, which matches the average price-
dividend ratio in data of 24.5. In Figure 6, we plot points corresponding to a range of plus and
minus three unconditional standard deviations &dr these parameter values.
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The top panel of Figure 6 plots the expected return as a function of the dividend yield
implied by the Stein-Stein model. Interestingly, because the Stein-Stein model parameterizes
volatility, |x|, rather than variance, there is no one-to-one correspondence between expected
returns and dividend yields. We show two branches corresponding to negative and positive
The negativer branch produces a much steeper relation between expected returns and dividend
yields than the positive: branch. For positive: below the average dividend yield (4.4%),
there is a non-monotonic hook-shaped relation between expected returns and dividend yields.
However, one failure of the Stein-Stein model is that it cannot account for the variation of
dividend yields observed in data. In the top plot of Figure 6, dividend yields range only from
approximately 3.8% to 5.6% for a plus and minus three standard boun@dmfund its mean,
which is substantially smaller than the approximately 1% to 10% range of dividend yields in
the data.

In the bottom plot of Figure 6, we graph the implied risk-return trade-off. Again, because
the Stein-Stein model assumes an AR(1) process fdhere are multiple risk-return trade-
off curves. The risk-return trade-off for negatives always sharply increasing, whereas the
risk-return trade-off for positive has a pronounced non-monotonic U-shape pattern for levels
of volatility less than 20%. For volatility values higher than 15%, the expected stock return
becomes a sharply increasing function of volatility. According to the Stein-Stein model, the
risk-return relation will be very hard to pin down empirically because of the non-monotonic
relation and multiple correspondence between risk and return. Studies like French, Schwert and
Stambaugh (1987) and Bollerslev, Engle and Wooldridge (1988) find only weak support for a
positive risk-return trade-off, while Ghysels, Santa-Clara and Valkanov (2005) find a significant
and positive relation. On the other hand, Campbell (1987) and Nelson (1991) find significantly
negative relations. Glosten, Jagannathan and Runkle (1993) and Scruggs (1998) report that
the risk-return trade-off is negative, positive, or close to zero, depending on the specification
employed. Brandt and Kang (2004) find a conditional negative, but unconditionally positive,
relation between the aggregate market mean and volatility. From Figure 6, it is easy to see that
depending on the sample period of low, average, or high volatility, the expected return relation
could be flat, upward-sloping, or downward-sloping.

To understand why the risk-return relation in the top panel of Figure 6 generally slopes
upwards for large absolute values af consider the following intuition. The price-dividend
ratio f in the Stein-Stein economy is given lfy= C~* exp(—32?/7,), which is a decreasing
function of volatility x becauser, is negative (due to the leverage effect). Note that for an
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infinite amount of volatility, the price of the stock is intuitively zerozlfs high (andf is low),

x is likely to be lower (andf is likely to be higher) in the next period because of mean reversion.
The return comprises a capital gain and a dividend component. Since the dividend is IID, for
high enough values af, the higherf next period causes the expected capital gain component
to be large, and hence, the expected total return to be large. Thus, very high volatility levels
correspond to high expected returns. Mathematically, it is the quadratic term that dominates in
equation (30) which is responsible for the non-monotonicity of the risk-return trade-off.

3.5.2 The Heston (1993) Model

In the Heston (1993) model, the variance follows a square-root process similar to CIR, which
restricts the variance to be always positive. This modest change in the stochastic volatility
process produces a large change in the behavior of the risk premium, as the following corollary
shows:

Corollary 3.6 Suppose that dividend growth is IID, g@ = i, ando, = 7, are constant in
equation (2) and that,, = 0. Suppose that returns are described by the Heston (1993) model:

dR; = p(z)dt + \/2,dB} + 54dB}
de, = k(0 —x)dt + o\/x dBf (31)

Then, the expected return ( f) as a function of the price-dividend ratijp= P/ D is given by:

e (f) =ud+%o§+%9+ (5—x)m (é) +%, (32)

whereC' is an integration constant’ = f(0), where f(0) is the price-dividend ratio at time
t = 0. The expected stock return(z) as a function of the return variance, is given by:

