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Abstract. This paper examines a new approach for credit risk optimization. The model is based on the
Conditional Value-at-Risk (CVaR) risk measure, the expected loss exceeding Value-at-Risk. CVaR is also
known as Mean Excess, Mean Shortfall, or Tail VaR. This model can simultaneously adjust all positions
in a portfolio of financial instruments in order to minimize CVaR subject to trading and return constraints.
The credit risk distribution is generated by Monte Carlo simulations and the optimization problem is solved
effectively by linear programming. The algorithm is very efficient; it can handle hundreds of instruments
and thousands of scenarios in reasonable computer time. The approach is demonstrated with a portfolio of
emerging market bonds.

1. Introduction

Risk management is a core activity in asset allocation conducted by banks, insurance
and investment companies, or any financial institution that evaluates risks. This paper
examines a new approach for minimizing portfolio credit risk. Credit risk is the risk
of a trading partner not fulfilling their obligations in full on the due date or at any
time thereafter. Losses can result both from counterparty default, and from a decline
in market value stemming from the credit quality migration of an issuer or counter-
party. Traditionally used tools for assessing and optimizing market risk assume that the
portfolio return-loss is normally distributed. With this assumption, the two statistical
measures, mean and standard deviation, can be used to balance return and risk. The
optimal portfolio is selected on the “efficient frontier”, the set of portfolios that have the
best mean-variance profile [10]. In other words, this is the set of Pareto optimal points
with two conflicting criteria: mean and variance.

Although this traditional approach has proven to be quite useful in various applica-
tions, it is inadequate for credit risk evaluations because credit losses are characterized
by a large likelihood of small earnings, coupled with a small chance of losing a large
amount of the investment. Thus the loss distributions are, in general, heavily skewed
and standard optimization tools developed for market risk are inadequate. This, together
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with the lack of historical data to estimate credit correlations, poses significant modeling
challenges, compared to market risk modeling and optimization.

To cope with skewed return-loss distributions, we consider Conditional Value-at-
Risk (CVaR) as the risk measure. This measure is also called Mean Excess Loss, Mean
Shortfall, or Tail VaR. By definition, β-CVaR is the expected loss exceeding β-Value-at-
Risk (VaR), i.e., it is the mean value of the worst (1 − β) ∗ 100% losses. For instance, at
β = 0.95, CVaR is the average of the 5% worst losses. CVaR is a currency-denominated
measure of significant undesirable changes in the value of the portfolio.

CVaR may be compared with the widely accepted VaR risk performance measure for
which various estimation techniques have been proposed, see, e.g., [7,15]. VaR answers
the question: what is the maximum loss with the confidence level β ∗100% over a given
time horizon? Thus, its calculation reveals that the loss will exceed VaR with likelihood
(1 − β) ∗ 100%, but no information is provided on the amount of the excess loss, which
may be significantly greater. Mathematically, VaR has serious limitations. In the case of
a finite number of scenarios, it is a nonsmooth, nonconvex, and multiextremum function
[11] (with respect to positions), making it difficult to control and optimize. Also, VaR
has some other undesirable properties, such as the lack of sub-additivity [1,2].

By contrast, CVaR is considered a more consistent measure of risk than VaR. CVaR
supplements the information provided by VaR and calculates the quantity of the excess
loss. Since CVaR is greater than or equal to VaR, portfolios with a low CVaR also
have a low VaR. Under quite general conditions, CVaR is a convex function with
respect to positions [17], allowing the construction of efficient optimization algorithms.
In particular, it has been shown in [17], that CVaR can be minimized using linear
programming (LP) techniques. The minimum CVaR approach [17] is based on a new
representation of the performance function that allows the simultaneous calculation of
VaR and minimization of CVaR. A simple description of the approach for minimization
of CVaR and optimization problems with CVaR constraints can be found in [21]. Since
CVaR can be minimized by LP algorithms, a large number of instruments and scenarios
can be handled. LP techniques are routinely used in financial planning applications, see,
for instance, paper [4] which applies a penalty approach to controlling risks. However,
comparing to the paper [4], we directly handle the quantile-based constraints with
a specified confidence level.

Similar measures as CVaR have been earlier introduced in the stochastic program-
ming literature, although not in financial mathematics context. The conditional expecta-
tion constraints and integrated chance constraints described in [14] may serve the same
purpose as CVaR. The reader interested in other applications of optimization techniques
in finance area can find relevant papers in [22].

In credit risk evaluations, we are interested in the losses experienced in the event of
counterparty default or credit quality migration in the course of a day, a year or other
standardized period. Several approaches are available for estimating credit risk [5,6,13,
18,19]. Probably, the most influential contribution in this field has been J.P. Morgan’s
CreditMetrics methodology [5].

