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                                                   ABSTRACT 
 
 

The Tiny Encryption Algorithm (TEA) is a cryptographic algorithm designed to  
 
minimize memory footprint and maximize speed. It is a Feistel type cipher that uses  
 
operations from mixed (orthogonal) algebraic groups. This research presents the  
 
cryptanalysis of the Tiny Encryption Algorithm. In this research we inspected the most  
 
common methods in the cryptanalysis of a block cipher algorithm. TEA seems to be  
 
highly resistant to differential cryptanalysis, and achieves complete diffusion (where a  
 
one bit difference in the plaintext will cause approximately 32 bit differences in the  
 
cipher text) after only six rounds. Time performance on a modern desktop computer or  
 
workstation is very impressive. 
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CHAPTER 1 
 
                                                 

INTRODUCTION 
 
 
1.1 Motivation 
 
As computer systems become more pervasive and complex, security is increasingly  
 
important. Cryptographic algorithms and protocols constitute the central component of  
 
systems that protect network transmissions and store data. The security of such systems  
 
greatly depends on the methods used to manage, establish, and distribute the keys  
 
employed by the cryptographic techniques. Even if a cryptographic algorithm is ideal  
 
in both theory and implementation, the strength of the algorithm will be rendered useless  
 
if the relevant keys are poorly managed.  
 
 
1.2 State of the art 
 
Cryptography is the art and science behind the principles, means, and methods for  
 
keeping messages secure. Cryptanalysis is a study of how to compromise (defeat)  
 
cryptographic mechanism. There are two classes of key-based encryption algorithms: 
 
symmetric (or secret-key)  and asymmetric (or public-key) algorithms. Symmetric  
 
algorithms use the same key for encryption and decryption, whereas asymmetric  
 
algorithms use different keys for encryption and decryption. Ideally it is infeasible to  
 
compute the decryption key from the encryption key. 
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Symmetric algorithms can be divided into stream ciphers and block ciphers. Stream  
 
ciphers encrypt a single bit of plain text at a time, whereas block ciphers take a number of  
 
bits (say 64 bits), and encrypt them as a single unit.  Symmetric encryption is the  
 
backbone of many secure communication systems. Dozens of symmetric algorithms have  
 
been invented and implemented, both in hardware and software. 
 
 
1.3 Preliminaries 
 
 The following notation is necessary for our discussion. 
 

• Hexadecimal numbers will be subscripted with “h,” e.g., 10  = 16. h
 
 
Bitwise Shifts: The logical shift of x by y bits is denoted by x << y. The logical right  
 
shift of x by y bits is denoted by x >> y. 
 
 
Bitwise Rotations: A left rotation of x by y bits is denoted by x <<< y. A right rotation  
 
of x by y bits is denoted by x >>> y. 
 
 
Exclusive-OR: The operation of addition of n-tuples over the field  (also known as  2F
 
exclusive-or) is denoted by  x⊕ y.  
 
 
Integer Addition: The operation of integer addition modulo   is denoted by x 2n  y. 
 
(where x, y ∈ ). The value of n should be clear from the context.  2nZ
 
 
Integer Subtraction: The operation of integer subtraction modulo  is denoted by  2n

 
x  y (where x, y ∈  ). The value of n should be clear from the context. 2nZ
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Feistel ciphers (see Feistel, 1973) are a special class of iterated block ciphers where the  
 
cipher text is calculated from the plain text by repeated application of the same  
 
transformation or round function. In a Feistel cipher, the text being encrypted is split into  
 
two halves. The round function, F, is applied to one half using a sub key and the output of   
 
F is (exclusive-or-ed (XORed)) with the other half. The two halves are then swapped.  
 
Each round follows the same pattern except for the last round where there is often no  
 
swap. The focus of this thesis is the TEA Feistel Cipher. 
 
 
1.4 Research Study 
 
The Tiny Encryption Algorithm (TEA) is a cryptographic algorithm designed by  
 
Wheeler and Needham (1994). It is designed to minimize memory footprint and  
 
maximize speed. This research presents the cryptanalysis of the Tiny Encryption  
 
Algorithm based on the differential cryptanalysis proposed by Biham and Shamir (1992) 
 
and related-key cryptanalysis proposed by Kelsey, Schneier, and Wagner (1997). 
 
 
1.5 Organization of the Thesis 
 
The body of the thesis is organized as follows.    
 
          Chapter 2 provides the necessary background and foundation by reviewing  
 
the Tiny Encryption Algorithm developed by the inventors, and the weaknesses pointed  
 
out by Wagner and extensions made by the inventors. 
 
         Chapter 3 introduces the theoretical framework of cryptanalysis for the Tiny 
 
Encryption Algorithm by presenting the common attacks involved in the cryptanalysis of   
 
Block cipher. It also presents the results of this research. 
 
        Chapter 4 presents conclusions and describes possible directions for future work. 
       

  



 
 
 
 
 

CHAPTER 2 
 

MOTIVATION FOR RESEARCH 
 

 
2.1 Background 
 
Many symmetric block ciphers have been presented in recent years. The Tiny Encryption  
 
Algorithm (TEA) (Wheeler et al., 1994) is a compromise for safety, ease of  
 
implementation, lack of specialized tables, and reasonable performance. TEA can replace  
 

1DES  in software, and is short enough to integrate into almost any program on any  
 
computer. Some attempts have been made to find weakness of the Tiny Encryption  
 
Algorithm. The motivation of this research is to study and implement the proposed  
 
attacks on TEA to determine whether such attempts are practically feasible.  
 
 
2.2 Tiny Encryption Algorithm  
 
The Tiny Encryption Algorithm is a Feistel type cipher (Feistel, 1973) that uses  
 
operations from mixed (orthogonal) algebraic groups. A dual shift causes all bits of the  
 
data and key to be mixed repeatedly. The key schedule algorithm is simple; the 128-bit  
 
key K is split into four 32-bit blocks K = ( K[0], K[1], K[2], K[3]). TEA seems to be  
 
highly resistant to differential cryptanalysis (Biham et al., 1992) and achieves complete  
 
diffusion (where a one bit difference in the plaintext will cause approximately 32 bit  
 
differences in the cipher text). Time performance on a workstation is very impressive. 
_____________________________________________________________________ 
1

DES (Data Encryption Standard), is an encryption algorithm which has been the world wide standard for 20 years. For a full  
   description, see [6]  
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2.3 Technique Developed by Inventors 
 
Wheeler et al. (1994) at the computer laboratory of Cambridge University developed the  
 
TEA encode routine. Figure 2.1 presents the TEA encode routine in C language where  
 
the key value is stored in k[0] – k[2] and data are stored in v[0] – v[1]. 
 
