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1 Introduction

Using the dividend process of a stock, we fully characterize the relations between expected

returns, stock volatility, and price-dividend ratios, and derive over-identifying restrictions on

the dynamics of these variables. We show that given the dividend process, one of the expected

return, the stock return volatility, or the price-dividend ratio completely determines the other

two. These relations are not merely technical restrictions, but they lend insight into the nature

of the risk-return relation and the predictability of stock returns.

Our method of using the dividend process to characterize the risk-return relation requires

no economic assumptions other than transversality to ensure that the price-dividend ratio exists

and is well defined.1 In deriving our relations, we do not require the preferences of agents,

equilibrium concepts, or a pricing kernel. This is in contrast to previous work that requires

equilibrium conditions, in particular, the utility function of a representative agent, to pin down

the risk-return relation. For example, in a standard CAPM or Merton (1973) model, the expected

return of the market is a product of the relative risk aversion coefficient of the representative

agent and the variance of the market return.

The intuition behind our risk-return relations is a simple observation that, by definition,

returns equal the sum of capital gain and dividend yield components. Hence, the return is

determined by price-dividend ratios and dividend growth rates. In particular, if we specify

the expected return process, we can compute price-dividend ratios given the dividend process.

Going the other way, the price-dividend ratio, together with cashflow growth rates, can be used

to infer the process for expected returns. Given the dividend process, these relations between

expected returns and price-dividend ratios arise from a dynamic version of the Gordon model.

Less standard is that, given cashflows, the volatility of returns also determines price-dividend

ratios and vice versa. The second moment of the return is also a function of price-dividend ratios

and dividend growth rates. Thus, using dividends and price-dividend ratios, we can compute

the volatility process of the stock. Going in the opposite direction, if dividends are given and

we specify a process for stochastic volatility, we can back out the price-dividend ratio because

the second moment of returns is determined by price-dividend ratios and dividend growth. In

continuous time, we show that expected returns, stock volatility, and price-dividend ratios are

linked by a series of differential equations.

Our risk-return relations are empirically relevant because our conditions impose stringent

1 We use the terms dividend and cashflows interchangeably and define them to be the total payout received by a

holder of an equity (stock) security.
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restrictions on asset pricing models. Many common empirical applications often directly spec-

ify only one of the expected return, risk, or the price-dividend ratio. Often, this is done without

considering the dynamics of the other two variables. Our results show that once the cashflow

process is determined, specifying the expected return automatically pins down the diffusion

term of returns and vice versa. Hence, specifying one of the expected return, risk, or the price-

dividend ratio makes implicit assumptions about the dynamics of these other variables. Our

relations can be used as checks of internal consistency for empirical specifications that usually

concentrate on only one of predictable expected returns, stochastic volatility, or price-dividend

ratio dynamics. More fundamentally, the over-identifying restrictions among expected returns,

volatility, and prices provide additional restrictions, even before equilibrium conditions are im-

posed, on stock return predictability and the risk-return trade-off. Thus, our relations allow us to

explore the implications for the joint dynamics of cashflows, expected returns, return volatility,

and prices.

We illustrate several applications of our risk-return conditions with popular empirical spec-

ifications from the literatures of the predictability of expected returns, time-varying volatility,

and estimating the risk-return trade-off. For example, Poterba and Summers (1986) and Fama

and French (1988b) estimate slow, mean-reverting components of returns. Often, empirical

researchers regress returns on persistent instruments that vary over the business cycle, such

as dividend yields or risk-free rates to capture these predictable components. We show that

with IID dividend growth, the stochastic volatility generated by these models of mean-reverting

expected returns is several orders too small in magnitude to match the time-varying volatility

present in data. A second example is that many empirical studies model dividend yields, or log

dividend yields as a slow, mean-reverting process. If dividend growth is IID, an AR(1) process

for dividend yields surprisingly implies that the risk-return trade-off is negative. This result

does not change if we allow dividend growth to be predictable and heteroskedastic, where both

the conditional mean and conditional volatility are functions of the dividend yield.

Third, it is well known that volatility is more precisely estimated than first moments (see

Merton, 1980). Since Engle (1982), a wide variety of ARCH or stochastic volatility models

have been used to successfully capture time-varying second moments in asset prices.2 If we

2 Most of the stochastic volatility literature does not consider implications of time-varying conditional volatility

for expected returns. Exceptions to this are the GARCH-in-mean models that parameterize time-varying variances

of an intertemporal asset pricing model. Bollerslev, Engle and Woodridge (1988), Harvey (1989), Ferson and

Harvey (1991), Scruggs (1998), and Brandt and Kang (2004), among others, estimate models of this type. In

contrast, most stochastic volatility models are used for derivative pricing, which only characterize the dynamics of
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specify the diffusion of the stock return, then, assuming a dividend process, stock prices and

expected returns are fully determined. Hence, assuming a process for the stock return volatility

provides an alternative way to characterize the risk-return trade-off, rather than directly estimat-

ing conditional means as a function of return volatility that is commonly done in the literature

(see, for example, Glosten, Jagannathan and Runkle, 1993).

The idea of using the dividend process to characterize the relationship between risk and re-

turn goes back to at least Grossman and Shiller (1981) and Shiller (1981), who argue that the

volatility of stock returns is too high compared to the volatility of dividend growth. Campbell

and Shiller (1988a and b) linearize the definition of returns and then iterate to derive an ap-

proximate relation for the log price-dividend ratio. They use this relation to measure the role of

cashflow and discount rates in the variation of price-dividend ratios by assuming that the joint

dynamics are homoskedastic. Our approach is similar, in that we use the definition of returns

to derive relations between risk, return, and prices. However, our relations link expected re-

turns, stochastic volatility, and price-dividend ratios more tightly than the log-linearized price-

dividend ratio formula of Campbell and Shiller. Furthermore, we are able to provide exact

characterizations between the conditional second moments of returns and prices (the stochastic

volatility of returns, and the conditional volatility of expected returns, dividend growth, and

price-dividend ratios) that Campbell and Shiller’s framework cannot easily handle.

Our risk-return conditions are related to a series of papers that characterize the risk-return

trade-off in terms of the properties of a representative agent’s utility function or the properties

of the pricing kernel (see, among others, Bick, 1990; Stapleton and Subramanyam, 1990; Pham

and Touzim 1996; Decamps and Lazrak, 2000; Lüders and Franke, 2004; Mele, 2005). In

particular, He and Leland (1993) show that the risk-return relation is a direct function of the

curvature of the representative agent’s utility and derive a partial differential equation that the

drift and diffusion term of the price process must satisfy. In contrast to these papers, we in

essence use dividends, rather than preferences, to pin down the risk-return relationship. This

has the advantage that dividends are observable, which allows a stochastic dividend process to

be directly estimated. Indeed, a convenient assumption made by many theoretical and empirical

asset pricing models is that dividend growth is IID. In comparison, there is still no consensus

on the precise form that a representative agent’s utility should take.

The remainder of the paper is organized as follows. Section 2 derives the risk-return and

pricing relations for an economy with an underlying variable that captures the time-varying

the risk-neutral measure rather than deriving the implied expected returns of a stock under the real measure.
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investment opportunity set. In Section 3, we apply these conditions to various empirical spec-

ifications in the literature. Section 4 concludes. We relegate most proofs to the Appendix and

some proofs are available upon request.

2 The Model

Suppose that the state of the economy is described by a single state variablext, which follows

the diffusion process:

dxt = µx(xt)dt + σx(xt)dBx
t , (1)

where the driftµx(·) and diffusionσx(·) are functions ofxt. For now, we treatxt as a scalar and

discuss the extension to a multivariatext below. We assume that there is a risky asset that pays

the dividend streamDt, which follows the process:

dDt

Dt

=

(
µd(xt) +

1

2
(σ2

dx(xt) + σ2
d(xt))

)
dt + σdx(xt)dBx

t + σd(xt)dBd
t , (2)

or equivalently:

Dt

D0

= exp

(∫ t

0

µd(xs)ds + σdx(xt)dBx
t + σd(xs)dBd

s

)
.

Without loss of generality, we assume thatdBx
t is uncorrelated withdBd

t . Note that the dividend

growth process is potentially correlated withx through theσdxdBx
t term.

By definition, the price of the assetPt is related to dividends,Dt, and expected returns,µr,

by:
Et[dPt] + Dtdt

Pt

= µrdt. (3)

By iterating equation (3), we can write the price as:

Pt = Et

[∫ T

t

e−(
∫ s

t µrdu)Ds ds + e−(
∫ T

t µrdu)PT

]
. (4)

We show how to determine the driftµr(·) and diffusionσr(·) of the return processdRt from

prices and dividends:

dRt = µr(xt)dt + σr(xt)dBr
t , (5)

under a transversality condition.

Assumption 2.1 The transversality condition

lim
T→∞

Et

[
e−(

∫ T
t µrdu)PT

]
= 0 (6)

holds almost surely.
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Assumption 2.1 rules out specifications like the Black-Scholes (1973) and Merton (1973)

models, which specify that the stock does not pay dividends. Equivalently, Black, Scholes,

and Merton assume that the capital gain represents the entire stock return and that there are no

intermediate cashflows in these economies except for the terminal capital gain of the stock. By

assuming transversality, we can express the stock price in equation (4) as the value of discounted

cashflows:3

Pt = Et

[∫ ∞

t

e−(
∫ s

t µrdu)Ds ds

]
. (7)

The following proposition characterizes the relationships between dividend growth, the drift

and diffusion of the return processdRt, and price-dividend ratios, subject to the transversality

condition.

Proposition 2.1 Suppose the state of the economy is described byxt, which follows equation

(1), and a stock is a claim to the dividendsDt, which follow the process in equation (2). If the

price-dividend ratioPt/Dt is a functionf(·) of xt, then the cumulative stock return process,

dRt, satisfies the following equation:

dRt =

(
(µx + σdxσx)f

′ + 1
2
σ2

xf
′′ + 1

f
+ µd +

1

2
(σ2

dx + σ2
d)

)
dt

+ σx(ln f)′ dBx
t + σdx dBx

t + σd dBd
t . (8)

Conversely, if the returnRt satisfies the following diffusion equation:4

dRt = µr(xt)dt + σrx(xt)dBx
t + σrd(xt)dBd

t , (9)

and the stock dividend process is given by equation (1), then the price-dividend ratioPt/Dt =

f(xt) satisfies the following relation:

(µx + σdxσd)f
′ +

1

2
σ2

xf
′′ −

(
µr − µd − 1

2
(σ2

dx + σ2
d)

)
f = −1, (10)

3 An alternative way to compute the stock price is to iterate the definition of returnsdRt = (dPt + Dtdt)/Pt

forward under the transversality conditionlimT→∞ exp(−(
∫ T

t
dRu − 1

2σ2
rdu))PT = 0 to obtain:

Pt =
∫ ∞

t

e−(
∫ s

t
dRu− 1

2 σ2
rdu)Ds ds.