Bucay and Rosen [3] conducted a case study and applied the CreditMetrics method-
ology to a portfolio of bonds issued in emerging markets. The portfolio consists of 197
bonds, issued by 86 obligors in 29 countries. Bond maturities range from a few months
to 98 years and the portfolio duration is approximately five years. The mark-to-market
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value of the portfolio is $8.8 billion. Mausser and Rosen [12] applied the regret op-
timization framework to minimize the credit risk of this portfolio. In this paper, we
analyzed the same portfolio and minimized the credit risk using the Minimum CVaR
approach. We have used the dataset of Monte Carlo scenarios generated at Algorithmics
Inc. [3,12]. Using the CreditMetrics methodology, a large number of scenarios is cal-
culated based on credit events such as defaults and credit migrations. By evaluating the
portfolio for each scenario, the loss distribution is generated. Monte Carlo simulation
tools are widely used for evaluating credit risk and other risks of portfolios containing
non-linear instruments, such as options (see, for instance, [11,17,15]).

The optimization analysis conducted for the portfolio of bonds may be briefly sum-
marized as follows. First, each single position (a position corresponds to an obligor)
is optimized. This provides the best hedge, i.e. the position that gives the minimum
CVaR when holding the other positions fixed. Then, all portfolio positions are simultan-
eously adjusted to minimize the portfolio CVaR under trading and budget constraints.
In this framework, the CVaR-return efficient frontier of the portfolios is also calculated.
As mentioned above, the minimization of CVaR automatically leads to a significant
improvement of VaR.

The remainder of this paper is organized as follows. First, we present the minimum
CVaR approach [17]. Then, following [3,12], we describe the bond portfolio. In this
section, we give a brief description of the CreditMetrics methodology used to calcu-
late the portfolio loss distribution. Then, we describe the optimization model and its
parameters. Finally, we present the analysis and concluding remarks.

2. Minimum CVaR approach

This section describes the approach to minimization of CVaR. Let f : IRn × IRm → R
be the loss function which depends upon the control vector x ∈ IRn and the random
vector y ∈ IRm . We use bold face for the vectors to distinguish them from scalars. We
consider that the random vector y has the probability distribution function p : IRm → IR .
However, the existence of the density is not critical for the considered approach, this
assumption can be relaxed. Denote by �(x, a) the probability function

�(x, α) =
∫

f(x,y)≤ α

p(y) dy , (1)

which, by definition, is the probability that the loss function f(x, y) does not exceed
some threshold value α. The VaR (or percentile) function α(x, β) is defined as follows

α(x, β) = min{α ∈ IR : �(x, α) ≥ β} . (2)

Let us consider the following CVaR performance function �(x) which is the conditional
expected value of the loss f(x, y) under the condition that it exceeds the quantile α(x, β),
i.e.,

�(x) = (1 − β)−1
∫

f(x,y)≥ α(x,β)

f(x, y) p(y) dy . (3)
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The decision vector x belongs to the feasible set X ⊂ IRn . It was shown in [17] that
the minimization of the excess loss function �(x) on the feasible set X ⊂ IRn can be
reduced to the minimization of the function

Fβ(x, α) = α + (1 − β)−1
∫

y∈IRm

( f(x, y) − α)+ p(y) dy , (4)

on the set X × IR , where b+ is the positive part of the number b, i.e., b+ = max{0, b}.
The following equality is valid

min
α∈IR

Fβ(x, α) = �(x) ,

and the optimal solution α of this problem is VaR. This follows from the fact that the
derivative of the function Fβ(x, α) with respect to α equals 1 + (1 −β)−1(�(x, α)− 1).
Equating this derivative to zero gives (see details in [17])

�(x, α) = β .

Consequently,

min
x∈X,α∈IR

Fβ(x, α) = min
x∈X

min
α∈IR

Fβ(x, α) = min
x∈X

Fβ(x, α(x, β)) = min
x∈X

�(x) .

Thus, by minimizing the function Fβ(x, α) we can simultaneously find the VaR and
optimal CVaR. Under general conditions, the function Fβ(x, α) is smooth [20] (key
conditions: the density p(y) and the loss function f(x, y) are smooth and the gradient
of the function f(x, y) with respect to y is not equal zero).

The function Fβ(x, α), given by equation (4), is convex inα (discussions of properties
of convex functions can be found, for instance, in [16,9]). Fβ(x, α) is convex in x, if the
function f(x, y) is convex in x . We can use various approaches to calculate the integral
function Fβ(x, α). If the integral in (4) can be calculated or approximated analytically,
then we can use nonlinear programming techniques to optimize the function Fβ(x, α).
In this paper, we approximate (4) using scenarios y j , j = 1, . . . , J , which are sampled
from the density function p(y), i.e.,

∫

y∈IRm

( f(x, y) − α)+
p(y) dy ≈ J−1

J∑
j=1

( f(x, y j) − α)+
.