 
2.3.1 Encryption Routine 
 
 
 
 void code(long* v, long* k)  {               
 unsigned long y = v[0], z = v[1], sum = 0, /* set up */ 
 delta = 0x9e3779b9, n = 32 ;  /* a key schedule constant */ 
 while (n-->0) {         /* basic cycle start */ 
   sum += delta ; 
     y +=  (z<<4)+k[0] ^ z+sum ^ (z>>5)+k[1] ; 
   z +=  (y<<4)+k[2] ^ y+sum ^ (y>>5)+k[3] ;  /* end cycle */ 
                      }  

    v[0] = y ; v[1] = z ; } 
 
 
                                Figure 2.1.    Encode routine. 
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            Figure 2.2. The abstract structure of TEA encryption routine. 
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Figure 2.2 shows the structure of the TEA encryption routine. The inputs to the  
 
encryption algorithm are a plaintext block and a key K .The plaintext is P = (Left[0],  
 
Right[0]) and the cipher text is C = (Left[64], Right[64]). The plaintext block is split into  
 
two halves, Left[0] and Right[0]. Each half is used to encrypt the other half over 64  
 
rounds of processing and then combine to produce the cipher text block.  
 

• Each round i has inputs Left[i-1] and Right[i-1], derived from the previous round,  
 
       as well as a sub key K[i] derived from the 128 bit overall K.  
 
• The sub keys K[i] are different from K and from each other.  
                                            
• The constant delta = 31( 5 1)*2-  = , is derived from the golden  h9E3779B9

      number ratio to ensure that the sub keys are distinct and its precise value has no  

      cryptographic significance.  

• The round function differs slightly from a classical Fiestel cipher structure in that  
  
      integer addition modulo 2³² is used instead of exclusive-or as the combining  
 
      operator. 
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                    Figure 2.3.  An abstraction of i-th cycle of TEA. 
 
 
 
 
 

  



 9

Figure 2.3 presents the internal details of the ith cycle of TEA. The round function, 
 
F, consists of the key addition, bitwise XOR and left and right shift operation. We can  
 
describe the output (Left[i +1] , Right[i +1] ) of the ith cycle of TEA with the input  
 
(Left[i] ,Right[i] ) as follows 

 
 

Left [i+1]    =   Left[i]   F ( Right[i], K [0, 1], delta[i] ), 
 
Right [i +1]  =   Right[i]    F ( Right[i +1], K [2, 3], delta[i] ), 

 
delta[i] = (i +1)/2 * delta, 

 
 
The round function, F, is defined by   
 
F(M, K[j,k], delta[i]  ) =  ((M << 4)  K[j]) ⊕  (M  delta[i] ) ⊕  ((M >> 5)  K[k]).  
                                       
The round function has the same general structure for each round but is parameterized by  
 
the round sub key K[i]. The key schedule algorithm is simple; the 128-bit key K is split  
 
into four 32-bit blocks K = ( K[0], K[1], K[2], K[3]). The keys K[0] and K[1] are used in  
 
the odd rounds and the keys K[2] and K[3] are used in even rounds. 
 
 
2.3.2 Decryption Routine 
 

   
void decode(long* v, long* k)  { 
  unsigned long n = 32, sum, y = v[0], z = v[1], 
  delta = 0x9e3779b9 ; 
  sum = delta<<5 ; 
               /* start cycle */ 
  while (n-->0) { 
  z - = (y<<4)+k[2] ^  y+sum ^ (y>>5)+k[3] ;  
  y -= (z<<4)+k[0] ^ z+sum ^ (z>>5)+k[1] ; 
  sum -= delta ;  } 
                /* end cycle */ 
      v[0] = y ; v[1] = z ;  } 
 

  
                               Figure 2.4.         Decode routine. 
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Decryption is essentially the same as the encryption process; in the decode routine the  
 
cipher text is used as input to the algorithm, but the sub keys K[i] are used in the reverse  
 
order. 

 
                        Figure 2.5. The abstract structure of TEA decryption routine. 
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Figure 2.5 presents the structure of the TEA decryption routine. The intermediate value  
 
of the decryption process is equal to the corresponding value of the encryption process  
 
with the two halves of the value swapped. For example, if the output of the nth  
 
encryption round is  
 
                        ELeft[i] || ERight[i]     (ELeft[i] concatenated with ERight[i]).  
 
Then the corresponding input to the (64-i)th decryption round is  
 
                       DRight[i] || DLeft[i]    (DRight[i] concatenated with DLeft[i]). 
 
After the last iteration of the encryption process, the two halves of the output  
 
are swapped, so that the cipher text is ERight[64] || ELeft[64], the output of that round is  
 
the final cipher text C. Now this cipher text is used as the input to the decryption  
 
algorithm. The input to the first round is ERight[64] || ELeft[64], which is equal to the  
 
32-bit swap of the output of the 64th round of the encryption process.  
 
 
                         
2.4 Extensions of Tiny Encryption Algorithm 
 

TEA was extended to XTEA (Extended TEA) by Wheeler et al. (1997). It was proposed  
 
to fix the two minor weaknesses pointed out by Kelsey  et al. (1997). Like TEA, XTEA  
 
makes use of arithmetic and logic operations. The first enhancement is to adjust the key  
 
schedule, and the second is to introduce the key material slowly. Figure 2.6 presents the  
 
XTEA routine in C language, where the array v represents the plain text of 2 words, the  
 
array k represents the key of 4 words, and N contains the value of number of cycles. 
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XTEA( long * v, long * k, long N)  
{ 
unsigned long y = v[0]; 
unsigned z =v [1]; 
unsigned  DELTA = 0x9e3779b9;  
 
if (N>0) 
 {  

           /* coding */  
       unsigned long limit = DELTA*N; 
       unsigned long sum = 0 ;  
       while (sum != limit)  
           y += (z<<4 ^ z>>5) + z ^ sum + k[sum&3],  
           sum += DELTA,  
           z += (y<<4 ^ y>>5) + y ^ sum + k[sum>>11 &3] ;  
                   }   
 
   else  
    {  
 
            /* decoding */  
       unsigned long sum=DELTA*(-N) ;  
       while (sum)  
            z -=  (y<<4 ^ y>>5) + y ^ sum + k[sum>>11 &3],  
            sum -= DELTA,  
            y -= (z<<4 ^ z>>5) + z ^ sum + k[sum&3] ;  
              } 
            v[0]=y; 
            v[1]=z ;  
            return;  
 