This equation holds path by path. As Campbell (1993) notes, we can take conditional expectations of both the left-

and right-hand sides to obtain:

Pt = Et

[∫ ∞

t

e−(
∫ s

t
dRu− 1

2 σ2
rdu)Ds ds

]
,

which can be shown to be equivalent to equation (7).
4 SincedBx

t anddBd
t are independent, the diffusion termσr(xt) of the return process in equation (5) is given

by
√

σ2
rx(xt) + σ2

rd(xt).
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and the diffusion of the stock return is determined from the relations:

σrx(x) = σx(ln f)′ (11)

σrd(x) = σd. (12)

The most important economic implication of the relations in equations (8) to (12) is that

given the dividend process, specifying one of the price-dividend ratio, the expected stock re-

turn, and the stock return volatility, determines the other two. In other words, suppose that the

dividend cashflows are given. If we denotej ⇒ k as meaning that the processj implies the

processk, then we can write:

f ⇒




µr

σrx

both from equation (8).

Thus, parameterizing prices,f , determines expected returns,µr and stock return volatility,σrx.

The expected stock return alone determines both the stock price and the volatility of the return:

µr ⇒




f from equation (10)

σrx from equation (11),

where we solve forσrx after solving forf . Finally, given the dividend dynamics (or thatσrd as

a function ofx is known), specifying a process for time-varying stock volatility,σrx, determines

the price of the stock and the expected return of the stock:

σrx ⇒




f from equation (11)

µr from equation (10),

where the last implication forσrx ⇒ µr follows after noting thatσrx determinesf and f

determinesµr from equation (8).

Thus, with dividends specified, there is only one degree of freedom between expected re-

turns, return volatility, and price-dividend ratios. More generally, if the dividend process can

also be specified, then we can choose two out of the dividend, expected return, stochastic volatil-

ity, and price-dividend ratio processes, with our two choices completely determining the dynam-

ics of the other two variables.

In Proposition 2.1, expected returns, stochastic volatility, and dividend yields are linked to

each other by a series of differential equations. Thus, by fixing a dividend process and assuming

a process for one of expected returns, return volatility, or dividend yields, we may be able to
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derive analytic solutions for the dynamics of the variables not explicitly modelled by working

in continuous time. However, the relations in Proposition 2.1 are fundamental, and the same

intuition may be obtained in discrete time, which we now discuss.

2.1 Discrete-Time Intuition

We now provide some intuition on the relations between dividends, expected returns, price-

dividend ratios, and return volatility in Proposition 2.1 using a discrete-time model. From the

definition of returns, we can write:

Rt+1 ≡ Pt+1 + Dt+1

Pt

= µr,t + σr,tεt+1, (13)

whereµr,t is the one-period expected return,σr,t is the conditional volatility, andεt+1 is an IID

shock with unit standard deviation. To determine prices from expected returns, or vice versa,

we take conditional expectations of both sides of equation (13):

Pt =
Et[Pt+1 + Dt+1]

µr,t

.

We can iterate this forward to obtain a telescoping sum. Assuming transversality allows us to

express the stock price as the stream of discounted cashflows:

Pt =
∞∑

j=1

Et

[(
j−1∏

k=0

1

µr,t+k

)
Dt+j

]
. (14)

Thus, knowing the cashflow series provides a mapping betweenPt and theµr,t process. This is

just a dynamic version of a standard Gordon dividend discount model. Hence, the basic Gordon

model intuition allows us to infer prices from the expected return process, or vice versa, if

dividends are given.

What is more surprising is that the volatility process determines prices, and vice versa, given

the dividend series. To demonstrate this equivalence between volatility and prices in discrete

time, we multiply the definition of the return byεt+1 and take conditional expectations:

Et

[
εt+1(Pt+1 + Dt+1)

Pt

]
= Et [εt+1(µt,r + σr,tεt+1)] = σr,t.

We can rearrange this expression to write the stock price in terms of conditional volatility and

return innovations:

Pt =
Et[εt+1(Pt+1 + Dt+1)]

σr,t

.
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Iterating forward and assuming appropriate transversality conditions, we obtain:

Pt =
∞∑

j=1

Et

[(
j−1∏

k=0

εt+j+1

σr,t+j

)
Dt+j

]
. (15)

Thus, if the dividend stream is fixed, we can invert outPt from theσr,t process, and vice versa,

in a similar fashion to inverting out prices from expected returns from the Gordon model.

We can infer expected returns,µr,t, and stochastic volatility,σr,t from each other by equating

the price process. If expected returns are specified, then equation (14) allows us to invert a price

process. Then, with a price process, we can extract theσr,t process from equation (15). Going

from σr,t to µr,t is simply the reverse procedure. Thus, with dividends specified, expected

returns, prices, and volatility of returns are all linked and knowing one process automatically

pins down the other two. Thus, we obtain the same intuition in Proposition 2.1 in discrete

time. In the rest of our analysis, we use continuous time, which allows us to obtain closed-form

solutions.

2.2 Further Comments on the Proposition

The relations between prices, expected returns, and volatility outlined by Proposition 2.1 arise

only through the definition of returns and by imposing transversality. We have not used an

equilibrium model, nor do we specify a pricing kernel, to derive the relations between risk and

return. The conditions (8)-(12) can be easily applied to various empirical applications because

empirical models often assume a process for one or more ofµr, σrx, andf . Proposition 2.1

characterizes what the functional form of the expected return, stochastic volatility, or stock

price must take after choosing a parameterization of only one of these variables.

The relations between prices, expected returns, and volatility in Proposition 2.1 must hold

in any equilibrium model. In an equilibrium model with a (potentially endogenous) dividend

process where transversality holds, prices, returns, and volatility are simultaneously determined

after specifying a complete joint distribution of state variables, agent preferences, and technolo-

gies. Similarly, if a pricing kernel is specified, together with the complete dynamics of the state

variables in the economy, the relations in Proposition 2.1 must also hold. Hence, the relations

(8)-(12) can be viewed as necessary but not sufficient conditions for equilibrium asset pricing

models.

The major advantage of the set-up of Proposition 2.1 over an equilibrium framework is

that many empirical specifications in finance parameterize the conditional mean or variance of
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returns (for example, predictability regressions that specify the conditional mean or stochastic

volatility models), without specifying a full underlying equilibrium model. In these situations,

Proposition 2.1 implicitly pins down the other characteristics of returns and prices that are not

explicitly assumed. In a proof available upon request, we show that an empirical specification

of a particular conditional mean, variance or a price process does not necessarily uniquely

determine a pricing kernel. This is especially useful for an empirical researcher who can write

down a particular expected return or volatility process knowing that there exists at least one

(and potentially an infinite number of) pricing kernels that can support the researcher’s choice

of the expected return or volatility process.

In Proposition 2.1, there are two effects if we relax the assumption of transversality. First,

the transversality Assumption 2.1 ensures that the price-dividend ratio is a function ofx by

Feynman-Kacs. The requirement thatPt/Dt = f(xt) is not satisfied in economies that only

assume geometric Brownian motion processes for the stock process and do not specify cashflow

components (like Black and Scholes, 1973; Merton, 1973). In these economies, there is also

no state variable describing time-varying investment opportunities as the mean and variance are

constant. Second, if we relax the transversality condition, the ordinary differential equation

defining the price-dividend ratio in equation (10) may have additional terms with derivatives

with respect to timet, and an additional boundary condition. This is due to the fact that when

transversality does not hold, the price-dividend ratio is also potentially a function of timet.

Proposition 2.1 also applies to total returns, rather than excess returns. While some em-

pirical studies focus on matching the predictability of total returns (see, for example, Fama

and French, 1988a,b; Campbell and Shiller, 1988a) and the volatility of total returns (see, for

example, Lo and MacKinlay, 1988), we often build economic models to explain time-varying

excess returns, rather than total returns. Time-varying total returns may be partially driven by

stochastic risk-free rates. Short rates could be included as a state variable inxt, especially since

Ang and Bekaert (2006) and Campbell and Yogo (2006), among others, find risk-free rates

have predictive power for forecasting excess returns. In Section 3, we explicitly investigate the

implications of a system where risk-free rates linearly predict excess returns. An alternative

way to handle excess returns is to adjust Proposition 2.1 to solve for conditional excess returns,

since the nominal risk-free rate is known at timet over various horizons. Note that with daily

or weekly returns, there is negligible difference between total and excess returns.

Finally, although Proposition 2.1 is stated for a univariate state variablext, the equations

generalize to the case wherext is a vector of state variables. In the multivariate extension, the
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ordinary differential equation (10) becomes a partial differential equation, whereµx, σx, µd, σd,

σrx, andσrd represent matrix functions ofx. An integrability condition is required to ensure

that the pricing function is well-defined. This allows the vector of diffusion terms of the return

process to imply a price-dividend ratio and an expected return process that are unique up to an

integration constant. A proof of the multivariate case is available upon request.

3 Empirical Applications

Proposition 2.1 can be used to characterize the joint dynamics of expected returns (µr), return

volatility (σr) dividend yields (D/P ) or price-dividend ratios, and dividend growth, (dD/D).

In Table 1, we provide a brief summary of various model specifications in the finance literature.

We list some possible model specifications betweenµr, σr, D/P , anddD/D in each row and

if a particular model specifies the dynamics of one of these four variables, we denote which

variable is specified by bold font in the first column. The “
√

” marks in the second column

denote which of these four variables are specified, while the “?” marks denote the variables

whose dynamics are implied by parameterizing the other two variables. The third column lists

selected papers that assume a model for the variable in bold font.