If the loss function f(x, y j) is convex, and the feasible set X is convex, we can solve the
convex optimization problem

min
x∈X,α∈IR

F̃β(x, α) , (5)

where

F̃β(x, α)
def= α + ν

J∑
j=1

( f(x, y j) − α)+
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and the constant ν equals ν = ((1 − β)J )−1 . By solving the (5) we find the optimal
vector, x∗, corresponding VaR, which equals α∗, and the optimal CVaR, which equals
F̃β(x∗, α∗). Moreover, if the loss function f(x, y j) is linear in x, and the set X is given by
linear equalities and inequalities, we can reduce optimization problem (5) to the linear
programming problem

min
x∈IRn ,z∈IRJ ,α∈IR

α + ν

J∑
j=1

z j (6)

s.t. x ∈ X , (7)

z j ≥ f(x, y j) − α , z j ≥ 0 , j = 1, . . . , J, (8)

where z j , j = 1, . . . , J are dummy variables.

3. The bond portfolio

Bucay and Rosen [3] applied the CreditMetrics [5] methodology to a portfolio of
corporate and sovereign bonds issued in emerging markets. They estimated the credit
risk of this portfolio taking into account both defaults and credit migrations. Mausser
and Rosen [12] conducted scenario optimization of this portfolio with the expected
regret performance function. Compared to other academic and industrial studies, they
optimized portfolio credit risk rather than just measuring credit risk. Below, following the
papers [3,12] we give a brief overview of the portfolio, the CreditMetrics methodology,
and the most important portfolio statistics. Further, in this paper, we apply the CVaR
optimization framework to the same portfolio and compare the results with [12].

3.1. Portfolio description

This test portfolio has been compiled by a group of financial institutions to asses the
state-of-the-art of portfolio credit risk models. The portfolio consists of 197 emerging
markets bonds, issued by 86 obligors in 29 countries. The date of the analysis is
October 13, 1998 and the mark-to-market value of the portfolio is $8.8 billion. The
portfolio mark-to-market value is simply a market based valuation of all the instruments
in the portfolio. In the case of a single bond, the mark-to-market value is the sum
of the discounted future cash flows obtained from a present value calculation. Most
instruments are denominated in US dollars but 11 fixed rate bonds are denominated in
seven other currencies; DEM, GBP, ITL, JPY, TRL, XEU, and ZAR1. Bond maturities
range from a few months to 98 years and the portfolio duration is approximately five
years.

1 DEM – German Deutschemark, GBP – British Pound, ITL – Italian Lira, JPY – Japanese Yen, TRL –
Turkish Lira, XEU – Euro, ZAR – South African Rand
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3.2. CreditMetrics

CreditMetrics is a tool for assessing portfolio risks due to defaults and changes in the
obligors’ credit quality such as upgrades and downgrades in credit ratings. In this case
study, we considered eight credit rating categories (including default). The modeling
time horizon is one year. The first step in the CreditMetrics methodology establishes
the likelihood of migrations between any possible credit quality states during the risk
horizon for each individual obligor. The credit migration probabilities were obtained
from Standard & Poor’s transition matrix as of July 1998. This historically tabulated
transition matrix is typically obtained by looking at time series of credit ratings of many
firms. In order to get some desirable properties one wants a transition matrix to have an
appropriate long-term behavior; this transition matrix can be adjusted somewhat to better
approximate the long-term behavior as of a Markov Process. Then, the value of each
obligor, i.e. the exposures, were calculated using the forward rates implied by today’s
term structure in each of the seven non-default states. In case of default, the value of each
obligor is based on the appropriate recovery rate. The recovery rates are assumed to be
constant and equal to 30% of the risk-free value for all obligors except two, which have
lower rates. The one-year portfolio credit loss distribution is generated by the Monte
Carlo simulation (20,000 scenarios of joint credit states of obligors and related losses).
The sensitivity study with respect to the number of scenarios indicated that 20,000
scenarios scenarios is sufficient to estimate VaR and CVaR with sufficient precision.
Joint default and migration correlations are driven by the correlations of the asset values
of the obligors. Since the asset values are not observable, equity correlations of traded
firms are used as a proxy for the asset correlations. More specifically, CreditMetrics
maps each obligor to a country, region, or sector index that is more likely to affect its
performance, and to a risk component that captures the firm-specific volatility. In each
scenario, the portfolio mark-to-future value is obtained by summing up the exposures
corresponding to this scenario. The valuation of a bond is derived from the zero-curve
corresponding to the rating of the obligor. The mark-to-future value of the bond, or the
forward price of the bond in one year from now, is derived by applying the zero-curve
to the residual cash flows from year one to maturity. The credit loss distribution is then
calculated by subtracting the portfolio mark-to-future values in each credit scenario
from the mark-to-future value of the portfolio if no credit migration occurs. Figure 1
illustrates the portfolio loss distribution; it is skewed and has a long fat right tail. Some
statistics from the one-year credit loss distribution are presented in Tables 1 and 2.
Table 1 gives the portfolio expected loss which is the mean of the loss distribution and
the standard deviation which measures the dispersion around the mean. Table 2 gives
the VaR and CVaR of the loss distribution at different confidence levels. We examined
the contribution of each individual asset to the risk of the portfolio. For a given obligor,
we defined the risk contribution (for each risk measure) as the difference between the