 
                           
 
                                       Figure 2.6.   XTEA routine. 
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               Figure 2.7.   An abstraction of i-th cycle of XTEA. 
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Figure 2.7 shows the internal details of the ith cycle of XTEA routine. The relation  
 
between the output (Left[i+1], Right[i+1]) and the input (Left[i], Right[i]) for the ith  
 
cycle of XTEA is defined as follows: 
 
            
                 Left[i+1]  =   Left[i]  F( Right[i], K[2i-1], delta[i-1]), 
 
                 Right[i+1] =  Right[i]  F(Left[i+1], K[2i], delta[i]), 
 
                 delta[i]  = (i+1)/2 * delta 
 
 
The round function, F, is defined by 
 
     F(M, K[*], delta[**] ) = ((M<<4) ⊕  (M>>5))  M ⊕  delta[**]   K[*]. 
 
 
The round keys are generated according to the algorithm shown in Figure 2.8.  
 
 
                

 Split the 128-bit key K into four 32-bit blocks 
 
                                 K = (K[0], K[1], K[2], K[3]). 
 

  for rounds r = 1,….,64 
 

    if (r is odd) then 
                          
                                         key = K[delta((r-1)/2) & 3]; 
                               
                            else  
                            
                               if ( r is even) then 
 
                                        key = K[(delta((r/2)>>11) & 3] 
 
 
 
 
            Figure 2.8.  Round key generation algorithm. 
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2.5 Block TEA 
 
Block TEA is a block version of XTEA (Wheeler et al., 1997). Figure 2.9 presents the  
 
Block TEA in C language. It will encode or decode n words as a single block where n > 1.  
 
In Figure 2.9 v represents the n word data vector and k is the four word key. 

 
 
 
long Block_TEA( long * v, long n , long * k ) { 
unsigned long z = v[n-1], sum=0,e,  
       DELTA = 0x9e3779b9 ;  
long m, p, q ;  
if ( n>1) { 
        /* Coding Part */  
     q = 6+52/n ;  
     while (q-- > 0)     { 
     sum += DELTA ;  
     e = sum>>2&3 ;  
     for (p=0 ; p<n ; p++ )  
        z = v[p] += (z<<4 ^ z>>5) + z ^ k[p&3^e] + sum ;  
                                                } 
return 0 ;  
 

        /* Decoding Part */  
   else if (n<-1) { 
       n = -n ;  
      q = 6+52/n ;  
      sum = q*DELTA ;  
      while (sum != 0) { 
      e = sum>>2 & 3 ;  
      for (p = n-1 ; p>0 ; p-- ) {  
            z = v[p-1] ;  
            v[p] -= (z<<4 ^ z>>5) + z ^ k[p&3^e] + sum ;  
                                              } 
       z = v[n-1] ;  
           v[0] -= (z<<4 ^ z>>5) + z ^ k[p&3^e] + sum ;  
       sum -= DELTA ;  } 
    return 0 ;  } 
    return 1 ;  } /* Signal n=0 */  

 
 
                      Figure  2.9.    Block TEA routine.
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The basic principle of mixing data with the key is kept similar to TEA, but we run  
 
cyclically through the block. The following equation represents the mix operation 
 
             v[n] + = mix(v[n-1],key) 
 
The mix operation is performed along the words of a block and then around the whole  
 
block operation a number of times. 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  



 
 
 
 
 
 

CHAPTER 3 
 

CRYPTANALYSIS 
 
 

Cryptanalysis is an art of analyzing and breaking ciphers; it is an attempt to take 
 
cipher text produced by an adversary, and produce the plaintext or, better yet, the key. 
 
It is also a relatively new modern science, which has become more and more popular  
 
with an advent of modern cryptography. The term attack in this context has the following  
 
implication:  In intuitive terms a (passive) attack on a cryptosystem is any method of  
 
starting with some information about plaintexts and their corresponding cipher texts  
 
under some (unknown) key, and figuring out more  information about the plaintexts.  
 
It is possible to state mathematically as follows:  
 
 
Let the encryption system E is a collection of functions E_K, indexed by keys K,  
 
mapping some set of plain texts P to some set of cipher texts C. Similarly the decryption  
 
system D is a collection of functions D_K such that  D_K(E_K(P)) = P for every  
 
plaintext P. Now fix the input functions F (for Plain texts), G (for Keys), and the output  
 
function H (for cipher texts) for n variables. Fix an encryption system E and fix a  
 
distribution of plaintexts and keys. An attack on E using G assuming F giving H with  
 
probability p is an algorithm A with a pair f, g of inputs and one output h, such that there  
 
is probability p of computing h = H(P_1,...,P_n), if we have f = F(P_1,...,P_n) and g =  
 
G(E_K(P_1),...,E_K(P_n)).  
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3.1 Attacks 
 
In this research we inspected the most common methods applied in the cryptanalysis of a  
 
block cipher algorithm; the following attacks are performed for this research. 

 

3.1.1 Cipher text only attack: An attack against (i.e., an attempt to decrypt) cipher 

text when only the cipher text itself is available (i.e., there is no known plaintext nor key  

associated with the cipher text), in mathematical notation, a cipher text only attack is one  

where F is constant. Given only some information G(E_K(P_1),...,E_K(P_n)) about n  

cipher texts, the attack has to have some chance of producing some information  

H(P_1,...,P_n) about the plain texts.  

 

3.1.2 Known plaintext attack: The attacker knows or can guess the plaintext for 

some parts of the cipher text. The task is to decrypt the rest of the cipher text blocks  

using this information. This may be done by determining the key used to encrypt the data  

or via some shortcut. In mathematical notation, known plaintext attack has F(P_1,P_2) =  

P_1, G(C_1,C_2) = (C_1,C_2), and H(P_1,P_2) depending only on P_2.  In other words,  

given two cipher texts C_1 and C_2 and one decryption  P_1, the known plaintext attack  

should produce information about the other decryption P_2. 