() Iﬂd+%5§+%9+ (%—g) x+C texp <—§> : (33)
The top panel of Figure 7 shows that the expected return is a monotonically increasing

function of dividend yields (equation (32)). Unlike the Stein-Stein model, the Heston model

parameterizes the stock variance, so there is a unique one-to-one mapping between dividend

yields and expected returns. To produce the plot, we use the parameter yalues).05,

o4 = 0.07, 04, = 0,0 = (0.18)* — 53, andx = 4. We setoc = —0.2 to reflect the leverage

effect. These parameter values #pr, ando are very close to the values advocated by Heston

(1993). To match the average price-dividend yield in data, wé€'set28.06.
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In the bottom panel of Figure 7, we plot the risk-return trade-off implied by the Heston
model. We can interpret the Heston risk-return trade-off in equation (33) to have three compo-
nents: a constant term, a term linear in the variancand the third ternf = C~! exp(—z/0)
can be shown to be the dividend yield. Unlike the Stein-Stein model, the risk-return relation
implied by the Heston model is always positive! Mechanically, this is because the expected
return in the Heston economy in equation (33) does not have a negative term proportional to
volatility that enters the risk-return trade-off in the Stein-Stein model (see equation (30)). The
term proportional to volatility allows the expected return in the Stein-Stein solution to initially
decrease before increasing. In the Heston model, no such initial decrease can occur and the ex-
pected stock return in equation (33) is dominated by the linear ¢§rm§)a:. Since empirical
estimates of the mean-reversion of the variang@re large and is small and negative due to
the leverage effect, the risk-return trade-off is upward sloping.

3.6 Specifying the Risk-Return Trade-Off and Stochastic Volatility

Our last application parameterizes the risk-return trade-off and stochastic volatility. There are
various assumptions made about the risk-return trade-off in the literature. For example, in
two recent asset allocation applications involving stochastic volatility, Liu (2006) assumes that
the Sharpe ratio is increasing in variance, following Merton (1973), while Chacko and Viceira
(2005) assume that the Sharpe ratio is a decreasing function of volatility. Cochrane&and Sa
Requejo (2000) assume that the Sharpe ratio is constant. In our analysis, we work with the
Heston (1993) model of stochastic volatility and analyze two cases of the risk-return trade-
off: (i) we assume that expected returns are proportional to volatility, and (ii) we assume that
expected returns are proportional to variance. We now characterize the dynamics of cashflows
implied by these two assumptions on the risk-return trade-off.

We assume that the return and stochastic variance process follow the Heston model:

th = ,U/T<xt) + \/x_tdBf + O'd(xt)dBtd
dry = k(0 — x¢)dt + o/ dBY,

and the risk-return trade-off is characterized by

with § = 0.5 or 9 = 1. Using Proposition 2.1, the drift of dividend growth is given by:

pa(z) + %Ud(m) = Az’ — %9 - (% - g) x—C lexp <_§> : (34)
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Equation (34) shows that the cashflow drift directly inherits the risk-return trade-off, along with
other terms reflecting the dynamics of the Heston volatility process.

We characterize the drift of dividend growth in equation (34) in Figure 8 using a value of
A = 5 for the two cases = 0.5 andy = 1. In the top panel, we graph the drift of dividend
growth in equation (34) as a function of return volatility. To fix total return volatility, we assume
that dividend growth is homoskedastic, with = 0.07, and graph the drift in equation (34)
againsto,.(r) = m. In both the cases far = 0.5 andé = 1, very high volatility levels
correspond to low expected dividend growth. However, when expected returns are proportional
to volatility, the drift of dividend growth is non-monotonic and both low and high volatility
forecast low future growth in dividends. In the middle panel of Figure 8, we plot the drift of
dividend growth as a function of the dividend yield. High dividend yields correspond to low
future dividend growth, but the drift function may also be non-monotonic fop the).5 case.

In particular, the drift of dividend growth increases as dividend yields increase for low dividend
yield levels (around 4%).