Table 1. Mean and Standard Deviation for One-Year Loss Distribution

Expected loss 95
Standard deviation 232
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Fig. 1. One Year Credit Loss Distribution (millions of US-D)

risk for the entire portfolio and the risk of the portfolio without the given obligor. We
expressed this contribution to the risk in percentage terms as the percentage decreases
in the corresponding risk measure when the obligor is removed from the portfolio.
Table 3 summarizes the contributions of the top risk obligors to the portfolio mark-to-
market value, expected loss, standard deviation, VaR, and CVaR (prioritized according
to CVaR contribution). This table provides the portfolio “Hot Spots”: twelve obligors
that contribute most to the CVaR of the portfolio. Table 3 shows that the dominant risk
contributors are bonds from Brazil, Russia, Venezuela, Argentina, Peru, and Colombia.
To visualize these outputs, we plot the marginal risk (marginal CVaR as percentage of the
market value) versus the market value (exposure) of each asset in Fig. 2. The product
of the marginal risk and exposure approximately equals the risk contribution (e.g.,
Venezuela’s marginal risk equals 40% and the exposure equals $398 millions US-D,
see Table 3, therefore, Venezuela CVaR contribution approximately equals 12% of the
portfolio CVaR which is $1,320 millions of US-D, see Table 2). Points in the upper left
part of the graph represent obligors with high marginal risk but whose exposure size is
small. Points in the lower right corner represent large exposures with low marginal risk.
To reduce the portfolio risk, a risk manager must suppress these dominant contributors,
that is, suppress obligors with large exposures and high marginal risk. From Fig. 2, it
is apparent that Brazil, Russia, and Venezuela have high marginal risks and also large

Table 2. VaR and CVaR for One-Year Loss Distribution in millions of US-D

β VaR CVaR

0.90 341 621
0.95 518 824
0.99 1,026 1,320
0.999 1,782 1,998
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Table 3. Mark-to-Market Value (in millions of US-D), Expected Loss (µ), Standard Deviation (σ), VaR,
CVaR. Values are expressed as the percentage decrease for the One-Year Loss Distribution (β = 0.99)

Obligor Mark-to-market µ (%) σ (%) VaR (%) CVaR (%)

Brazil 880 14.5 17.1 20.4 19.4
Russia 756 9.8 12.2 14.3 15.4
Venezuela 398 6.2 14.1 12.4 12
Argentina 624 9.9 9.3 10.6 8.8
Peru 283 10.3 9.0 8.4 7.5
Colombia 605 2.3 3.0 3.3 4.0
Morocco 124 1.6 1.4 1.0 1.6
RussiaIan 48 1.3 2.5 2.0 1.5
MoscowTel 86 0.6 0.8 1.0 1.2
Romania 87 0.8 0.9 0.3 1.2
Mexico 488 9.2 2.0 1.8 0.9
Philippines 448 6.7 1.2 0.4 0.5
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Fig. 2. Dominant Contributors to CVaR (Marginal Risk versus Credit Exposure, β = 0.99)

exposures. TeveCap, Rossiysky and RussianIan on the other hand have high marginal
risk but small exposures. This concludes the portfolio description.

4. Optimization model

4.1. Problem statement

We consider an optimization model similar to [11], however, instead of minimizing
a regret function we minimize the CVaR. Let x = (x1, ..., xn) be obligor weights
(positions) expressed as multiples of current holdings, b = (b1, ..., bn) be future values
of each instrument with no credit migration (benchmark scenario), and y = (y1, ..., yn)
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be the future (scenario-dependent) values with credit migration. The loss due to credit
migration for the portfolio equals

f(x, y) = (b − y)T x .