 

3.1.3 Chosen plaintext attack: The attacker is able to have any text encrypted with  

the unknown key. The task in the chosen plaintext attack is to determine the key used 

for encryption.  
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This research found that TEA is highly resistive to the cipher text only, known plain text,  

chosen Plaintext attacks, this research examined plaintexts with one bit difference to find  

any similarities in the cipher texts and TEA produced approximately 32 bit differences in  

the cipher text for one bit difference in the plaintext just after six rounds. 

 
3.2 Differential Cryptanalysis 
 
 Biham et al. (1992) developed a method of attacking block ciphers, which they call  
 
differential cryptanalysis. This attack is the general method of attacking cryptographic  
 
algorithms. It has exposed the weakness in many algorithms. It looks specifically at  
 
cipher text pairs: pairs of cipher texts whose plain texts have particular differences and  
 
analyzes the evolution of these differences as the plain texts propagate through the rounds  
 
of the encryption algorithm when they are encrypted with the same key. The two plain  
 
texts (with a fixed difference) can be chosen at random as long as they satisfy particular  
 
differences. Then, using the differences in the resulting cipher texts, assign different  
 
probabilities to different keys. As we analyze more and more cipher texts, one key will  
 
emerge as the most probable (correct key). 
 
 
3.3 Related Key Cryptanalysis 
 
It is similar to differential cryptanalysis, but it examines the differences between keys. In  
 
this attack we need to choose a relationship between a pair of keys, but does not know the  
 
keys themselves. It relies on simple relationship between sub keys in adjacent rounds,   
 
encryption of plain texts under both the original (unknown) key K, and some derived  
 
keys = f(*K K ). We need to specify how the keys are to be changed; we may be able to  
 
flip bits in the key without knowing the key. TEA admits several related-key attacks  
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which arise from the severe simplicity of its key schedule. The following attacks are  
 
discovered by Kelsey et al. (1997).  
 
 
3.3.1 Attack one: The output of the round function, F, in the even rounds will remain the 
 
same with a probability of nearly 0.5, if we simultaneously flip the next most significant  
 
bit (bit number 30) of K[2] and K[3]. This will yield a 2-round iterative differential  
 
characteristic with probability of 0.5, and thus a 60-round characteristic with probability  
 

302− . Analysis of the discoverers indicate that a 4R differential related-key attack can  
 
break 64-round TEA with one related-key query and about chosen plaintexts. 342
 
 
3.3.2 Attack two: This attack is similar to the first attack. Under the key K[0..3] we  
 
request the encryption of (Left[i], Right[i]) and under key  
 
                               * 31[0..3] [0..3] (0,2 2 ,0,0)K K= ⊕ ⊕ 26

 
we request the encryption of (Left[i], Right[i]⊕ 312 ). Examining the three terms of  
 
F(Right[i] , K[0,1], delta) when bit 31 of Right[i] is flipped along with bits 26 and 31 of  
 
K[1], we see: The high bit of (Right[i] + delta) is always changed, neither change has  
 
any effect on (the value of Right[i] after left shifting four times + K[0]) and half the time,  
 
only the high bit is changed for (the value of Right[i] after right shifting five times +  
 
K[1]). If we choose one key difference it gives a one-cycle iterative differential  
 
characteristic with probability of 0.5.  
 
 
3.4 Impossible Differential Cryptanalysis 
 
Cryptanalysis with impossible differentials was introduced by Biham et al. (1992) and is  
 
powerful. The normal differential cryptanalysis finds a key using the differential  
 
characteristic with high probability. But, this attack uses the differential cryptanalysis  
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with probability zero which is called impossible differentials. Initially we need to find an  
 
impossible differential characteristic, we then choose any plain text pairs with the input  
 
difference of the impossible differential characteristic, and obtain the corresponding  
 
cipher text pairs. Using the special property derived from the impossible characteristic we  
 
eliminate the cipher text pairs with the input difference of the impossible differential  
 
characteristic. If we can find no impossible differentials for a cipher, the cipher cannot be  
 
attacked by cryptanalysis with impossible differentials. In the last one or two rounds for  
 
every key value in the key space, we decrypt the cipher text pairs with that key value and  
 
we eliminate the key value from the key space if the differences of the decrypted cipher  
 
text satisfy the output difference of the impossible differential characteristic. We repeat  
 
the above process until the only one key value remains with very high probability.  
 
Generally speaking, the search for impossible differentials is difficult because much  
 
complexity is required to guarantee completeness. Some researchers (e.g., Moon, Hwang,  
 
Lee, Lee, & Lim, 2002) used this method and found the 12-round impossible differential  
 
cryptanalysis of the XTEA and the 10-round impossible differential cryptanalysis of TEA.  
 
They were able to successfully attack 14-round XTEA using the 12-round impossible  
 
differential characteristic with chosen plain texts and  encryptions , they were  62.52 852
 
also successful in attacking  11-round TEA using the 10-round impossible differential  
 
with  chosen plain texts and  encryptions. This research investigated the  52.52 842
 
characteristics discovered by  Moon et al. (2002) and found it to be true. 
 
 
3.5 Equivalent Keys 
 
 In a cipher system if the encryption of Plain text with keys K  and  produces the same  *K
 
cipher text then the two keys are said to be equivalent keys. This can be represented as an  
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equivalence relation    = ( )KE P * ( )

K
E P . We can define equivalence classes and say  that  

 
a pair of keys K  and belong to the same equivalence class if they satisfy the above  *K
 
relation. In the design of a good cipher every key which belongs to the equivalence class  
 
should have a distinct mapping of  plain text to cipher text and there should not be any  
 
equivalent keys so we expect  equivalence classes. As the TEA uses 128-bit key we  2k

 
expect the TEA cipher to have equivalence classes, but research shows different as 1282
 
TEA has equivalence classes (there are distinct mappings of plain texts to cipher  1262 1262
 
text) and not  equivalence classes. This weakness is because of the round function  1282
 
(the core of any feistel cipher) of the TEA, the following explanation gives a clear picture  
 
of why the key space is only 126 and not 128. 
 
                  for all values of a, b ∈   322

Z
 
                                             312    =  0, 312
 
                                      a     =   a  312  8  0000000h

 
So,                   
 
                           a    b  =  ( a ⊕  ) 80000000h  ( b ⊕  8 ) 0000000h

 
in the same way the round function can be manipulated to prove 
 
F( M, K[j,k], delta[i]  ) =  F( M, (K[j] ⊕  8 , K[k] 0000000h ⊕  8 , delta[i] ) ) 0000000h

 
This implies that every 128-bit key K = ( K[0], K[1], K[2], K[3] ) has three equivalent  
 
keys of the form: 
 
                ( K[0], K[1], K[2] ⊕  , K[3] 80000000h ⊕  ) 80000000h

  
                ( K[0]  8 , K[1] ⊕ 0000000h ⊕  8 , K[2], K[3] ) 0000000h
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(K[0]  8 , K[1]  8 , K[2] ⊕ 0000000h ⊕ 0000000h ⊕  ,K[3] ⊕  ) 80000000h 80000000h

 
this means that even though TEA uses a 128-bit key it produces the same security as a  
 
126-bit key. 
 