Finally, we can gauge the implied heteroskedasticity of dividend growth from these two
common specifications for the risk-return trade-off and stochastic volatility by following Calvet
and Fisher (2005) and setting the conditional mean of dividend growth to be a constant, at
itg = 0.05. From equation (34), we can invert for the conditional volatility of dividend growth,
loq(z)|, as a function of the stochastic Heston component of the total return. We plot this in the
bottom panel of Figure 8. Clearly, the implied dividend growth heteroskedasticity is a highly
non-monotonic function of return volatility, increasing when return volatility is both very high

and very low.

4 Conclusion

We derive conditions on expected returns, stock volatility, and price-dividend ratios that asset
pricing models must satisfy. In particular, given a dividend process, specifying only one of the
expected return process, the stochastic volatility process, or the price-dividend ratio process,
completely determines the other two processes. For example, specifying the dividend stream
allows the volatility of stock returns to pin down the expected return, and thus the risk-return
trade-off. We do not need to specify a complete equilibrium model to characterize these risk-
return relations, but instead derive these conditions using only the definition of returns, together
with a transversality assumption.
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Our conditions between risk and return are empirically relevant because many popular em-
pirical specifications assume dynamics for one, or a combination of, expected returns, volatility,
or price-dividend ratios, without considering the implicit restrictions on the dynamics of the
other variables. Our relations allow us to investigate the joint dynamics of expected returns,
return volatility, prices, and cashflows. We show that some of the implied restrictions made
by empirical models that specify only one, or two, of these variables may result in the implied
dynamics of the other variables not explicitly modelled that are counter-factual, or that may be
hard to match in equilibrium models.

One important implication of our examples is that future asset pricing models should take
into account predictability and heteroskedasticity of the dividend growth process. Even com-
mon specifications of expected return or volatility processes imply rich patterns of dividend
growth predictability and heteroskedasticity. In this regard, important strides in recognizing
complex dividend dynamics have recently been made by Bansal and Yaron (2005), Calvet and
Fisher (2005), and Hansen, Heaton and Li (2005), who emphasize the role of non-11D dividend
dynamics in equilibrium economies. Our results also point the way forward to developing an
empirical methodology that can exploit our over-identifying conditions to create more powerful
tests to investigate the risk-return trade-off, the predictability of expected returns, the dynamics
of stochastic volatility, and present value relations in a unifying framework.
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Appendix

A Proof of Proposition 2.1

Equation (8) follows from a straightforward application of Ito’s lemma to the definition of the return:

dR, — dP; + Dtdt? (A-1)
P
which we rewrite aslR; = df;/ f; + dD;/D; + 1/ f:dt. Note that we assume thaB¢ andd B¥ are uncorrelated
by assumption.
The definition of returns in equation (A-1) allows us to match the drift and diffusion terms in equation (8) for

R;. Hence, the price-dividend ratijfy the expected return,., and the volatility terms-,., ando ., are determined
by re-arranging the drift, and théB? anddB¢ diffusion terms, respectively. If the expected retury(-) is
determined, equation (10) defines a differential equatiorf fevhich determineg. Oncef is determined, we can
solve foro,.,, from equation (11). If the return volatility,.,. is specified, we can solve fgrfrom equation (11) up
to a multiplicative constant and this determines the expected retumequation (10)H

B Proof of Corollary 3.1

Statements (2) and (3) are equivalent from equation (11) of Proposition 2.1. Assunfe=hdtis a constant.
Then, using equation (10), we can show that= f~! + i + 553, which is a constant. Hence (2) follows from
(2). Finally, to show that (1) follows from (2), suppose that= [, is a constant. From equation (1@)satisfies
the following ODE:

1 1
paf + 5aif” - (n,. — fid — 253) f=-1. (B-1)
Since the term orf is constant, it follows that the price-dividend rafiy D = f = (i, — jiq — 503)"" is the

solution. Note that this is just the Gordon formula, expressed in continuous-time. Hence, the price-dividend ratio
is constantll

C Proof of Corollary 3.2

Using equation (11) of Proposition 2.1, we hayg = o, (x)(In f)’ = —0o,, sincex = —1In f. From equation
(10), we have:

)+ L5 +1 1
pa(o)f : AL Gt 5% (C-1)

Substitutingf’/f = —1 andf”/f = 1 and re-arranging this expression for(z) yields equation (18)ll

a+ fx =

D Proof of Corollary 3.3

This is a straightforward application of equation (8) of Proposition 2.1, ugiagl /« for the level dividend yield
andf = exp(—x) for the log dividend yieldH

E Proof of Corollary 3.5

Using equation (11) of Proposition 2.1, we have- 7, (In f)’, from which we can solve the price-dividend ratio
f to be:

J=Cexp (;f) ; (E-1)

30



whereC'is the integration constait = f(0).