The CVaR optimization problem is

min
x∈X⊂IRn

�(x) , (9)

where X is the feasible set in IRn . This set is defined in the following section (mean return
constraint, box constraints on the positions of instruments, etc.). We approximated the
performance function using scenarios y j , j = 1, . . . , J , which are sampled from the
density function p(y). Minimization of the CVaR function �(x) can be reduced to the
following linear programming problem

min
x∈IRn ,z∈IRJ ,α∈IR

φ(z, α) = α + ν

J∑
j=1

z j (10)

s.t. x ∈ X , (11)

z j ≥ f(x, y j) − α , z j ≥ 0 , j = 1, . . . , J , (12)

where ν = ((1 − β)J )−1. If (x∗, α∗, z∗) is an optimal solution of the optimization
problem (10), then x∗ is the optimal solution of the CVaR optimization problem (9), the
function φ(z∗, α∗) equals the optimal CVaR, and α∗ is VaR at the optimal point. Thus, by
solving problem (10) we can simultaneously find approximations of the optimal CVaR
and the corresponding VaR.

4.2. Constraints

In order to avoid unrealistic long or short positions in any of the holdings, we imposed
the following constraints on the change in obligor weights

li ≤ xi ≤ ui i = 1, ..., n ,

where li is the lower trading limit and ui is the upper trading limit (both expressed as
multiples of current weighting). Further, we have a constraint that maintains the current
value of the portfolio

n∑
i=1

qi xi =
n∑

i=1

qi ,

where q = (q1, ..., qn) are the current mark-to-market counterparty values. Alterna-
tively, similar to the current value constraint, we can maintain the future portfolio value

n∑
i=1

bi xi =
n∑

i=1

bi .

Finally, in order to achieve an expected portfolio return R, and to calculate the efficient
frontier for the portfolio, we can include the constraint for the expected portfolio return
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with no credit migration as
∑n

i=1(qi xi)ri∑n
i=1 qi xi

≥ R ,

or equivalently as

n∑
i=1

qi(ri − R)xi ≥ 0 ,

where ri is the expected return for obligor i in the absence of credit migration. When
calculating the efficient frontier for the portfolio, we also used the following additional
constraints

xiqi ≤ 0.20
n∑

i=1

qi, i = 1, ..., n ,

which imply that the value of each long individual position cannot exceed 20% of the
current portfolio value.

4.3. Optimization problem

Combining the performance function and the constraints defined in the two previous
sections yields the following linear programming problem

min φ(z, α) = α + ν

J∑
j=1

z j , (13)

s.t. z j ≥
n∑

i=1

((bi − y ji)xi) − α, j = 1, ..., J , (14)

z j ≥ 0, j = 1, ..., J , (15)

li ≤ xi ≤ ui, i = 1, ..., n , (16)
n∑

i=1

qi xi =
n∑

i=1

qi , or
n∑

i=1

bi xi =
n∑

i=1

bi , (17)

n∑
i=1

qi(ri − R)xi ≥ 0 , (18)

xiqi ≤ 0.20
n∑

i=1

qi , i = 1, ..., n . (19)

Solving (13)–(17) yields the optimal vector x∗, corresponding VaR, which equals α∗,
and the optimal CVaR, which equals φ(z∗, α∗). Solving (13)–(19) for different portfolio
returns R yields the efficient frontier of the portfolio.
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Table 4. “Best Hedge report”, VaR, CVaR (in millions of US-D) and corresponding VaR and CVaR reductions
(in %) for the Single Obligor Optimization (β = 0.99)

Obligor Best Hedge VaR VaR (%) CVaR CVaR (%)

Brazil −5.72 612 40 767 42
Russia −9.55 667 35 863 35
Venezuela −4.29 683 33 880 33
Argentina −10.30 751 27 990 25
Peru −7.35 740 28 980 26
Colombia −45.07 808 21 1,040 21
Morocco −88.29 792 23 1,035 22
RussiaIan −21.25 777 24 989 25
MoscowTel −610.14 727 29 941 29
Romania −294.23 724 29 937 29
Mexico −3.75 998 3 1,292 2
Philippines −3.24 1,015 1 1,309 1

5. Analysis

5.1. Optimal hedging

As the first step to re-balancing of the portfolio, we changed the position of a single
obligor, holding the other positions fixed. We minimized the portfolio credit risk, i.e.
minimized CVaR, and obtained the size of the optimal contract. This is accomplished
by conducting a one-instrument optimization of the model (13)–(15). The results of this
optimization are presented in Table 4 for the twelve largest contributors to the risk, in
terms of CVaR contribution. Table 4 shows that we can achieve the 40% reduction in
VaR and the 42% reduction in CVaR if Brazil is given a weight of −5.72, i.e. going
short about 6 times the current holdings. Thus, CVaR can reduced to $767 million from
the original $1320 million. Similar conclusions can be reached about other obligors in
Table 4.