The equivalent keys for TEA are as follows 
 

                           

h

h

h

h

00000000   80000000   00000000   00000000

80000000   00000000   00000000   00000000

80000000   00000000   80000000   80000000

00000000   80000000   80000000   80000000
 
for example, encrypting the plain text ( ) with any of the above  00000000 00000000h

 
four keys will produce the same cipher text (9327 497C 31 08 hB BBE ). The presence of  
 
equivalent keys makes TEA unsuitable for use in a hash function which is based on block  
 
ciphers. 
 
 
3.6 First Correction Made by the Designers 
 
XTEA was presented to cater the weaknesses and attacks mentioned above by the  
 
designers of TEA, In XTEA the designers have made the following adjustments: first  
 
adjustment was to adjust the key schedule, and the second is to introduce the key material  
 
slowly. Designers have corrected the round function  
 
F(M, K[j,k], delta[i]  ) =  ((M << 4)  K[j]) ⊕  (M  delta[i] ) ⊕  ((M >> 5)  K[k]).  
 
to  F(M, K[*], delta[**] ) = ((M<<4) ⊕  (M>>5))  M ⊕  delta[**]   K[*]. 
 
This correction brings the following advantages: 
 

• It corrects the mixing proportion of TEA  
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• Corrects the related-key attacks and equivalence classes for TEA 
 

• Shift of 11 causes the sequence to be irregular, and all 4 keywords are used in the  
 

      first two cycles. 
 

3.7 Comparison of TEA and XTEA with the Equivalent Keys 

Plain Text Key Cipher with  

     TEA  

Cipher with     

    XTEA 
0000000000000000 0000000080000000 

0000000000000000 

9327c497 31b08bbe 4f190ccf  c8deabfc 

0000000000000000 8000000000000000 

0000000000000000 

9327c497 31b08bbe 57e8c05 50151937 

0000000000000000 8000000000000000 

8000000080000000 

9327c497 31b08bbe 31c4e2c6 347b2de 

0000000000000000 0000000080000000 

8000000080000000 

9327c497 31b08bbe ed69b785 66781ef3 

                   
 
Figure 3.1.    Comparison of TEA and XTEA with the equivalent keys. 

 
 
 
3.8 Second Correction Made by the Designers 
 
Considering the lack of back propagation in Block TEA the designers have corrected  
 
the corrected the round function (see Wheeler et al., 1998) to make the decoding  
 
difference propagation about as fast as the forward coding mode. 
 
The mix operation along the words off the block             
        
                                   v[n] + = mix ( v[n-1], key) 
 
is corrected to            v[m] + =f(v[m-1], v[m+1]). 
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The corrected round function is given below: 
 
#define  MX  (z>>5 ^ y<<2) + (y>>3 ^ z<<4) ^ (sum ^ y) + (k[p&3 ^ e] ^ z); 
   
 
 
3.9 Intermediate Cipher Text Values for Small Key Pair Differences 
 
In this research we generated and analyzed the cipher texts of TEA and XTEA for the  
 
first 32 rounds. Figure 3.2 presents the sample output of Encoded data (cipher texts)  
 
obtained by linearly incrementing a single bit in the keys k[0], k[1], k[2], and k[3]  
 
with the initial plaint text as “00000000 00000000” (stored in variable v). 
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 For 1 round: Incrementing k[0] by  1 For 1 round: Incrementing k[1] by  1 

Input Data:  v = 0x0  0 Input Data:  v = 0x0  0 
Key = 0x0 0 0 0 Key = 0x0 0 0 0 
Encoded data = 0x9e3779b9 dbe8d32f Encoded data = 0x9e3779b9 dbe8d32f 
Key = 0x1 0 0 0 Key = 0x0 1 0 0 
Encoded data = 0x60a9b239 d3681922 Encoded data = 0x60a9b23b d3681904
Key = 0x2 0 0 0 Key = 0x0 2 0 0 
Encoded data = 0xa22ef269 3b005643 Encoded data = 0xa22ef472 3b0077ac 
Key = 0x3 0 0 0 Key = 0x0 3 0 0 
Encoded data = 0xb199be6 5390bd63 Encoded data = 0xb177cd7 5361f7b2 
Key = 0x4 0 0 0 Key = 0x0 4 0 0 
Encoded data = 0xd57900a9 761c765a Encoded data = 0xd0348261 bf0475cb
Key = 0x5 0 0 0 Key = 0x0 5 0 0 
Encoded data = 0x4b9d76ad c87be75d Encoded data = 0x78b912e8 5da8e081

 
 
              
 
 
 
 
 
 
 
 
 
 
 

 
  

 
                                  
 
 
 
 
 
 
 
 
 
 
 
 
 

 

For 1 round: Incrementing k[2] by  1 For 1 round: Incrementing k[3] by  1 
Input Data:  v = 0x0  0 Input Data:  v = 0x0  0 
Key = 0x0 0 0 0 Key = 0x0 0 0 0 
Encoded data = 0x9e3779b9 dbe8d32f Encoded data = 0x9e3779b9 dbe8d32f 
Key = 0x0 0 1 0 Key = 0x0 0 0 1 
Encoded data = 0x60a9b23a d36818f2 Encoded data = 0x60a9b23a d36818f0 
Key = 0x0 0 2 0 Key = 0x0 0 0 2 
Encoded data = 0xa22f0f86 3aef2213 Encoded data = 0xa22f0fa8 3aef248e 
Key = 0x0 0 3 0 Key = 0x0 0 0 3 
Encoded data = 0x1832d372 70760ea6 Encoded data = 0x1832bf2b 706f8436 
Key = 0x0 0 4 0 Key = 0x0 0 0 4 
Encoded data = 0x2281a5bc 5a2d5842 Encoded data = 0x241081d9 f2dee646 
Key = 0x0 0 5 0 Key = 0x0 0 0 5 
Encoded data = 0x7ae1e4d5 efd753f Encoded data = 0xdf7f4e86 7f98c06c 

 
Figure 3.2. Sample output of data obtained by linearly incrementing a single bit in the  
                   keys k[0], k[1], k[2] and k[3] on an Input data (for v = 00000000 00000000) 
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3.10 Statistical Analysis  
 
In the process of obtaining the statistical analysis of cipher texts, this research generated  
 
the decimal equivalent values of the cipher texts, Figure 3.3 shows the sample decimal  
 
values for the data presented in Figure 3.2.  
 