We setC' to match the unconditional price-dividend ratio. This entails compUfis{gxp(—Az?)] for a diffu-
sion procesdx; = —k(x; — 0)dt + 6,.dB, for A = —1/(25,), sincea,, is negative. We know that, is a normal
random variable with mean, and variance? given by:

Ty = (zo—0)e " +0
o2 = &2 /Ot e 2 ds = %(1 — exp(—2kt)). (E-2)
Thus, we have:
Eo [exp(—Az})] = Eg [exp(—A(z¢ — 2¢)* — 2X\(m¢ — 24) % — AT})]
= exp (—Axf - %111(1 +2X\o?) + %)\Zif(at_Q + 2/\)1> : (E-3)

We compute the last equality using Lemma A.1 of Ang and Liu (2004). Lettirgoo, we obtain
1 1
E [exp (—Az?)] = exp <—)\92 ~5 In(14 \62/k) + 5)\292(2&/53 + 2)\)_1> , (E-4)

as the unconditional mean of is 6 and the variance of the Ornstein-Uhlenbeck process j¢2«).

F Proof of Corollary 3.6

The proof is similar to Corollary 3.5, except now the price-dividend réti® given by:

x
f=Cexp(2), (F-1)
g
whereC'is the integration constadt = f(0).
We setC to match the average price-dividend ratio in the data. Cox, Ingersoll and Ross (1987) show that the
process
dl‘t = *K}(l‘t — H)dt + O'\/EdBt

has the steady state density function

wherew = 2k /02 andv = (2x6)/02. Hence, we can compute the average price-dividend ratio using

wl/

oo wl/
Elexp(—X\x)] = — vl (Wt — —_—
fexp(—Aa)] / o EESL

with A = —1/0. W
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Table 1: Possible Model Specifications

(v/=specified; ?=implied)

Models ur o. D/P dD/D Selected Literature
Expected Returns v @ ? ? vV Poterba and Summers (1986)
and Dividends Fama and French (1988a and b)

Hodrick (1992)

Cochrane (2001)
Dividend Yields ? ? vV vV Campbell and Shiller (1988a and b)
and Dividends
Dividend Yields v ? Vv ? Stambaugh (1999)
andExpected Returns Lewellen (2004)

Campbell and Yogo (2005)
Stochastic Volatility ? vV ? vV Stein and Stein (1991)
and Dividends or Heston (1993)
Dividend Yields
Risk-Return Relationand | / +/ ? ? Ferson and Harvey (1991)

Stochastic Volatility

Glosten, Jagannathan and Runkle (19
Liu (2001)
Chacko and Viceira (2005)

93)

The table reports various possible model specifications between expected retuths,volatility of returnsg,.,

dividend yields,D /P, (or equivalently price-dividend ratios), and dividend growth/D. If a model specifies

one of these four variables, the specified variable is highlighted in bold in the first column,/Ttmedrks in the

second column indicate which of these four variables are specified, while the “?” marks indicate that the variables
whose dynamics must be implied by the dynamics of the other two variables. The third column lists selected papers
who parameterize the variable denoted in bold. For example, in the first row, expected returns are specified by,
among others, Fama and French (1988a,b) and if a dividend process is also assumed, then the dynamics of stock
volatility (¢,-) and dividend yieldsp/P) are completely determined by the expected return and dividend growth

processes.
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Table 2: Summary Statistics and Predictive Regressions