Mausser and Rosen [12] conducted optimal hedging for this problem using the one-
dimension VaR minimization. The optimal hedges obtained with our approach (see,
Table 4) are very close to the hedges obtained in [12]. For instance, with our approach
the best hedge for Brazil is −5.72 (VaR reduction is 40%) and with the minimum
VaR approach [12] the best hedge is −5.02 (VaR reduction is 41%). Similar, for Russia,
Venezuela, and Argentina we have −9.55 (VaR reduction is 35%),−4.29 (VaR reduction
is 33%) and −10.33 (VaR reduction is 27%). For the same obligors paper [12] gives
the following optimal hedges: −8.71 (VaR reduction is 35%), −3.32 (VaR reduction is
34%) and −7.81 (VaR reduction is 28%). Similar results hold for other risk dominant
obligors in Table 4. For this example, the minimum CVaR hedge is always bigger that
the minimum VaR hedge. From these numerical results, we can conclude that the one-
dimensional minimization of VaR and CVaR virtually produces the same result (from
a practical point of view). We have a similar conclusion for a portfolio of options when
we compared the best hedges with the minimum VaR approach [11] and the best hedges
with the minimum CVaR approach [17].
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Table 5. VaR, CVaR (in millions of US-D) and corresponding VaR and CVaR reductions (in %) for the
Multiple Obligor Optimization

Case β VaR VaR (%) CVaR CVaR (%)

Original 0.900 340 – 621 –
0.950 518 – 824 –
0.990 1,026 – 1,320 –
0.999 1,782 – 1,998 –

No Short 0.900 163 52 279 55
0.950 239 54 359 56
0.990 451 56 559 58
0.999 699 61 761 62

Long 0.900 149 56 264 58
and 0.950 226 56 344 58
Short 0.990 433 58 542 59

0.999 680 62 744 63

5.2. Minimization of CVaR

Further, we optimized all positions and solved the linear programming problem (13)–
(17). In order to avoid unrealistically long or short positions in any obligor, the size of
each position is bounded, see equation (16). We considered two cases:

– no short positions allowed, and the positions can be at most doubled in size;
– positions, both long and short, can be at most doubled in size.

The first case means that li = 0 and ui = 2 in constraint (16), i.e.

0 ≤ xi ≤ 2 .

And the second case implies that

−2 ≤ xi ≤ 2.

We supposed that the re-balanced portfolio should maintain the future expected value,
in absence of any credit migration, i.e. we included the second constraint (17). The
result of this optimization, in the case of no short positions (No Short), and in the case
of both long and short positions (Long and Short), are presented in Table 5. Further, we
compared the risk profiles of the original and optimized portfolio. Table 5 shows that
the two risk measures, VaR and CVaR, are significantly improved by the optimization.
When no short positions are allowed, we reduced VaR and CVaR by about 60%. For
example, at β = 0.99, we lowered CVaR to 559 million from the original 1320 million
US-D. By allowing both short and long positions, we slightly improved reductions, but
not significantly. Thus, we observe that we can reduce risk measures about 40% with
the single obligor optimization and about 60% with the multiple obligor optimization.
Table 6 compares expected loss and standard deviation of the original and optimized
portfolios. Table 6 shows that the two risk measures, the expected loss and the standard
deviation, also are dramatically improved when we minimized CVaR. For example,
in the case of both long and short positions, the expected loss and standard deviation
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Table 6. Expected Loss (in millions of US-D), Standard Deviation (in millions of US-D) and corresponding
reductions (in %) for the Multiple Obligor Optimization

Case β Expected loss (%) Standard deviation (%)

Original – 95 – 232 –

No Short 0.90 50 47 107 54
0.95 51 46 109 53
0.99 60 37 120 48
0.999 63 34 126 46

Long 0.90 42 56 105 55
and 0.95 44 54 107 54
Short 0.99 53 44 118 49

0.999 58 39 124 47

Table 7. Positions (expressed as multiples of original holdings) for the Multiple Obligor Optimization
(Minimization of CVaR with β = 0.99)

Obligor Original No Short Short and Long

Brazil 1 0.08 0.18
Russia 1 0 0.09
Venezuela 1 0 −0.41
Argentina 1 0.35 0.47
Peru 1 0 −0.38
Colombia 1 0.89 1.00
Morocco 1 0.02 0.12
RussiaIan 1 0 −2.00
MoscowTel 1 1.52 1.99
Romania 1 0.45 1.33
Mexico 1 0.94 0.90
Philippines 1 1.04 0.94