The sample cipher text “0x9e3779b9 dbe8d32f” is converted into decimal equivalent  
 
“-1640531527 -605498577.” The first half’s (right half’s) of these cipher texts are  
 
presented in C1 (column one) and the second half’s in the C2 (column two) of Figure 3.3. 
 
 

 

         C1        C2        C3         C4        C5          C6         C7         C8 

-1640531527 -605498577 -1640531527 -605498577 -1640531527 -605498577 -1640531527 -605498577

1621733945 -748152542 1621733947 -748152572 1621733946 -748152590 1621733946 -748152592

-1573981591 989877827 -1573981070 989886380 -1573974138 988750355 -1573974104 988750990

186227686 1401994595 186088663 1398929330 405984114 1886785190 405978923 1886356534

-713490263 1981576794 -801865119 -1090226741 578921916 1512921154 605061593 -220273082

1268610733 -931403939 2025394920 1571348609 2061624533 251491647 -545304954 2140717164

854344359 -957555870 -1673779192 1526308994 -1116325002 -1742526255 -954185364 -1862068192

1087031438 -1735034811 -256309480 -572597781 1847554642 -2030806129 44258436 469611766

-64313614 -138505471 -1748090149 742309149 -1132904010 532399513 131391724 -142956448

-439521491 -675609520 -1597352494 1658944802 53213860 -1283373222 -310881722 1388041572

-288533938 1046644421 -857570086 104342583 1868347693 -1364816561 -950789572 1772906066

705612385 -1470293218 -1799445370 -2081306702 320905407 846307797 1706885205 -994706011

-266954684 822361245 -1377216376 466343863 155266191 1704069541 -1789656264 655879417

-821627213 -869439098 -1270231726 797684728 1661384146 -1746972499 1247615357 1982847287

2111440592 -1903384763 -397533970 884071576 -1302073339 186042125 -1081550650 383873538

1045706859 -960021348 -2137051632 1204984913 -891390413 -843364753 -1690199855 -1600387759

1292861132 10529871 431781368 1959522287 -2130054370 -644785874 -849779967 1493707987

-504928969 -1710726408 1977106112 -1091664514 1763425772 1865518537 852397531 1434508078

2119243115 -1804356553 739449770 -922076004 1713640808 -732068127 -605524295 398924691

 
 
 Figure 3.3.  Decimal equivalent values of the encoded cipher texts. 
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This research discovered the following properties of generated cipher texts: 
 
 

o The cipher text values in any column do not start or end at any  particular  
 
      sequence nor exhibit any common property even though there generation was  
 
      due to a single bit key difference.  This is presented in the Figure 3.4. 

 
 
 
 
 

 
 
                          Figure 3.4.    Histogram of the cipher text values in column one (C1). 
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o There are no common properties among the values of the cipher texts generated  
 
      by linearly incrementing only a single bit on k[0] and [1], This is presented in  
 
      Figure 3.5. 

 
 

 
 
 

Figure 3.5. Comparison of column one (C1) with column three (C3). 
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o Comparison of cipher text values obtained by incrementing k[0] with k[1] and  
 
       k[2] gave no common attributes, This is presented in Figure 3.6. 

 
 
  

                                        
 
 
 

                                        
 
 
                     Figure 3.6. Comparison of columns one-three with column one-five. 
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o There are no attributes which can be derived by  making a comparison with  
 
       values any column to values in any other column, This is presented in Figure 3.7 

 

       Figure 3.7. Comparison of cipher text values in each column with the cipher text  
                          values in other columns. 
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In order to derive any Meta properties (if present), this research has examined the spatial  
 
distribution of cipher text values for the Left half and the Right half separately. For the  
 
Left half, columns C1, C3, and C5 are compared. Figures 3.8, 3.9, and 3.10 present this  
 
comparison.                               

 
 
               Figure 3.8.     3D plot of cipher text values in columns C1, C3, and C5. 
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Figure 3.9.   3D surface plot of cipher text values in columns C1, C3, and C5. 
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Figure 3.10.   3D wire frame plot of cipher text values in columns C1, C3, and C5. 
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For the Right half, columns C2, C4, and C6 are compared. Figures 3.11, 3.12, and 3.13  
 
present this comparison. 
 

 
 
 
              Figure 3.11.    3D plot of cipher text values in columns C2, C4, and C6. 
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  Figure 3.12.    3D surface plot of cipher text values in columns C2, C4, and C6. 
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Figure 3.13.    3D wire frame plot of cipher text values in columns C2, C4, and C6. 
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This research generated the Normal probability plot for the occurrences of cipher text  
 
values in  each column and this is presented in the graph 3.14 for the Left half and  
 
3.15 for the right half. 
 

 
 
 
 
           Figure 3.14. Normal probability plot for columns C1, C3, C5, C7. 
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             Figure 3.15. Normal probability plot for columns C2, C4, C6, C8. 
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3.11 Observations 
 
This research found the encryption of cipher texts with very few rounds (less than six) to  
 
be weak. Encryption of cipher texts with more than six rounds produced a very good  
 
mixture of intermediate values and showed high resistance to cryptanalytic attacks.  
 
With the few exceptions mentioned in section 3.8, this research concludes TEA as a  
 
best fit cryptographic algorithm for small devices where memory and power are primary  
 
concern. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  



 
 
 
 
 

CHAPTER 4 
 

SUMMARY AND CONCLUSIONS 
 
 
 
4.1 Contributions of the Thesis: 
 
 

• This research presented a comprehensive in-depth perceptive of TEA, XTEA, and  
 

            Block TEA. 
 