Panel A: Summary Statistics

Total Returns Excess Returns Dividend Growth Dividend Yields

Mean Stdev Mean Stdev Mean Stdev Mean  Stdev
1935:Q1 -2001:Q4 0.125 0.169 0.070 0.173 0.053 0.066 0.040 0.015
1935:Q1-1990:Q4 0.121 0.173 0.066 0.178 0.059 0.071 0.044 0.013

Panel B: Log Dividend Yield Predictive Regressions

Total Returns

Excess Returns

Log Log
Const Div Yield Const Div Yield
1935:Q1 - 2001:Q4 0.452 0.100 0.439 0.113
[2.41] [1.76] [2.40] [2.03]
1935:Q1 -1990:Q4 0.812 0.219 0.819 0.238
[3.25] [2.80] [3.34] [3.10]

Panel C: Risk-Free Rate Predictive Regressions

k = 1 Quarter k = 4 Quarters
Risk-free Risk-free
Const Rate Const Rate
1952:Q1-2001:Q4 0.153 -1.720 0.118 -1.056
[3.65] [2.25] [2.85] [1.38]
1952:Q1 —-1990:Q4 0.152 -1.793 0.112 -1.061
[3.40] [2.31] [2.54] [1.35]

Panel A reports means and standard deviations of total returns, returns in excess of the risk-free rate (3-month
T-bills), and dividend growth. All returns and growth rates are continuously compounded and means and standard
deviations for quarterly returns or growth rates are annualized. Panel B reports predictive regressions of gross (or
excess returns) on a constant and the log dividend yield. The regressions are run with continuously compounded
returns at an annual horizon on the left-hand side of the regression, but at a quarterly frequency. In Panel C,
we report predictive regressions of annualized continuously compounded excess returns: oveil -@uarter

andk = 4-quarter horizon on a constant and annualized continuously-compounded 3-month T-bill rates. These
regressions are also run at a quarterly frequency. In Panels B and C, robust Hodrick (1992) t-statistics are reported
in parentheses. The stock data is the S&P500 from Standard and Poors and the frequency is quarterly.
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Figure 1: Implications of Returns Predicted by Log Dividend Yields

Implied Drift of the Log Dividend Yield
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We plot the implied drift of the log dividend yield (equation (18)) using the calibrated parameter vaiués81,

8 =0.22, ig = 0.05, 54 = 0.07, 04, = 0, anda,, = 0.15. The calibration is done using quarterly S&P500 data
from 1935 to 1990.
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Figure 2: Implications of Excess Returns Predicted by Risk-free Rates

Expected Return versus Dividend Yield
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In the top panel, we graph the conditional expected excess returngz, and the total expected excess return,
x+a+ Pz, wherez is the risk-free rate as a function of the dividend yield, which we obtain from inverting equation
(21). We use the parameter values- 0.240, 5, = 0.019, 5,4 = 2.85 x 1074, 8 = 0.053, iy = 0.05, 54 = 0.07,

a = 0.15, andg8 = —1.72. In the bottom panel, we graph the risk-return trade-off for expected excess and total
returns as a function ef, = /o2, (x) + o3. To produce the plots, we use quadrature to solve the price-dividend
ratio in equation (21), and then numerically take derivatives of the log price-dividend ratio to compuierom
equation (11). The calibrations are done using quarterly S&P500 data from 1952 to 2001.
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Figure 3: Implications of Mean-Reverting Dividend Yields and IID Dividend Growth
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In the top panel, we graph the drift of the stock return as a function of the level dividend yield given by equation
(22) in the solid line when the level dividend yield follows a CIR process-(0.5) or in the dashed line when the

level dividend yield follows a CEV process & 1). To produce the plot, we use the calibrated parameter values
fig = 0.05, 54 = 0.07, andoy, = 0. We match the quarterly autocorrelatiédn96 = exp(—«/4), the long-term
meanf = 0.044, and the unconditional variance of the level dividend yield. For the CIR proeessgiven by
(0.0132)% = o26/(2k), while for the CEV process with = 1, (0.0132)? = ¢%6%/(2k — o2). In the bottom

panel, we plot the implied risk-return trade-off. The calibrations are done using quarterly S&P500 data from 1935
to 1990.
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Figure 4. Implications of Mean-Reverting Dividend Yields and Non-1ID Dividend Growth
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The top panel plots the conditional drift and volatility of returns implied by predictable and heteroskedastic divi-
dend growth in equation (26). In the bottom panel, we plot the implied risk-return trade-off. We use the parameters
k = 0.16, 8 = 0.044, 0 = 0.0365, a = 0.026, § = 0.415, andb = 0.444. The calibrations are done using
S&P500 data from 1952 to 2001.
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Figure 5: Implications of the Stambaugh (1999) Model