For example, in the first row of Table 1, Fama and French (1988a and b), Hodrick (1992),

Poterba and Summers (1986), and Cochrane (1991) are examples of studies which parameterize

the expected return process. These authors assume that expected returns are a linear function

of dividend yields, whereas Poterba and Summers assume a slow mean-reverting process for

expected returns. If a dividend process is also assumed together with a model for expected

returns, then the dynamics of stock volatility (σr) and dividend yields (D/P ) are completely

determined by the expected return and dividend growth processes. Another example is the

fourth row, where a large literature assumes a process for stochastic volatility (see, among

others, Stein and Stein, 1991; Heston, 1993). Combined with an assumption on dividends,

Proposition 2.1 completely determines the risk-return trade-off and prices.

Our goal in this section is to illustrate how Proposition 2.1 can be applied to various em-

pirical models that have been specified in the literature. Investigating the joint dynamics of

expected returns, volatility, prices, and dividends produces sharper predictions of risk-return

trade-offs, expected return predictability and delivers strong pricing implications. We work

mainly with the assumption that dividends are IID, which is made in many exchange-based

economic models. Many economic frameworks advocate IID dividend growth, including the
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textbook expositions by Campbell, Lo and MacKinlay (1997) and Cochrane (2001). Follow-

ing this literature, in many of our examples, we make the assumption of IID dividend growth

for illustrative purposes. This also highlights the non-linearities induced by the present value

relation without specifying additional non-linear dynamics in the cashflow process. Neverthe-

less, we also examine a system where dividend growth is predictable and heteroskedastic. We

also examine features of the dividend growth process implied by common specifications of the

expected return and stochastic volatility processes.

In Section 3.1, we briefly confirm that Proposition 2.1 nests the special Shiller (1981) case

of constant expected returns, IID dividend growth, and constant price-dividend ratios. Section

3.2 analyzes the case of specifying expected returns and dividend growth by focusing on a sys-

tem where the risk-free rate can predict excess returns. In Section 3.3, we consider a common

mean-reverting specification for dividend yields combined with IID dividend growth or divi-

dend growth that is predictable and heteroskedastic. Section 3.4 investigates the implications of

the Stambaugh (1999) model for dividend growth and the risk-return trade-off, while Section

3.5 examines the implications for expected returns from various models of stochastic volatility.

Finally, we parameterize the risk-return trade-off and stochastic volatility in Section 3.6.

3.1 IID Dividend Growth

If dividend growth is IID, then time-varying price-dividend ratios can result only from time-

varying expected returns. The following corollary shows that under IID dividend growth, time-

varying expected returns, price-dividend ratios, and time-varying volatility are different ways of

viewing a predictable state variable driving the set of investment opportunities in the economy.

Corollary 3.1 Suppose that dividend growth is IID, so thatµd = µ̄d andσd = σ̄d are constant

in equation (2). If the state variable describing the economy satisfies equation (1) and stock

returns are described by the diffusion process in equation (9), whereσrd = σ̄rd is a constant,

then the following statements are equivalent:

1. The price-dividend ratiof = f̄ is constant.

2. The expected returnµr = µ̄r is constant.

3. The volatility of stock returns is the same as the volatility of dividend growth, orσrx = 0

in equation (9).
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We can interpret the termσrx in equation (9) as the excess volatility of returns that is not

due to fundamental cashflow risk. Shiller (1981) argues that the volatility of stock returns is too

high compared to the volatility of dividend growth in an environment with constant expected

returns. Cochrane (2001) provides a pedagogical discussion of this issue and claims that excess

volatility is equivalent to price-dividend variability, if cashflows are not predictable. Corollary

3.1 is the mathematical statement of this claim.

3.2 Specifying Expected Returns and Dividends

In an environment where the price-dividend ratio is stationary, time-varying price-dividend ra-

tios must reflect variation in either discount rates or cashflows, or both. If dividend growth

is IID, then the only source of time variation for price-dividend ratios is discount rates. We

investigate two parameterizations of the expected return process while assuming that dividend

growth is IID. First, we assume that expected returns are linear functions of dividend yields.

Second, we assume that the expected stock return is a mean-reverting function of a predictable

state variable, which we specify to be the risk-free rate.

3.2.1 Dividend Yields Linearly Predicting Returns

A large number of empirical researchers find that stock returns can be predicted by price-

dividend ratios or dividend yields in linear regressions.5 The following corollary investigates

the effect of linear predictability of returns by log dividend yields on the price process:

Corollary 3.2 Assume that dividend growth is IID, soµd = µ̄d andσd = σ̄d are constant in

equation (2) and thatσdx = 0. Suppose that the log dividend yieldln(D/P ) linearly predicts

returns in the predictive regression:

dRt = (α + βxt)dt + σ̄rx(xt)dBx
t + σ̄ddBd

t , (16)

where the predictive instrumentx = − ln f is the log dividend yield and̄σrx is a constant. Then,

the dividend yieldx follows the diffusion:

dxt = µx(xt)dt + σx(xt)dBx
t , (17)

5 Papers examining the predictability of aggregate stock returns by dividend yields include Fama and French

(1988), Campbell and Shiller (1988a and b), Hodrick (1992), Goetzmann and Jorion (1993), Stambaugh (1999),

Engstrom (2003), Goyal and Welch (2003), Valkanov (2003), Lewellen (2004), Ang and Bekaert (2006), and

Campbell and Yogo (2006).
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where the driftµx and diffusionσx are given by:

µx(x) = µ̄d +
1

2
σ̄2

d +
1

2
σ̄2

rx − α− βx + ex

σx(x) = −σ̄rx. (18)

In Corollary 3.2 implies the sign ofσx is negative, indicating that shocks to returns and

log dividend yields are conditionally negatively correlated. Since the relative volatility of log

dividend shocks (σd) is small compared to the total variance of returns, the negative conditional

correlation of returns and log dividend yields is large in magnitude. This is true in the data:

Stambaugh (1999) reports that the conditional correlation between level dividend yield innova-

tions and innovations in returns is around -0.9 for U.S. returns, and Ang (2002) reports a similar

number for the correlation between shocks to log dividend yields and returns. Note that log

dividend yields predicting returns makes the strong (counter-factual) prediction that returns are

homoskedastic.

We calibrate the resulting log dividend yield process by estimating the regression implied

from the predictive relation (16). We use aggregate S&P500 market data at a quarterly fre-

quency from 1935 to 2001. In Panel A of Table 2, we report summary statistics of log stock

returns, both total stock returns and stock returns in excess of the risk-free rate (3-month T-

bills), together with dividend growth and dividend yields. From Panel A, we set the mean of

dividend growth at̄µd = 0.05 and dividend growth volatility at̄σd = 0.07. The volatility of

dividend growth is much smaller than the volatility of total returns and excess returns, which are

very similar, at approximately 18% per annum. This allows us to setσ̄2
rx = (0.18)2 − (0.07)2,

or σ̄rx = 0.15. Empirically, the correlation between dividend growth and total or excess returns

is close to zero (both correlations being around -0.08). This justifies our assumption in setting

σdx = 0.

In Panel B of Table 2, we report linear predictability regressions of continuously com-

pounded returns over the next year on a constant and log dividend yields. Since the data is

at a quarterly frequency, but the regression is run with a 1-year horizon on the left-hand side,

the regression entails the use of overlapping observations that induces moving average error

terms in the residuals. We report Hodrick (1992) standard errors in parentheses, which Ang

and Bekaert (2006) show to have good small sample properties with the correct empirical size.

Goyal and Welch (2003), among others, document that dividend yield predictability declined

substantially during the 1990s, so we also report results for a data sample that ends in 1990.

The coefficients in the total return regressions are similar to the regressions using excess

returns. For example, over the whole sample, the coefficient for the log dividend yield is 0.10
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using total returns, compared to 0.11 using excess returns. Hence, although we perform our

calibrations for total returns, similar conditional relations also hold for excess returns. The

second line of Panel B shows that when the 1990s are removed from the sample, the magnitude

of the predictive coefficients increases by a factor of approximately two. To emphasize the linear

predictive relationship in equation (16), we focus on calibrations using the sample without the

1990s. Nevertheless, we obtain similar qualitative patterns for the implied functional form for

the drift of the price process when we calibrate parameter values using data over the whole

sample.

Since the predictive regressions are run at an annual frequency, the estimated coefficients

in Panel B allow us to directly matchα andβ, since we can discretize the drift in equation

(16) as approximately(α + βx)∆t. Hence, we setα = 0.81 andβ = 0.22. Together with the

calibrated values for̄µd = 0.05, σ̄d = 0.07 andσ̄rx = 0.15, we compute the implied drift of the

log dividend yield using equation (18). Figure 1 plots the drift of the log dividend yield, which

shows it to be almost linear. Hence, if log dividend yields predict returns and dividend growth is

IID, then linear approximations for log dividend yields will be very accurate.6 This implies that

log-linearized systems like Campbell and Shiller (1988a,b) contain little approximation error

for the dynamics of the log dividend yield.

3.2.2 Predictable Mean-Reverting Components of Returns

As a second example of specifying an expected return process, we assume that excess returns

are predictable by risk-free rates.7 Ang and Bekaert (2006) find that the strength of the pre-

dictability of excess returns by risk-free rates is much stronger at short horizons than dividend

yields, which is confirmed by Campbell and Yogo (2006). Denoting the risk-free rate asx, we

consider the following system where the risk-free rate predicts excess returns:

dRt = (xt + α + βxt)dt + σrx(xt)dBx
t + σ̄ddBd

t , (19)

where the short ratex follows the Ornstein-Uhlenbeck process:

dxt = −κ(xt − θ)dt + σ̄xdBt + σ̄xddBd
t (20)

6 If we model the level dividend yield as predicting returns in equation (16) similar to Fama and French (1988a),

then the implied drift of the level dividend yield is highly non-linear, becoming strongly mean-reverting at high

levels of the dividend yield, but behaves like a random walk at low dividend yield levels.
7 Papers examining predictability of stock returns by risk-free rates include Fama and Schwert (1977), Campbell

(1987), Lee (1992), Ang and Bekaert (2006), and Campbell and Yogo (2006).

14



These equations imply that the term structure is a Vasicek (1977) model and that the excess

stock return is predicted by the short rate. The set-up also allows dividend growth and risk-free

rates to be correlated through theσ̄xd parameter.