• This research implemented the TEA, XTEA, and Block TEA. 
 
• This research analyzed the published attacks, weakness of TEA, XTEA, and  

 
       Block TEA. 

 
• This research showed that Block TEA has equivalence classes and not   1272 1282
 
      equivalence classes. 

 
 
4.2 Future Work 
                           
We feel that cryptanalysis of TEA like feistel ciphers is far from complete task. In this  
 
section we present several directions for future research. 
 

• Finding more equivalent keys (if exists) for TEA. 
 
• Extending the results in this thesis to study other feistel ciphers 

 
• Investigation of key space for other fiestel ciphers. 
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APPENDIX 
 

IMPLEMENTATION 
   
 
The implementation of TEA used for this research is shown below. Tea.c takes the 64-bit  
 
plain text input in array v and 128-bit key in array k and give the cipher text as output on  
 
execution.  
 
 
           Tea.c 
 

#include <stdio.h> 
void main (int artgc, char **argv, char **env) 
{ 
unsigned long v[2]; /* Plaintext */ 
unsigned long k[4]; /* Key       */ 
unsigned long w[2]; /* cipher text */ 
 
/* Input to Plain Text */ 
v[0] = 0x12345678; v[1] = 0x33333333; 
printf("\n\n\nInput Data: "); 
printf (" v = 0x%x  %x\n\n", v[0], v[1]); 
 
/* Key */ 
k[0] = 0x00000000; k[1] = 0x80000000; 
k[2] = 0x80000000; k[3] = 0x80000000; 
printf ("Key = 0x%x %x %x %x\n\n", k[0], k[1], k[2], k[3]); 
 
/* Now call Encode Routine */ 
   tea_code (v, k); 
   printf ("\nEncoded data = 0x%x %x\n\n", v[0], v[1]); 
    
/* Now call Decode Routine */ 
   tea_decode (v, k); 
 
 
     Tea.c 
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   printf ("\nDecoded data = 0x%x %x\n", v[0], v[1]); 
   } 
 
tea_code(long* v, long* k) 
 {  
  /* long is 4 bytes. */ 
   unsigned long v0=v[0], v1=v[1]; 
   unsigned long  k0=k[0], k1=k[1], k2=k[2], k3=k[3]; 
   unsigned long sum=0; 
   unsigned long delta = 0x9e3779b9, n=32 ; 
   while (n-- > 0) { 
      sum += delta ; 
      v0 += (v1<<4)+k0 ^ v1+sum ^ (v1>>5)+k1 ; 
      v1 += (v0<<4)+k2 ^ v0+sum ^ (v0>>5)+k3 ; 
   } 
   v[0]=v0 ;  
   v[1]=v1 ; 
} 
 
 
tea_decode(long* v, long* k)  
 { 
   unsigned long v0=v[0], v1=v[1]; 
   unsigned long k0=k[0], k1=k[1], k2=k[2], k3=k[3]; 
   unsigned long n=32, sum, delta=0x9e3779b9 ; 
   sum=delta<<5 ; 
 
   while (n-- > 0) { 
      v1 -= (v0<<4)+k2 ^ v0+sum ^ (v0>>5)+k3 ; 
      v0 -= (v1<<4)+k0 ^ v1+sum ^ (v1>>5)+k1 ; 
      sum -= delta ; 
   } 
   v[0]=v0 ; 
   v[1]=v1 ; 
} 
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The implementation of XTEA used for this research is shown below. Xtea.c takes the 64- 
 
bit plain text input in array v and 128-bit key in array k and give the cipher text as output  
 
on execution. 
 
     
       Xtea.c 

 
#include <stdio.h> 
void main (int artgc, char **argv, char **env) 
{ 
unsigned long v[2]; /* Plaintext */ 
unsigned long k[4]; /* Key       */ 
unsigned long w[2]; /* cipher text */ 
 
/* Input to Plain Text */ 
v[0] = 0x12345678; v[1] = 0x33333333; 
printf("\n\n\nInput Data: "); 
printf (" v = 0x%x  %x\n\n", v[0], v[1]); 
 
/* Key */ 
k[0] = 0x00000000; k[1] = 0x80000000; 
k[2] = 0x00000000; k[3] = 0x00000000; 
printf ("Key = 0x%x %x %x %x\n\n", k[0], k[1], k[2], k[3]); 
 
tea_code (v, k); 
printf ("\nEncoded data = 0x%x %x  \n\n", v[0], v[1]); 
 
/* Now call Decode Routine */ 
tea_decode (v, k); 
printf ("\nDecoded data = 0x%x %x \n", v[0], v[1]);} 
 
tea_code(long* v, long* k) 
{  
  /* long is 4 bytes. */ 
unsigned long v0=v[0], v1=v[1]; 
unsigned long k0=k[0], k1=k[1], k2=k[2], k3=k[3]; 
unsigned long sum=0, delta=0x9e3779b9; 

            int n =32; 
            unsigned long limit=delta*n; 

while (sum!=limit) 
 
 
   Xtea.c 
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{ 

  v0   +=  (v1<<4 ^ v1>>5) + v1 ^ sum + k[sum&3]; 
  sum  +=  delta ; 

              v1   +=  (v0<<4 ^ v0>>5) + v0 ^ sum + k[sum>>11 &3]; 
} 

   v[0]=v0 ;  
   v[1]=v1 ; 
   } 
 
tea_decode(long* v, long* k) 
 { 
 unsigned long v0=v[0], v1=v[1]; 
 unsigned long k0=k[0], k1=k[1], k2=k[2], k3=k[3]; 
 unsigned long sum = 0xc6ef3720; 
 unsigned long delta=0x9e3779b9 ; 
 int count =32; 
  while (count) { 
  v1   -=  (v0<<4 ^ v0>>5) + v0 ^ sum + k[sum>>11 &3]; 
  sum  -=  delta ; 
  v0   -=  (v1<<4 ^ v1>>5) + v1 ^ sum + k[sum&3]; 

count = count-1;    
} 

   v[0]=v0 ; 
   v[1]=v1; 
 } 

 
 
 
 
 
 
 
 
In the process of extracting similarities between the intermediate values of the cipher 
 
texts during the 2nd ,4th , 8th ,16th  rounds of the encryption process of  Xtea, the program  
 
Xtea.java was developed in Java language using the oracle 9i database to store the  
 
intermediate results. 
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   The Program Xtea.java is presented below. 
   