are reduced about 50%. The corresponding position weights for the original twelve
largest risk contributors are presented in Table 7. Table 7 shows that the positions of
the largest risk contributors, Brazil, Russia, Argentina, and Colombia, were reduced
or removed from the portfolio. Table 8 summarizes the contribution of the obligors to
the portfolio mark-to-market value, expected loss, standard deviation, VaR and CVaR
after the optimization. This table can be compared with Table 3 which describes the
risk contributors before the optimization. From Table 8, we can conclude that the risk
after the optimization is more spread out and not so concentrated on few obligors. The
largest risk contributors with respect to CVaR are Colombia and Poland. Figure 3
illustrates the dominant risk contributors of the optimized portfolio. This figure can
be compared with Fig. 2, which shows dominant risk contributors for the original
portfolio. The risk outliers in the original portfolio, Brazil, Russia and Venezuela, are no
longer dominant in the optimized portfolio. The optimal portfolio reduces the marginal
risk contributors. For example, the highest marginal risk contribution in the portfolio
is reduced to about 7% (Colombia) from the original 45% (TeveCap). The largest
risk contributors in the optimized portfolio are now Colombia and Poland, but with
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Table 8. Mark-to-Market Value (in millions of US-D), Expected Loss (µ), Standard Deviation (σ), VaR,
CVaR. Values are expressed as the percentage decrease in Risk Measure for the Optimal Portfolio (No Short
Positions, β = 0.99)

Obligor Mark-to-Market µ (%) σ (%) VaR (%) CVaR (%)

Colombia 538 3.2 3.2 1.9 6.7
Poland 683 8.2 4.1 5.2 4.9
Mexico 459 13.7 7.0 5.0 4.2
Philippines 466 11.0 4.8 4.6 3.6
China 556 3.7 2.4 3.6 3.3
Bulgaria 315 0.5 11.0 3.6 3.3
Argentina 218 5.5 3.2 3.4 3.0
Kazakhstan 329 4.6 1.4 2.5 2.9
Jordan 263 9.3 2.7 1.8 2.2
Croatia 301 1.7 1.3 1.9 2.1
Israel 675 1.5 0.5 0.4 1.4
Brazil 70 1.8 1.1 0.3 1.3
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Fig. 3. Dominant Contributors to CVaR for the Optimized Portfolio when no Short Positions are allowed
(Marginal Risk versus Credit Exposure, β = 0.99)

much smaller marginal risks than the largest contributors in the original portfolio. We
compared our calculations with the minimum expected regret approach [12]. With the
minimum expected regret approach, the risk is defined as an average loss exceeding
some specified in advance threshold (unacceptable loss). Table 9 reproduced from [12]
shows calculation results with the minimum expected regret approach for No Short case
with β = 0.990 and β = 0.999. It appears that with the minimum expected regret
approach, by doing sensitivity analysis with respect to the regret threshold, it is possible
to achieve similar reductions in VaR and CVaR as with CVaR minimization approach
(see, Table 5, lines 8 and 9). However, with respect to CVaR value, our approach always
outperformed the minimum expected regret approach. Also, in nine out of ten runs
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Table 9. Calculation results with the Minimum Expected Regret Approach reproduced from [12], Regret
Threshold, VaR, CVaR (in millions of US-D) and corresponding VaR and CVaR reductions (in %) for the
Multiple Obligor Optimization, No Shorts

Case Regret Threshold VaR VaR (%) CVaR CVaR (%)

No Short, β = 0.990 0 495 52 727 45
250 408 60 598 55
500 461 55 561 57
750 511 50 604 54
1,000 650 37 735 44

No Short, β = 0.999 0 1,074 40 1,370 31
250 999 44 1,152 42
500 696 61 791 60
750 750 58 772 61
1,000 876 51 931 53

presented in Table 9, our approach outperformed or gave the same reduction in VaR
(except one case where there was a few percent underperformance) as the minimum
expected regret approach. Moreover, our approach conducted calculations in “one shot”
(without sensitivity analysis with respect to the threshold value).

5.3. Risk-Return

When optimizing CVaR, we focused only on credit risk reductions without considering
the expected portfolio return. In order to achieve the desired portfolio return and to
observe the Risk-Return trade offs, we calculated the efficient frontier of the portfolio.
We included in the model the following constraints:

– constraints (14) and (15) for dummy variables;
– no short positions are allowed, constraint (16) with li = 0 and ui = ∞ , i = 1, ..., n;
– the current mark-to-market value must be maintained, the first constraint in (17);
– the return constraint (18) with various values of return R;
– the long position of an individual counterparty cannot exceed 20% of the current

portfolio value, constraint (19).