In Panel C of Table 2, we report coefficients of predictive regressions for excess returns

over a 1-quarter and a 4-quarter horizon. We use annualized, continuously compounded 3-

month T-bill rates as the predictive variable over the post-1952 sample because interest rates

were pegged by the Federal Reserve prior to the 1951 Treasury Accord. The results confirm

Ang and Bekaert’s (2006) findings that the predictive power of the risk-free rate is best visible

at short horizons, where the coefficient on the risk-free rate is -1.72 with a robust t-statistic of

2.25. Risk-free rate predictability is slightly stronger in the sample ending in 1990, where the

predictive coefficient is -1.79 with a t-statistic of 2.31. At a 4-quarter horizon, the risk-free

coefficients drop to around -1.06 for both samples and are no longer significant at the 5% level.

For our calibrations, we use the regression coefficients from the 1952-2001 sample at a

quarterly horizon, giving us values ofα = 0.15 andβ = −1.72. The unconditional mean of

short rates over this sample isθ = 0.053. We also match the annual risk-free rate autocorrelation

of 0.787 = exp(−κ), the unconditional risk-free rate volatility of0.0275, and the correlation of

risk-free rates and dividend growth of 0.214 in the data. Thus,σ̄x andσ̄xd satisfy

(0.0275)2 =
σ̄2

x + σ̄2
xd

2κ
and 0.214 =

σ̄xd

σ̄xσ̄d

.

We also assume that the mean of dividend growth and the volatility of dividend growth are

constant at̄µd = 0.05 andσ̄d = 0.07, respectively.

Our goal is to characterize the behavior of price-dividend ratios and the implied stochastic

volatility induced by the predictability of the excess return by risk-free rates. We can solve for

price-dividend ratios exactly using equation (7) to obtain:

Pt

Dt

= Et

[∫ ∞

t

exp

(
−

∫ s

t

(xu + α + βxu)du

)
exp

(
µ̄d(s− t) + σ̄d(B

d
s −Bd

t )
)]

ds

=

∫ ∞

t

exp

(
−

(
α− µ̄d − 1

2
σ̄2

d

)
(s− t)

)

× Et

[
exp

(
−

∫ s

t

(1 + β)xudu

)
exp

(
−1

2
σ̄2

d(s− t) + σ̄d(B
d
s −Bd

t )

)]
ds

=

∫ ∞

t

exp

(
−

(
α− µ̄d − 1

2
σ̄2

d

)
(s− t)

)
EQ

t

[
exp

(
−

∫ s

t

(1 + β)xudu

)]
ds,

where the measureQ is determined by its Radon-Nikodym derivative with respect to the original

measure

exp

(∫
σ̄ddBd

t −
1

2
σ̄2

ddt

)
.
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By Girsanov’s theorem, the dynamics of the short ratex underQ is:

dxt = −κ(xt − θ − σ̄dσ̄xd/κ)dt + σ̄xdBt + σ̄xddBQd
t .

Hence, we can write the price-dividend ratio as:

Pt

Dt

=

∫ ∞

t

exp

(
−

(
(1 + β)

(
θ +

σ̄dσ̄xd

κ

)
+ α− µ̄d − 1

2
σ̄d

)
s

−(1 + β)
(
xt − θ − σ̄dσ̄xd

κ

) 1− e−κs

κ

+
(σ̄2

x + σ̄2
xd)(1 + β)2

2κ2

(
s− 2(1− e−κs)

κ
+

1− e−2κs

2κ

))
ds. (21)

In the top panel of Figure 2, we graph the risk premium,α + βx, and the total expected

return,x + (α + βx), as a function of the dividend yield. The top panel of Figure 2 shows that

the expected return is a strictly increasing, convex function of the dividend yield. Thus, high

dividend yields forecast high expected total and excess returns. The bottom panel of Figure 2

plots the implied risk-return trade-off of the excess return predictability system. We plot the

risk premium and total expected returns againstσr =
√

σ2
rx(x) + σ2

d. There are two notable

features of this bottom plot.

First, the range of the implied volatility of returns is surprisingly small, not showing much

variation around 0.084, which is not much different to the volatility of dividend growth at 0.07.

The implied volatility is also much smaller than the standard deviation of returns in data, which

is around 0.18. The intuition behind this result is that large changes in the price-dividend ratio,

f , are required to produce a large amount of stochastic volatility through the relationσrx =

σ̄x(ln f)′ in equation (11) of Proposition 2.1. When expected returns are mean-reverting, only

the terms in the sum (7) close tot change dramatically whenx changes. One way for small

changes inx to induce large changes inf is for the predictive coefficient to be extremely large

in magnitude, but this causes total expected returns to be unconditionally negative. We can also

generate larger amounts of heteroskedasticity if the mean reversion coefficient in the predictive

variable,κ, is close to zero, which corresponds to the case of permanent changes in expected

returns.

Second, the risk-return relation in Figure 2 is downward sloping, so that high volatility

coincides with low risk premia. This is due to the convexity imbedded in the present value

relation. When expected returns are low, price-dividend ratios are high. A standard duration

argument implies that there are relatively large price movements resulting from small changes in

expected returns at high price levels and relatively small price movements resulting from small
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changes in expected returns at low price levels. Hence, the risk-return relation is downward

sloping. This result suggests that we may need an additional volatility factor to explain the

amount of heteroskedasticity present in stock returns. Alternatively, heteroskedastic dividend

growth may change the shape of the risk-return trade-off, which we examine in the next section.

3.3 Specifying Dividend Yields and Dividends

Many studies, like Stambaugh (1999), Lewellen (2004), and Campbell and Yogo (2005) specify

the dividend yield to be a mean-reverting process. We now investigate the implied dynamics

of expected returns and the risk-return trade-off implied by mean-reverting dividend yields.

Our first case uses IID dividend growth, while our second example considers predictable and

heteroskedastic dividend growth.

3.3.1 IID Dividend Growth

Corollary 3.3 Assume that dividend growth is IID, soµd = µ̄d andσd = σ̄d are constant in

equation (2), and thatσdx = 0. Suppose that the level dividend yieldx = 1/f , wheref = P/D,

follows the CEV process:

dxt = κ(θ − xt)dt + σxγ
t dBx

t . (22)

Then, the driftµr and diffusionσrx of the return processdRt in equation (9) satisfy:

µr(x) = κ + µ̄d +
1

2
σ̄2

d −
κθ

x
+ σ2x2(γ−1) + x

σrx(x) = −σxγ−1 (23)

If dividend yields are mean-reverting, Corollary 3.3 shows that returns are heteroskedastic,

asσrx = −σxγ−1. For the special case of a Cox, Ingersoll and Ross (1987) (CIR) process where

γ = 0.5, high dividend yieldsx tend to coincide with low return volatility, since in this special

caseσrx = −σx/
√

x. This is the opposite to the behavior of these variables in data because

during recessions or periods of market distress, dividend yields tend to be high and stock returns

tend to be volatile. For a CEV process withγ = 1, Corollary 3.3 states that the return volatility

must be constant, even though expected returns are time-varying.

We calibrate the parametersκ, θ, andσ in equation (22) to match the moments of the

dividend yield. We match the quarterly autocorrelation,0.96 = exp(−κ/4); the unconditional

meanθ = 0.044; and the unconditional variance(0.0132)2 = σ2θ/(2κ) for a CIR process.

For a CEV process withγ = 1, we also calibrateσ by matching the unconditional variance of
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dividend yields, using the relation(0.0132)2 = σ2θ2/(2κ − σ2). Dividend growth has a low

correlation with dividend yields, at 0.05 in data, so the assumption thatσdx = 0 is realistic.

We characterize the behavior of expected returns and the risk-return trade-off implied by

mean-reverting dividend yields in Figure 3. The top panel graphs the drift of returns as a mono-

tonic, increasing function of dividend yields. Both the cases where dividend yields follow a CIR

process or a CEV process withγ = 1 produce very similar drift functions. However, Corollary

3.3 shows that expected returns may not always be monotonically increasing functions of the

dividend yield. For example, if dividend yields follow a CIR process, thenµr is given by:

µr(x) = κ + µ̄d +
1

2
σ̄2

d −
κθ − σ2

x
+ x,

which may increase steeply as dividend yieldsx approach zero ifκθ > σ2.

While low dividend yields do not coincide with high expected returns for the parameter

values calibrated to data, Corollary 3.3 shows that low dividend yields may forecast high returns

in well-defined dynamic economies. To provide some intuition behind this result, we use the

definition of a discrete-time expected return:

µr,t =
Et [Pt+1]

Pt

+
Et [Dt+1]

Pt

.

In a one-period model (or in a setting wherePt+1 = 0), µr,t = Et[Dt+1]/Pt, so low prices imply

high expected returns. However, givenEt[Dt+1] in a multi-period setting, lowPt can imply low

µr,t if: (i) low prices today imply low conditional prices next period, or (ii) low prices imply a

large positive Jensen’s term. The former does not occur if dividend yields are mean-reverting,

but large Jensen’s terms may arise in practice (see, for example, Pástor and Veronesi, 2006).

The bottom panel of Figure 3 plots the risk-return relation implied by mean-reverting divi-

dend yields and IID dividend growth. The risk-return relation is strongly downward sloping if

dividend yields follow a CIR process. For a CEV process withγ = 1, the risk-return relation

is degenerate because the implied return volatility is constant.8 Reasonable economic models

usually imply that the risk premium is a weakly, or strictly, increasing function of volatility, so

downward sloping risk and total expected return relations could arise if the risk-free rate de-

creases faster than the risk premium increases when volatility rises. Without this effect, a much

less restrictive conditional meanµx(·) is required in equation (22), rather than the standard

8 In the case where the log dividend yieldx = − ln f follows an AR(1) process and dividend growth is IID (see

Corollary 3.2), the risk-return relation is also degenerate because the return volatility is constant while expected

returns vary over time.
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AR(1) κ(θ − x) formulation, to order for the risk-return trade-off to be positive when dividend

growth is IID.

3.3.2 Predictable and Heteroskedastic Dividend Growth

A number of recent studies suggest that dividend growth is predictable (see Bansal and Yaron,

2004; Hansen, Heaton and Li, 2005; Lettau and Ludvigson, 2005; Ang and Bekaert, 2006) and

that dividend growth exhibits significant heteroskedasticity (see Calvet and Fisher, 2005). In

this section, we examine the implied risk-return trade-off for a system where dividend yields

are mean-reverting but dividend growth exhibits predictable and heteroskedastic components

which are functions of the dividend yield.