Drift of Dividend Growth

0.8

0.7

0.6

0.5

0.2

0.1

T T
=—— CIR Process
CEV Process

0.02 0.04 0.06 0.08 0.1
Level Dividend Yield

Risk—Return Trade—Off

0.3

0.25

0.2~

0.15

= CIR Process
CEV Process

L
0.15 0.2 0.25 0.3 0.35
Return Volatility

Conditional Volatility of Dividend Growth

1.2

0.8

0.6

0.4

0.2

=—— CIR Process
CEV Process

0.02 0.04 0.06 0.08 0.1
Level Dividend Yield




Note to Figure 5.

In the top panel, we graph the drift of dividend growt®,/D, from the Stambaugh (1999) system given in
equation (28), where the level dividend yields mean-reverting and dividend yields linearly predict stock returns

in equation (27). We use the parameter valges 0.16, § = 0.044, « = —0.08, and3 = 4.59. If dividend

yields follow a CIR process with = 0.5, o is given by(0.0132)? = &%6/(2x), while if dividend yields follow

a CEV process withy = 1, (0.0132)? = 0262 /(2x — 02). The middle panel plots the risk-return trade-off from

the Stambaugh system assuming that dividend growth is homoskedastigwith0.07. In the bottom panel,

we follow Calvet and Fisher (2005) and assume that dividend growth is heteroskedastic with a constant mean of
g = 0.05 and plot the implied conditional volatility of dividend growth. All calibrations are done using quarterly

S&P500 data from 1935 to 1990.
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Drift of Returns

Drift of Returns

In the top panel, we graph the implied stock return as a function of the dividend yield implied by the Stein-Stein
(1991) model, which is the system in equation (29). In the bottom panel we plot the implied risk-return trade-off
in equation (30). To produce the plots, we use the paraméter9).17, x = 4, 3, = —0.3, C = 26.1, which
matches the average price-dividend rafig, = 0.05, 54 = 0.07, andog, = 0. The calibration is done using

Figure 6: Implications of the Stein and Stein (1991) Model
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quarterly S&P500 data from 1935 to 1990.
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Figure 7: Implications of the Heston (1993) Model
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In the top panel, we graph the implied drift of the stock return as a function of the dividend yield given by equation
(32) implied by the Heston (1993) model, which is described in equation (31). In the bottom panel, we plot the
implied risk-return trade-off given in equation (33). To produce the plots, we use the parathetefs0275,

k =4,0 = —0.2, andC = 28.06, which matches the average price-dividend ratip,= 0.05, 54 = 0.07, and

04. = 0.
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Figure 8: Implications of the Risk-Return Trade-Off using the Heston (1993) Model
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Note to Figure 8

In the top panel, we graph the drift of dividend growth as a function of volatility implied by an assumption of the
risk-return trade-off and the Heston (1993) model, given in equation (34). We plot equation (34) against total return
volatility, o,.(z) = \/z + &7, wherez is the time-varying Heston variance component of the return, assuming that
a4 = 0.05. In the middle panel, we plot the implied drift of dividend growth as a function of the dividend yield.
The bottom panel plots the conditional volatility of dividend growth,(x)| as a function of the Heston variance,

x, assuming that the conditional mean of dividend growth is constant at0.05. In all three panels, we assume

that the risk-return trade-off is proportional to volatilify, (x) = A+/z, or proportional to variancey,.(x) = Ax.

We produce the plots using the calibrated paramétes0.0275, k = 4, 0 = —0.2, C = 28.06, 64, = 0, and

A=05.
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