First, we considered that β = 0.99. We assumed that the expected returns for each
obligor are given by the one-year forward returns of their holdings, assuming no credit
migration. Figure 4 shows the efficient frontier for the portfolio and the relative position
of the original portfolio which has an expected portfolio return 7.26%. We can see from
this figure that the original portfolio is inefficient. More specifically, we can achieve the
same expected portfolio return 7.26%, but with only one fourth of the risk of the original
portfolio. It is interesting to compare the risk profile of the original portfolio (expected
return 7.26%), with the optimal portfolio having the same return. Table 10 demonstrates
that the optimization reduces all risk measures. In the optimal portfolio, we reduced
the expected loss by almost 100%, standard deviation by 34%, VaR and CVaR by
80%. Finally, Table 11 shows the position weights for the 12 largest instruments in the
portfolio after the Risk-Return optimization with the expected portfolio return 7.62%.
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Fig. 4. Efficient Frontier (β = 0.99)

Table 10. Expected Loss (µ), Standard Deviation (σ), VaR, CVaR (in millions US-D) and corresponding
reductions (in %) for the Risk-Return Optimization with the Expected Portfolio Return 7.26% (β = 0.99)

Case µ µ(%) σ σ (%) VaR VaR (%) CVaR CVaR (%)

Original 95 – 232 – 1026 – 1320 –
Optimized 0.005 100 152 34 210 80 263 80

The improvements in the risk measures stem from the relaxing of the trading constraints.
For instance, the largest individual position change is in ThailandAAA, of approximately
150 times the original position. Such dramatical change may be infeasible and constraints
on the position change may need to be imposed. Conducting the Risk-Return analysis,
we followed the setup of the [12] but with different performance function. As the risk
measure we used CVaR and the paper [12] used the Expected Regret. It is difficult to
compare the efficient frontiers for different performance functions. However, we see
that the portfolio with the expected return 7.62% on the efficient CVaR-Return frontier
obtained with our approach outperforms in CVaR and VaR the portfolio on the Minimum
Expected Regret frontier. This is not surprising, because, we minimized CVaR rather
than Expected Regret. Also, we conducted, the Risk-Return analysis for the model with
the confidence levels β = 0.95 and β = 0.90. The findings for these confidence levels
are similar to the ones with β = 0.99. Here, we present only graphs of efficient frontiers
with β = 0.95 (Fig. 5) and β = 0.90 (Fig. 6).

6. Calculation time and iterations

Although the considered Credit Risk optimization problem is modeled with a large
number of scenarios, we easily solved it using linear programming techniques. Table 12
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Table 11. Positions (expressed as multiples of original holdings) for the Risk-Return Optimization with the
Expected Return 7.26% (β = 0.99)

Obligor Original Position Optimized Position

ThailandAAA 1 148.74
TelekomMalaysia 1 28.61
TelChile 1 24.64
Malayanbanking 1 21.81
MalysiaPetrol 1 20.41
ChileVapores 1 19.58
TeleComarg 1 17.23
Metrogas 1 17.18
IndFinCorp 1 15.20
KoreaElectric 1 11.07
Vietnam 1 10.73
Lithuania 1 10.72
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Fig. 5. Efficient Frontier (β = 0.95)

presents the average times and number of iterations using the CPLEX solver in GAMS
on the Sun Ultra 1 140 MHz processor. This table presents the solving times in the case
of single obligor optimization (Single), multiple obligor optimization (No Short and
Long and Short), and Risk-Return analysis (Risk-Return).

7. Conclusions

We conducted a case study on optimization of Credit Risk of the portfolio of bonds.
While we considered a specific bond portfolio, the CVaR model extends naturally to
securities and trading constraints of more general nature. Using the CVaR optimiza-
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Table 12. Number of iterations and solving time with CPLEX Solver on the Sun Ultra 1 140 MHz processor
(β = 0.99)

Case Iterations Time (min)

Single 39000 2.2
No Short 23000 20
Long and Short 29000 37
Risk-Return 42000 44.5

tion framework we simultaneously adjusted two closely related risk measures: CVaR
and VaR. Although we used CVaR as a performance function, the optimization leads
to reductions of all risk measures considered in this paper: CVaR, VaR, the expected
loss, and the standard deviation. From a bank perspective, this approach looks quite
attractive. The bank should have reserves to cover expected loss and capital to cover
unexpected loss. For the considered portfolio, the expected and unexpected loss are
95 and 931 million US-D (unexpected loss is the maximum loss at some quantile,
i.e. VaR, minus the expected loss). We have managed to reduce the expected loss by
almost 100%, the unexpected loss about 80%, and still achieved the same expected
portfolio return. Our results are quite similar to the results obtained with the Mini-
mum Expected Regret Approach [11]. However, unlike the Minimum Expected Regret
Approach we do not need to conduct sensitivity studies with respect to the regret
threshold. The Minimum CVaR approach automatically finds the threshold (i.e., VaR)
corresponding to a specified confidence level β. Our approach relies on linear program-
ming techniques which allows one to cope with large portfolios and large numbers of
scenarios.
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