Corollary 3.4 Assume that the level dividend yieldx = 1/f , wheref = P/D, follows the CIR

process:

dxt = κ(θ − xt)dt + σ
√

xtdBx
t , (24)

and that the log dividend level follows the process:

d ln Dt = (α + βxt)dt + b
√

xtB
d
t , (25)

where the correlation betweendBx
t andBd

t is zero. Then, the driftµr and diffusionσrx of the

return processdRt in equation (9) satisfy:

µr(x) = κ + α +
(σ2 − κθ)

x
+

(
1 + β +

1

2
b2

)
x

σrx(x) = − σ√
x

(26)

In Corollary 3.4, the level dividend yield is mean-reverting but is constrained to be positive

through the square-root process. In equation (25), dividend growth is predictable by the divi-

dend yield, which is what Ang and Bekaert (2006) find. The conditional volatility of dividend

growth increases as the dividend yield increases. This is economically reasonable, as during

periods of market distress, dividend yields are high because prices are low, and there is larger

uncertainty about future cashflows.

To match the dynamics of the dividend yield, we setκ = 0.16, θ = 0.044, andσ = 0.0365 to

match the autocorrelation, mean and variance of the dividend yield. To calibrate the conditional

mean of log dividend processes in Corollary 3.4, we regress annualized quarterly dividend

growth onto the dividend yield:

4gt+1 = α + βdyt + εt+1,
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wheregt+1 = ln(Dt+1/Dt) is quarterly dividend growth, anddyt is the level dividend yield.

Over the 1952-2001 sample,α = 0.026 andβ = 0.415, with robust t-statistics of 2.63 and 3.70,

respectively. This result is consistent with the positive OLS coefficients for the dividend yield

predicting dividend growth reported by Ang and Bekaert (2006).

It can be shown that the unconditional variance of dividend growth fors > t is given by:

E[(ln Ds − ln Dt − E[ln Ds − ln Dt])
2]

=

(
b2 +

(
βσ

κ

)2
)

(s− t)θ − β2σ2

κ3
(1− e−κ(s−t))θ.

This formula fors − t = 1 allows us to match the unconditional variance of annual dividend

growth. The volatility of annualized dividend growth,gt,t+4 = gt+1+gt+2+gt+3+gt+4, is 0.0932

in data, which is matched by a value ofb = 0.444. As expected from equations (24) and (25),

the unconditional correlation between dividend growth and dividend yields is controlled by the

parameterβ. In data, the correlation between annual dividend growth and dividend yields is

0.16, which is only slightly larger than the correlation implied by the model parameters at 0.06.

In the top panel of Figure 4, we plot the drift and volatility of returns implied by predictable

and heteroskedastic dividend growth (equation (26)). In the solid line, the expected return

assumes a concave shape which increases with the dividend yield. For the return volatility in

the dashed line, we plot
√

σ2
rx + σ2

rd as a function of the dividend yield,x, whereσrd = b
√

x.

The volatility of returns is highest when dividend yields are low (or prices are high). This

implication seems to be counter-factual as stock return volatility increases during periods of

market distress when prices are low and dividend yields are high. However, the conditional

volatility curve is slightly U-shaped and increases also when dividend yields are high.

The bottom panel plots the implied risk-return trade-off. First, the risk-return trade-off does

not have a unique one-to-one correspondence. This is due to the U-shape pattern of return

volatility increasing at high dividend yields. Thus, according to this specification for dividend

cashflows, the risk-return trade-off will be particularly difficult to pin down for low to moderate

return volatility levels. However, the general shape of the risk-return trade-off is downward

sloping, similar to the IID dividend growth case in Figure 3. Thus, either considerably more

heteroskedasticity in dividends is needed, or a richer non-linear specification for the dividend

yield is required to generate an upward sloping risk-return relation.
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3.4 Specifying Dividend Yields and Expected Returns

We take the Stambaugh (1999) model as a well-known example of a system that specifies the

joint dynamics of dividend yields and expected returns. Stambaugh assumes that the dividend

yield x = D/P follows an AR(1) process and that the stock return is a linear function of the

dividend yield. We modify the Stambaugh system slightly to use a CIR process or a CEV

process with to ensure that prices are always positive. Hence, the Stambaugh model specifies:

dRt = (α + βxt)dt + σrx(xt)dBx
t + σd(xt)dBd

t

dxt = κ(θ − xt)dt + σxγ
t dBx

t , (27)

wherex is the dividend yield,x = D/P , with γ = 0.5 (γ = 1.0) for a CIR (CEV) dividend yield

process. Stambaugh uses this system to assess the small sample bias in a predictive regression

where the dividend yield is an endogenous regressor. By jointly specifying dividend yields

and expected returns, Stambaugh implicitly implies the dynamics of dividend growth and the

risk-return trade-off.

A further application of Proposition 2.1 implies that the drift ofdDt/Dt in equation (2) can

be written as a function of the dividend yieldx:

µd(x) +
1

2
σ2

d(x) = α− κ + (β − 1)x +
κθ

x
− σ2

xx
2(γ−1), (28)

assuming thatσxd = 0, which is true empirically. Hence, by assuming that dividend yields are

mean-reverting and that dividend yields monotonically predict expected returns, Proposition 2.1

implies that dividend yields must predict dividend growth.

We graph equation (28) in the top panel of Figure 5, which shows that dividend growth is

a highly non-monotonic function of dividend yields. For very low dividend yields, dividend

growth is a decreasing function of dividend yields. However, for dividend yields above 3%,

dividend growth is an increasing function of dividend yields. Since empirically dividend yields

have only been below 2% for a short episode during the late 1990s, we should expect that, on

average, dividend yields should positively predict dividend growth. This result is the opposite

to the intuition of Campbell and Shiller (1988a,b) who claim that high dividend yields must

forecast either high future returns or low future dividends.9

9 If we model dividend yields,D/P = x, in equation (27) to be an AR(1) process, then the drift of dividend

growth takes on a concave shape as a function of the dividend yield, which decreases to−∞ as the level dividend

yield approaches zero from the right-hand side.
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To provide some discrete-time intuition on this result, we use the definition of expected

returns to write:

µr,t = Et

[
Pt+1 + Dt+1

Pt

]
=

Dt

Pt

(
Et

[
1

Dt+1/Pt+1

]
+ 1

)
Et

[
Dt+1

Dt

]
.

Given the expected return,µr,t, in a multi-period model, highDt/Pt implies a highEt[Dt+1/Dt]

if high dividend yields cause a large Jensen’s term or high dividend yields forecast high dividend

yields next period. The latter result cannot occur if dividend yields are mean-reverting. In

contrast, in a one-period setting (or wherePt+1 = 0), high dividend yields forecast low dividend

growth for a given expected return,µr,t:

µr,t =
Dt

Pt

Et

[
Dt+1

Dt

]
.

Hence, the result that dividend yields positively forecast future dividend growth can occur only

in a dynamic model.

The middle panel of Figure 5 plots the return-risk trade-off implied by the Stambaugh

model. If we assume that dividend growth is homoskedastic and setσ̄d = 0.07, we can in-

vestigate the risk-return trade-off implied by the(α + βx) expected return assumption in the

drift of the stock return and the volatility of the stock return,σr =
√

σ2
rx + σ̄2

d. Since the divi-

dend yield is mean-reverting according to equation (27) in the Stambaugh system, the diffusion

term of the return process takes the formσrx(x) = −σxγ−1, similar to equation (23). Figure

5 shows that the risk-return trade-off is monotonically downward sloping for a CIR dividend

yield process and the return volatility is constant if dividend yields follow a CEV process. We

can induce a positive risk-return trade-off only by relaxing the assumption that dividend yields

non-monotonically predict expected returns, rather than the linear(α + βx) drift term in equa-

tion (27), or by assuming a richer conditional mean specification for the dynamics of dividend

yields.

Finally, we consider the implied behavior of dividend growth heteroskedasticity from the

Stambaugh model. Following Calvet and Fisher (2005), we set the conditional mean of div-

idend growth to be constant, atµ̄d = 0.05, but solve endogenously for dividend growth het-

eroskedasticity. Using equation (28), we plot the conditional volatility of dividend growth,|σd|
as a function of the level dividend yield in the bottom panel of Figure 5. Interestingly, the

implied volatility of dividend growth is a non-monotonic function of the dividend yield and

increases in periods of both low and high dividend yields, which would roughly correspond to

the peaks and troughs of business cycle variation. A multi-frequency model of dividend growth
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heteroskedasticity, like Calvet and Fisher, where shocks to dividend growth occur jointly over

different frequencies, could potentially match this pattern.

3.5 Specifying Stochastic Volatility and Dividends

The dynamics of time-varying variances of stock returns have been successfully captured by a

number of models of stochastic volatility. If the dividend process is specified, Proposition 2.1

shows that the presence of stochastic volatility implies that stock returns must be predictable.

We now use Proposition 2.1 to characterize stock return predictability by parameterizing the

variance process. Thus, Proposition 2.1 can be used to shed light on the nature of the aggregate

risk-return relation, on which there is no theoretical or empirical consensus. This is an entirely

different approach from the current approach in the literature of estimating the risk-return trade-

off, which uses different measures of conditional volatility in predictive regressions to estimate

the conditional mean of stock returns (see, for example, Glosten, Jagannathan and Runkle,

1996; Scruggs, 1998; Ghysels, Santa-Clara and Valkanov, 2005).

We look at two well-known stochastic volatility models, the Gaussian model of Stein and

Stein (1991) in Section 3.5.1 and the square root model of Heston (1993) in Section 3.5.2.10

In both cases, we assume that dividend growth is IID (µd = µ̄d andσd = σ̄d are constant in

equation (2)), and setσdx = 0 to focus on the relations between risk and return induced by the

non-linear present value relation.

3.5.1 The Stein-Stein (1991) Model

In the Stein and Stein (1991) model, time-varying stock volatility is parameterized to be an

Ornstein-Uhlenbeck process. The Stein-Stein model in our set-up can be written as:

dRt = µr(xt)dt + xtdBx
t + σ̄ddBd

t

dxt = κ(θ − xt)dt + σ̄xdBx
t . (29)

The variance of the stock return isx2 + σ̄2
d, so the stock return variance comprises a constant

component̄σ2
d, from dividend growth, and a mean-reverting componentx2.11 Empirically,

shocks to returns and shocks to volatility dynamics are strongly negatively correlated, which is

10 It can be shown that for a log volatility model with IID dividend growth, the price-dividend ratio is not well

defined because the unconditional dividend yield cannot be computed.
11 Most recently, by using an AR(1) process to generate heteroskedasticity, Bansal and Yaron (2004) use a set-up

that is similar to the Stein-Stein model, except Bansal and Yaron model the variance, rather than volatility.
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termed the leverage effect, soσ̄x is negative. The correlation of dividend growth with squared

returns is almost zero, at -0.07, which justifies our assumption of settingσdx = 0.

The following corollary details the implicit restrictions on the expected return of the stock

µr(·) by assuming that stochastic volatility follows the Stein-Stein model:

Corollary 3.5 Suppose that dividend growth is IID, soµd = µ̄d and σd = σ̄d are constant

in equation (2). If the stock variance is determined byσrx(x) = x in equation (9), andx

follows the mean-reverting process (29) according to the Stein and Stein (1991) model, then the

expected stock returnµr(x) as a function ofx is given by:

µr(x) = µ̄d +
1

2
σ̄2

d +
1

2
σ̄x +

κθ

σ̄x

x +

(
1

2
− κ

σ̄x

)
x2 + C−1 exp

(
−1

2

x2

σ̄x

)
, (30)

whereC is an integration constantC = f(0), wheref(0) is the price-dividend ratio at time

t = 0.

The expected return in equation (30) is a combination of several functional forms. First, the

expected return has a constant term,µ̄d + 1
2
σ̄2

d + 1
2
σ̄x, which is the case in a standard exchange

equilibrium model with IID consumption growth and CRRA utility. Second, the expected re-

turn contains a term proportional to volatility,κθ
σ̄x

x. This specification is implied by models

of first-order risk aversion, developed by Yaari (1987) and parameterized by Epstein and Zin

(1990). Third, the expected stock return is proportional to the variance,
(

1
2
− κ

σ̄x

)
x2. A term

proportional to variance would result in a CAPM-type equilibrium like the standard Merton

(1973) model. Finally, the last term,C−1 exp(−1
2
x2/σ̄x), can be shown to be the dividend

yield in this economy. Since the price-dividend ratio is only one component of equation (30),

the Stein-Stein model predicts that dividend yields are not a sufficient statistic to capture the

time-varying components of expected returns. We emphasize that the risk-return trade-off in

equation (30) is not derived using an equilibrium approach. The only economic assumptions

behind the risk-return trade-off is the IID dividend growth process, the transversality condition

necessary to derive Proposition 2.1, and the volatility dynamics of the Stein-Stein model.

To calibrate the parameters in equation (29), we setµ̄d = 0.05, σ̄d = 0.07, and θ =√
(0.18)2 − σ̄2

d. We set the parametersκ = 4 and σ̄x = −0.3. These parameter values are

meant to be illustrative, and are consistent with stochastic volatility models estimated by Cher-

nov and Ghysels (2002), among others. These parameter values imply that the unconditional

standard deviation of volatility is 11%. We setC = 26.1, which matches the average price-

dividend ratio in data of 24.5. In Figure 6, we plot points corresponding to a range of plus and

minus three unconditional standard deviations ofx for these parameter values.
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The top panel of Figure 6 plots the expected return as a function of the dividend yield

implied by the Stein-Stein model. Interestingly, because the Stein-Stein model parameterizes

volatility, |x|, rather than variance, there is no one-to-one correspondence between expected

returns and dividend yields. We show two branches corresponding to negative and positivex.

The negativex branch produces a much steeper relation between expected returns and dividend

yields than the positivex branch. For positivex below the average dividend yield (4.4%),

there is a non-monotonic hook-shaped relation between expected returns and dividend yields.

However, one failure of the Stein-Stein model is that it cannot account for the variation of

dividend yields observed in data. In the top plot of Figure 6, dividend yields range only from

approximately 3.8% to 5.6% for a plus and minus three standard bound ofx around its mean,

which is substantially smaller than the approximately 1% to 10% range of dividend yields in

the data.

In the bottom plot of Figure 6, we graph the implied risk-return trade-off. Again, because

the Stein-Stein model assumes an AR(1) process forx, there are multiple risk-return trade-

off curves. The risk-return trade-off for negativex is always sharply increasing, whereas the

risk-return trade-off for positivex has a pronounced non-monotonic U-shape pattern for levels

of volatility less than 20%. For volatility values higher than 15%, the expected stock return

becomes a sharply increasing function of volatility. According to the Stein-Stein model, the

risk-return relation will be very hard to pin down empirically because of the non-monotonic

relation and multiple correspondence between risk and return. Studies like French, Schwert and

Stambaugh (1987) and Bollerslev, Engle and Wooldridge (1988) find only weak support for a

positive risk-return trade-off, while Ghysels, Santa-Clara and Valkanov (2005) find a significant

and positive relation. On the other hand, Campbell (1987) and Nelson (1991) find significantly

negative relations. Glosten, Jagannathan and Runkle (1993) and Scruggs (1998) report that

the risk-return trade-off is negative, positive, or close to zero, depending on the specification

employed. Brandt and Kang (2004) find a conditional negative, but unconditionally positive,

relation between the aggregate market mean and volatility. From Figure 6, it is easy to see that

depending on the sample period of low, average, or high volatility, the expected return relation

could be flat, upward-sloping, or downward-sloping.

To understand why the risk-return relation in the top panel of Figure 6 generally slopes

upwards for large absolute values ofx, consider the following intuition. The price-dividend

ratio f in the Stein-Stein economy is given byf = C−1 exp(−1
2
x2/σ̄x), which is a decreasing

function of volatility x becausēσx is negative (due to the leverage effect). Note that for an

25



infinite amount of volatility, the price of the stock is intuitively zero. Ifx is high (andf is low),

x is likely to be lower (andf is likely to be higher) in the next period because of mean reversion.

The return comprises a capital gain and a dividend component. Since the dividend is IID, for

high enough values ofx, the higherf next period causes the expected capital gain component

to be large, and hence, the expected total return to be large. Thus, very high volatility levels

correspond to high expected returns. Mathematically, it is the quadratic term that dominates in

equation (30) which is responsible for the non-monotonicity of the risk-return trade-off.

3.5.2 The Heston (1993) Model

In the Heston (1993) model, the variance follows a square-root process similar to CIR, which

restricts the variance to be always positive. This modest change in the stochastic volatility

process produces a large change in the behavior of the risk premium, as the following corollary

shows:

Corollary 3.6 Suppose that dividend growth is IID, soµd = µ̄d andσd = σ̄d are constant in

equation (2) and thatσdx = 0. Suppose that returns are described by the Heston (1993) model:

dRt = µr(xt)dt +
√

xtdBx
t + σ̄ddBd

t

dxt = κ(θ − xt)dt + σ
√

xtdBx
t (31)

Then, the expected returnµr(f) as a function of the price-dividend ratiof = P/D is given by:

µr(f) = µ̄d +
1

2
σ̄2

d +
κθ

σ
+

(σ

2
− κ

)
ln

(
f

C

)
+

1

f
, (32)

whereC is an integration constantC = f(0), wheref(0) is the price-dividend ratio at time

t = 0. The expected stock returnµr(x) as a function of the return variance,x, is given by:

µr(x) = µ̄d +
1

2
σ̄2

d +
κθ

σ
+

(
1

2
− κ

σ

)
x + C−1 exp

(
−x

σ

)
. (33)

The top panel of Figure 7 shows that the expected return is a monotonically increasing

function of dividend yields (equation (32)). Unlike the Stein-Stein model, the Heston model

parameterizes the stock variance, so there is a unique one-to-one mapping between dividend

yields and expected returns. To produce the plot, we use the parameter valuesµ̄d = 0.05,

σ̄d = 0.07, σdx = 0, θ = (0.18)2 − σ̄2
d, andκ = 4. We setσ = −0.2 to reflect the leverage

effect. These parameter values forθ, κ, andσ are very close to the values advocated by Heston

(1993). To match the average price-dividend yield in data, we setC = 28.06.
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In the bottom panel of Figure 7, we plot the risk-return trade-off implied by the Heston

model. We can interpret the Heston risk-return trade-off in equation (33) to have three compo-

nents: a constant term, a term linear in the variancex, and the third termf = C−1 exp(−x/σ)

can be shown to be the dividend yield. Unlike the Stein-Stein model, the risk-return relation

implied by the Heston model is always positive! Mechanically, this is because the expected

return in the Heston economy in equation (33) does not have a negative term proportional to

volatility that enters the risk-return trade-off in the Stein-Stein model (see equation (30)). The

term proportional to volatility allows the expected return in the Stein-Stein solution to initially

decrease before increasing. In the Heston model, no such initial decrease can occur and the ex-

pected stock return in equation (33) is dominated by the linear term(1
2
− κ

σ
)x. Since empirical

estimates of the mean-reversion of the variance,κ, are large andσ is small and negative due to

the leverage effect, the risk-return trade-off is upward sloping.

3.6 Specifying the Risk-Return Trade-Off and Stochastic Volatility

Our last application parameterizes the risk-return trade-off and stochastic volatility. There are

various assumptions made about the risk-return trade-off in the literature. For example, in

two recent asset allocation applications involving stochastic volatility, Liu (2006) assumes that

the Sharpe ratio is increasing in variance, following Merton (1973), while Chacko and Viceira

(2005) assume that the Sharpe ratio is a decreasing function of volatility. Cochrane and Saá-

Requejo (2000) assume that the Sharpe ratio is constant. In our analysis, we work with the

Heston (1993) model of stochastic volatility and analyze two cases of the risk-return trade-

off: (i) we assume that expected returns are proportional to volatility, and (ii) we assume that

expected returns are proportional to variance. We now characterize the dynamics of cashflows

implied by these two assumptions on the risk-return trade-off.

We assume that the return and stochastic variance process follow the Heston model:

dRt = µr(xt) +
√

xtdBx
t + σd(xt)dBd

t

dxt = κ(θ − xt)dt + σ
√

xtdBx
t ,

and the risk-return trade-off is characterized by

µr(x) = Axδ,

with δ = 0.5 or δ = 1. Using Proposition 2.1, the drift of dividend growth is given by:

µd(x) +
1

2
σd(x) = Axδ − κθ

σ
−

(
1

2
− κ

σ

)
x− C−1 exp

(
−x

σ

)
. (34)
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Equation (34) shows that the cashflow drift directly inherits the risk-return trade-off, along with

other terms reflecting the dynamics of the Heston volatility process.

We characterize the drift of dividend growth in equation (34) in Figure 8 using a value of

A = 5 for the two casesδ = 0.5 andδ = 1. In the top panel, we graph the drift of dividend

growth in equation (34) as a function of return volatility. To fix total return volatility, we assume

that dividend growth is homoskedastic, withσ̄d = 0.07, and graph the drift in equation (34)

againstσr(x) =
√

x + σ̄2
d. In both the cases forδ = 0.5 andδ = 1, very high volatility levels

correspond to low expected dividend growth. However, when expected returns are proportional

to volatility, the drift of dividend growth is non-monotonic and both low and high volatility

forecast low future growth in dividends. In the middle panel of Figure 8, we plot the drift of

dividend growth as a function of the dividend yield. High dividend yields correspond to low

future dividend growth, but the drift function may also be non-monotonic for theδ = 0.5 case.

In particular, the drift of dividend growth increases as dividend yields increase for low dividend

yield levels (around 4%).

Finally, we can gauge the implied heteroskedasticity of dividend growth from these two

common specifications for the risk-return trade-off and stochastic volatility by following Calvet

and Fisher (2005) and setting the conditional mean of dividend growth to be a constant, at

µ̄d = 0.05. From equation (34), we can invert for the conditional volatility of dividend growth,

|σd(x)|, as a function of the stochastic Heston component of the total return. We plot this in the

bottom panel of Figure 8. Clearly, the implied dividend growth heteroskedasticity is a highly

non-monotonic function of return volatility, increasing when return volatility is both very high

and very low.

4 Conclusion

We derive conditions on expected returns, stock volatility, and price-dividend ratios that asset

pricing models must satisfy. In particular, given a dividend process, specifying only one of the

expected return process, the stochastic volatility process, or the price-dividend ratio process,

completely determines the other two processes. For example, specifying the dividend stream

allows the volatility of stock returns to pin down the expected return, and thus the risk-return

trade-off. We do not need to specify a complete equilibrium model to characterize these risk-

return relations, but instead derive these conditions using only the definition of returns, together

with a transversality assumption.
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Our conditions between risk and return are empirically relevant because many popular em-

pirical specifications assume dynamics for one, or a combination of, expected returns, volatility,

or price-dividend ratios, without considering the implicit restrictions on the dynamics of the

other variables. Our relations allow us to investigate the joint dynamics of expected returns,

return volatility, prices, and cashflows. We show that some of the implied restrictions made

by empirical models that specify only one, or two, of these variables may result in the implied

dynamics of the other variables not explicitly modelled that are counter-factual, or that may be

hard to match in equilibrium models.

One important implication of our examples is that future asset pricing models should take

into account predictability and heteroskedasticity of the dividend growth process. Even com-

mon specifications of expected return or volatility processes imply rich patterns of dividend

growth predictability and heteroskedasticity. In this regard, important strides in recognizing

complex dividend dynamics have recently been made by Bansal and Yaron (2005), Calvet and

Fisher (2005), and Hansen, Heaton and Li (2005), who emphasize the role of non-IID dividend

dynamics in equilibrium economies. Our results also point the way forward to developing an

empirical methodology that can exploit our over-identifying conditions to create more powerful

tests to investigate the risk-return trade-off, the predictability of expected returns, the dynamics

of stochastic volatility, and present value relations in a unifying framework.
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Appendix

A Proof of Proposition 2.1
Equation (8) follows from a straightforward application of Ito’s lemma to the definition of the return:

dRt =
dPt + Dtdt

Pt
, (A-1)

which we rewrite asdRt = dft/ft + dDt/Dt + 1/ftdt. Note that we assume thatdBd
t anddBx

t are uncorrelated
by assumption.

The definition of returns in equation (A-1) allows us to match the drift and diffusion terms in equation (8) for
Rt. Hence, the price-dividend ratiof , the expected returnµr, and the volatility termsσrx andσrd are determined
by re-arranging the drift, and thedBx

t and dBd
t diffusion terms, respectively. If the expected returnµr(·) is

determined, equation (10) defines a differential equation forf , which determinesf . Oncef is determined, we can
solve forσrx from equation (11). If the return volatilityσrx is specified, we can solve forf from equation (11) up
to a multiplicative constant and this determines the expected returnµr in equation (10).¥

B Proof of Corollary 3.1
Statements (2) and (3) are equivalent from equation (11) of Proposition 2.1. Assume thatf = f̄ is a constant.
Then, using equation (10), we can show thatµr = f̄−1 + µ̄d + 1

2 σ̄2
d, which is a constant. Hence (2) follows from

(1). Finally, to show that (1) follows from (2), suppose thatµr = µ̄r is a constant. From equation (10),f satisfies
the following ODE:

µxf ′ +
1
2
σ2

xf ′′ −
(

µ̄r − µ̄d − 1
2
σ̄2

d

)
f = −1. (B-1)

Since the term onf is constant, it follows that the price-dividend ratioP/D = f = (µ̄r − µ̄d − 1
2 σ̄2

d)−1 is the
solution. Note that this is just the Gordon formula, expressed in continuous-time. Hence, the price-dividend ratio
is constant.¥

C Proof of Corollary 3.2
Using equation (11) of Proposition 2.1, we haveσ̄rx = σx(x)(ln f)′ = −σx, sincex = − ln f . From equation
(10), we have:

α + βx =
µx(x)f ′ + 1

2 σ̄2
rxf ′′ + 1

f
+ µ̄d +

1
2
σ̄2

d. (C-1)

Substitutingf ′/f = −1 andf ′′/f = 1 and re-arranging this expression forµx(x) yields equation (18).¥

D Proof of Corollary 3.3
This is a straightforward application of equation (8) of Proposition 2.1, usingf = 1/x for the level dividend yield
andf = exp(−x) for the log dividend yield.¥

E Proof of Corollary 3.5
Using equation (11) of Proposition 2.1, we havex = σ̄x(ln f)′, from which we can solve the price-dividend ratio
f to be:

f = C exp
(

1
2

x2

σ̄x

)
, (E-1)
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whereC is the integration constantC = f(0).
We setC to match the unconditional price-dividend ratio. This entails computingE0[exp(−λx2

t )] for a diffu-
sion processdxt = −κ(xt − θ)dt + σ̄xdBt for λ = −1/(2σ̄x), sinceσ̄x is negative. We know thatxt is a normal
random variable with mean̄xt and varianceσ2

t given by:

x̄t = (x0 − θ)e−κt + θ

σ2
t = σ̄2

x

∫ t

0

e−2κsds =
σ̄2

x

2κ
(1− exp(−2κt)). (E-2)

Thus, we have:

E0

[
exp(−λx2

t )
]

= E0

[
exp(−λ(xt − x̄t)2 − 2λ(xt − x̄t)x̄t − λx̄2

t )
]

= exp
(
−λx̄2

t −
1
2

ln(1 + 2λσ2
t ) +

1
2
λ2x̄2

t (σ
−2
t + 2λ)−1

)
. (E-3)

We compute the last equality using Lemma A.1 of Ang and Liu (2004). Lettingt →∞, we obtain

E
[
exp

(−λx2
)]

= exp
(
−λθ2 − 1

2
ln(1 + λσ̄2

x/κ) +
1
2
λ2θ2(2κ/σ̄2

x + 2λ)−1

)
, (E-4)

as the unconditional mean ofxt is θ and the variance of the Ornstein-Uhlenbeck process isσ̄2
x/(2κ). ¥

F Proof of Corollary 3.6
The proof is similar to Corollary 3.5, except now the price-dividend ratiof is given by:

f = C exp
(x

σ

)
, (F-1)

whereC is the integration constantC = f(0).
We setC to match the average price-dividend ratio in the data. Cox, Ingersoll and Ross (1987) show that the

process
dxt = −κ(xt − θ)dt + σ

√
xtdBt

has the steady state density function

f(x) =
ων

Γ(ν)
xν−1e−ωx,

whereω = 2κ/σ2 andν = (2κθ)/σ2. Hence, we can compute the average price-dividend ratio using

E [exp(−λx)] =
∫ ∞

0

ων

Γ(ν)
xν−1e−(ω+λ)x =

ων

(ω + λ)ν
,

with λ = −1/σ. ¥
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[50] Pástor, L., and P. Veronesi, 2006, “Was there a NASDAQ Bubble in the Late 1990’s?”Journal of Financial
Economics, 81, 61-100.

33



[51] Pham, H., and N. Touzi, 1996, “Equilibrium State Prices in a Stochastic Volatility Model,”Mathematical
Finance, 6, 2, 215-236.

[52] Poterba, J., and L. Summers, 1986, “The Persistence of Volatility and Stock Market Fluctuations,”American
Economic Review, 76, 1142-1151.

[53] Scruggs, J. T., 1998, “Resolving The Puzzling Intertemporal Relation Between The Market Risk Premium
And Conditional Market Variance: A Two-Factor Approach,”Journal of Finance, 53, 2, 575-603.

[54] Shiller, R. J., 1981, “Do Stock Prices Move Too Much To Be Justified By Subsequent Changes In Divi-
dends?,”American Economic Review, 71, 3, 421-436.

[55] Stambaugh, R. F., 1999, “Predictive Regressions,”Journal of Financial Economics, 54, 375-421.

[56] Stapleton, R. C., and M. G. Subramanyam, 1990, “Risk Aversion and the Intertemporal Behavior of Asset
Prices,”Review of Financial Studies, 3, 677-693.

[57] Stein, J. C., and E. Stein, 1991, “Stock Price Distributions with Stochastic Volatility: An Analytic Approach”,
Review of Financial Studies, 4, 727-752.

[58] Valkanov, R., 2003, “Long-Horizon Regressions: Theoretical Results and Applications,”Journal of Financial
Economics, 68, 2, 201-232.

[59] Vasicek, O., 1977, “An Equilibrium Characterization Of The Term Structure,”Journal of Financial Eco-
nomics, 5, 2, 177-188.

[60] Yaari, M. E., 1987, “The Dual Theory of Choice under Risk,”Econometrica, 55, 95-115.

34



Table 1: Possible Model Specifications

(
√

=specified; ?=implied)

Models µr σr D/P dD/D Selected Literature

Expected Returns
√

? ?
√

Poterba and Summers (1986)
and Dividends Fama and French (1988a and b)

Hodrick (1992)
Cochrane (2001)

Dividend Yields ? ?
√ √

Campbell and Shiller (1988a and b)
and Dividends

Dividend Yields
√

?
√

? Stambaugh (1999)
andExpected Returns Lewellen (2004)

Campbell and Yogo (2005)

Stochastic Volatility ?
√

?
√

Stein and Stein (1991)
and Dividends or Heston (1993)
Dividend Yields

Risk-Return Relation and
√ √

? ? Ferson and Harvey (1991)
Stochastic Volatility Glosten, Jagannathan and Runkle (1993)

Liu (2001)
Chacko and Viceira (2005)

The table reports various possible model specifications between expected returns,µr, the volatility of returns,σr,
dividend yields,D/P , (or equivalently price-dividend ratios), and dividend growthdD/D. If a model specifies
one of these four variables, the specified variable is highlighted in bold in the first column. The “

√
” marks in the

second column indicate which of these four variables are specified, while the “?” marks indicate that the variables
whose dynamics must be implied by the dynamics of the other two variables. The third column lists selected papers
who parameterize the variable denoted in bold. For example, in the first row, expected returns are specified by,
among others, Fama and French (1988a,b) and if a dividend process is also assumed, then the dynamics of stock
volatility (σr) and dividend yields (D/P ) are completely determined by the expected return and dividend growth
processes.
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Table 2: Summary Statistics and Predictive Regressions

Panel A: Summary Statistics

Total Returns Excess Returns Dividend Growth Dividend Yields

Mean Stdev Mean Stdev Mean Stdev Mean Stdev

1935:Q1 – 2001:Q4 0.125 0.169 0.070 0.173 0.053 0.066 0.040 0.015
1935:Q1 – 1990:Q4 0.121 0.173 0.066 0.178 0.059 0.071 0.044 0.013

Panel B: Log Dividend Yield Predictive Regressions

Total Returns Excess Returns

Log Log
Const Div Yield Const Div Yield

1935:Q1 – 2001:Q4 0.452 0.100 0.439 0.113
[2.41] [1.76] [2.40] [2.03]

1935:Q1 – 1990:Q4 0.812 0.219 0.819 0.238
[3.25] [2.80] [3.34] [3.10]

Panel C: Risk-Free Rate Predictive Regressions

k = 1 Quarter k = 4 Quarters

Risk-free Risk-free
Const Rate Const Rate

1952:Q1 – 2001:Q4 0.153 -1.720 0.118 -1.056
[3.65] [2.25] [2.85] [1.38]

1952:Q1 – 1990:Q4 0.152 -1.793 0.112 -1.061
[3.40] [2.31] [2.54] [1.35]

Panel A reports means and standard deviations of total returns, returns in excess of the risk-free rate (3-month
T-bills), and dividend growth. All returns and growth rates are continuously compounded and means and standard
deviations for quarterly returns or growth rates are annualized. Panel B reports predictive regressions of gross (or
excess returns) on a constant and the log dividend yield. The regressions are run with continuously compounded
returns at an annual horizon on the left-hand side of the regression, but at a quarterly frequency. In Panel C,
we report predictive regressions of annualized continuously compounded excess returns over ak = 1-quarter
andk = 4-quarter horizon on a constant and annualized continuously-compounded 3-month T-bill rates. These
regressions are also run at a quarterly frequency. In Panels B and C, robust Hodrick (1992) t-statistics are reported
in parentheses. The stock data is the S&P500 from Standard and Poors and the frequency is quarterly.
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Figure 1: Implications of Returns Predicted by Log Dividend Yields
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We plot the implied drift of the log dividend yield (equation (18)) using the calibrated parameter valuesα = 0.81,
β = 0.22, µ̄d = 0.05, σ̄d = 0.07, σdx = 0, andσ̄rx = 0.15. The calibration is done using quarterly S&P500 data
from 1935 to 1990.
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Figure 2: Implications of Excess Returns Predicted by Risk-free Rates
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In the top panel, we graph the conditional expected excess return,α + βx, and the total expected excess return,
x+α+βx, wherex is the risk-free rate as a function of the dividend yield, which we obtain from inverting equation
(21). We use the parameter valuesκ = 0.240, σ̄x = 0.019, σ̄xd = 2.85× 10−4, θ = 0.053, µ̄d = 0.05, σ̄d = 0.07,
α = 0.15, andβ = −1.72. In the bottom panel, we graph the risk-return trade-off for expected excess and total
returns as a function ofσr =

√
σ2

rx(x) + σ2
d. To produce the plots, we use quadrature to solve the price-dividend

ratio in equation (21), and then numerically take derivatives of the log price-dividend ratio to computeσrx(·) from
equation (11). The calibrations are done using quarterly S&P500 data from 1952 to 2001.
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Figure 3: Implications of Mean-Reverting Dividend Yields and IID Dividend Growth
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In the top panel, we graph the drift of the stock return as a function of the level dividend yield given by equation
(22) in the solid line when the level dividend yield follows a CIR process (γ = 0.5) or in the dashed line when the
level dividend yield follows a CEV process (γ = 1). To produce the plot, we use the calibrated parameter values
µ̄d = 0.05, σ̄d = 0.07, andσdx = 0. We match the quarterly autocorrelation,0.96 = exp(−κ/4), the long-term
meanθ = 0.044, and the unconditional variance of the level dividend yield. For the CIR process,σ is given by
(0.0132)2 = σ2θ/(2κ), while for the CEV process withγ = 1, (0.0132)2 = σ2θ2/(2κ − σ2). In the bottom
panel, we plot the implied risk-return trade-off. The calibrations are done using quarterly S&P500 data from 1935
to 1990.
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Figure 4: Implications of Mean-Reverting Dividend Yields and Non-IID Dividend Growth
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The top panel plots the conditional drift and volatility of returns implied by predictable and heteroskedastic divi-
dend growth in equation (26). In the bottom panel, we plot the implied risk-return trade-off. We use the parameters
κ = 0.16, θ = 0.044, σ = 0.0365, α = 0.026, β = 0.415, andb = 0.444. The calibrations are done using
S&P500 data from 1952 to 2001.
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Figure 5: Implications of the Stambaugh (1999) Model
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Note to Figure 5.

In the top panel, we graph the drift of dividend growthdDt/Dt from the Stambaugh (1999) system given in
equation (28), where the level dividend yieldx is mean-reverting and dividend yields linearly predict stock returns
in equation (27). We use the parameter valuesκ = 0.16, θ = 0.044, α = −0.08, andβ = 4.59. If dividend
yields follow a CIR process withγ = 0.5, σ is given by(0.0132)2 = σ2θ/(2κ), while if dividend yields follow
a CEV process withγ = 1, (0.0132)2 = σ2θ2/(2κ − σ2). The middle panel plots the risk-return trade-off from
the Stambaugh system assuming that dividend growth is homoskedastic, withσ̄d = 0.07. In the bottom panel,
we follow Calvet and Fisher (2005) and assume that dividend growth is heteroskedastic with a constant mean of
µ̄d = 0.05 and plot the implied conditional volatility of dividend growth. All calibrations are done using quarterly
S&P500 data from 1935 to 1990.
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Figure 6: Implications of the Stein and Stein (1991) Model
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In the top panel, we graph the implied stock return as a function of the dividend yield implied by the Stein-Stein
(1991) model, which is the system in equation (29). In the bottom panel we plot the implied risk-return trade-off
in equation (30). To produce the plots, we use the parametersθ = 0.17, κ = 4, σ̄x = −0.3, C = 26.1, which
matches the average price-dividend ratio,µ̄d = 0.05, σ̄d = 0.07, andσdx = 0. The calibration is done using
quarterly S&P500 data from 1935 to 1990.
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Figure 7: Implications of the Heston (1993) Model
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In the top panel, we graph the implied drift of the stock return as a function of the dividend yield given by equation
(32) implied by the Heston (1993) model, which is described in equation (31). In the bottom panel, we plot the
implied risk-return trade-off given in equation (33). To produce the plots, we use the parametersθ = 0.0275,
κ = 4, σ = −0.2, andC = 28.06, which matches the average price-dividend ratio,µ̄d = 0.05, σ̄d = 0.07, and
σ̄dx = 0.
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Figure 8: Implications of the Risk-Return Trade-Off using the Heston (1993) Model

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−2

−1.5

−1

−0.5

0

0.5

1

Total Return Volatility

D
rif

t o
f D

iv
id

en
d 

G
ro

w
th

Implied Drift of Dividend Growth as a Function of Total Return Volatility

Proportional to Variance
Proportional to Volatility

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

Level Dividend Yield

D
rif

t o
f D

iv
id

en
d 

G
ro

w
th

Implied Drift of Dividend Growth as a Function of the Dividend Yield

Proportional to Variance
Proportional to Volatility

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Stochastic Volatility x

D
iv

id
en

d 
G

ro
w

th
 H

et
er

os
ke

da
st

ic
ity

Conditional Volatility of Dividend Growth

Proportional to Variance
Proportional to Volatility



Note to Figure 8

In the top panel, we graph the drift of dividend growth as a function of volatility implied by an assumption of the
risk-return trade-off and the Heston (1993) model, given in equation (34). We plot equation (34) against total return
volatility, σr(x) =

√
x + σ̄2

d, wherex is the time-varying Heston variance component of the return, assuming that
σ̄d = 0.05. In the middle panel, we plot the implied drift of dividend growth as a function of the dividend yield.
The bottom panel plots the conditional volatility of dividend growth,|σd(x)| as a function of the Heston variance,
x, assuming that the conditional mean of dividend growth is constant atµ̄d = 0.05. In all three panels, we assume
that the risk-return trade-off is proportional to volatility,µr(x) = A

√
x, or proportional to variance,µr(x) = Ax.

We produce the plots using the calibrated parametersθ = 0.0275, κ = 4, σ = −0.2, C = 28.06, σ̄dx = 0, and
A = 5.
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