 
         Xtea.java 
 

import java.lang.*; 
import java.math.*; 
import java.io.*; 
import java.util.*; 
import javax.servlet.*; 
import java.sql.*; 
import javax.servlet.http.*; 
 
public class wsrg 
extends GenericServlet { 
 
 public void service(ServletRequest request, ServletResponse response)  
  throws ServletException, IOException { 
 
    // Get print writer 
    PrintWriter pw = response.getWriter(); 
 
    // Get enumeration of parameter names 
    Enumeration e = request.getParameterNames(); 
 
    // Display parameter names and values 
      String pname1 = (String)e.nextElement(); 
      pw.print(pname1 + " = "); 
      String pvalue1 = request.getParameter(pname1); 
      pw.println(pvalue1+"\n"); 
      String pname2 = (String)e.nextElement(); 
      pw.print(pname2 + " = "); 
      String pvalue2 = request.getParameter(pname2); 
      pw.println(pvalue2); 
      String pname3 = (String)e.nextElement(); 
      pw.print(pname3 + " = "); 
      String pvalue3 = request.getParameter(pname3); 
      pw.println(pvalue3); 
      String pname4 = (String)e.nextElement(); 
      pw.print(pname4 + " = "); 
      String pvalue4 = request.getParameter(pname4); 
      pw.println(pvalue4); 
      String pname5 = (String)e.nextElement(); 
      pw.print(pname5 + " = "); 
      String pvalue5 = request.getParameter(pname5); 
      pw.println(pvalue5); 
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      String pname6 = (String)e.nextElement(); 
      pw.print(pname6 + " = "); 
      String pvalue6 = request.getParameter(pname6); 
      pw.println(pvalue6); 
      pw.println("display"); 
     
     /* String input,seed; 
      
     input=pvalue3; 
     if (pvalue3=="") input=pvalue6; 
     else input=pvalue3; 
     if (pvalue4=="") seed=pvalue5; 
     else seed=pvalue4; 
     input=input + seed; */ 
     Xtea a=new Xtea( ); 
    String stri = a.nmain(pvalue3,pvalue5); 
     pw.println(stri); 
     pw.close(); 
  } 
} 
 
class Xtea 
{ 
 private int _key[];  
 private byte _keyBytes[];  
 private int _padding;   
 
 int w[] = new int[2]; 
 static String src1; 
 static String keyString1;  
 protected static final char hex[] =  
          { '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F' }; 
 
  
 public static String nmain(String args,String seed) 
 { 
   
 String keyString = "80000000000000008000000080000000"; 
 keyString1= keyString; 
 byte key[] = new BigInteger(keyString, 16).toByteArray(); 
 Xtea t = new Xtea(key); 
            String src = args; 
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 src1=src;   
 src = t.padPlaintext(src); 
 byte plainSource[] = src.getBytes(); 
  int enc[] = t.encode(plainSource, plainSource.length); 
  String hexStr = t.binToHex(enc); 
  return(hexStr); 
 
 } 
 
  
 public Xtea(){} 
 
 public Xtea(byte key[]) 
 { 
  int klen = key.length; 
  _key = new int[4]; 
  if (klen != 16) throw new 
ArrayIndexOutOfBoundsException(this.getClass().getName() +  
": Key is not 16 bytes"); 
 
  int j, i; 
  for (i = 0, j = 0; j < klen; j += 4, i++) 
  key[i] = (key[j] << 24 ) | (((key[j+1])&0xff) << 16) | 
(((key[j+2])&0xff) << 8) | ((key[j+3])&0xff); 
  _keyBytes = key;  
 } 
 public Xtea(int key[]) 
 { 
  _key = key; 
 } 
 public String toString() 
 { 
  String tea = this.getClass().getName(); 
  tea +=  ": Extended Tiny Encryption Algorithm (XTEA) 
     key: " + getHex(_keyBytes); 
  return tea; 
 } 
  
 public int [] encipher(int v[]) 
 { 
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  int y= v[0]; 
  int z= v[1]; 
  int sum=0; 
  int delta=0x9E3779B9; 
  String sttr[]=new String[33]; 
  int n=32; 
 try 
    { 
   Connection con = null; 
    Statement stmt = null; 
    ResultSet rs = null; 
      Class.forName ("oracle.jdbc.driver.OracleDriver");  
       con = DriverManager.getConnection 

         ("jdbc:oracle:thin:@mdb.cs.ua.edu:1521:wdb", "reddy001", "Stanf0rd96"); 
 
  while(n-->0) 
  { 
   y += (z << 4 ^ z >>> 5) + z ^ sum + _key[(int) 
 (sum&3)]; 
   sum += delta; 
   z += (y << 4 ^ y >>> 5) + y ^ sum + _key[(int) 
(sum >>>11) & 3]; 
 
   int acd[]= new int[2]; 
   acd[0] = (int)y; 
   acd[1] = (int)z; 
   int m= 32-n; 
   sttr[m]=binToHex(acd); 
    
  } 
   
  w[0] = (int)y; 
  w[1] = (int)z; 
  stmt = con.createStatement(); 
   
 rs = stmt.executeQuery("insert into finaldata values ('" + src1 
+"','"+keyString1+"','"+sttr[1]+"','"+sttr[3]+"','"+sttr[7]+"','"+sttr[15] 
+"','"+sttr[31]+"')"); 
 con.close(); 
             } 
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 catch(ClassNotFoundException e)  
 {  
                 System.out.println("Couldn't load database driver: " +  
e.getMessage()); 
 } 
    catch(SQLException e)  
 {  
       System.out.println("SQLException caught: " + e.getMessage()); 
     } 
    return w; 
 } 
 
  
 public int [] decipher(int v[]) 
 { 
  int y=v[0]; 
  int z=v[1]; 
  int sum=0xC6EF3720; 
  int delta=0x9E3779B9; 
  int n=32; 
     while (n-->0) 
  { 
  z -= (y << 4 ^ y >>> 5) + y ^ sum + _key[(sum>>>11) & 3]; 
  sum -= delta; 
  y -= (z << 4 ^ z >>> 5) + z ^ sum + _key[sum &3]; 
  } 
  int w[] = new int[2]; 
  w[0] = (int)y; 
  w[1] = (int)z; 
  return w; 
 } 
 
 public int [] encode(byte b[], int count) 
 { 
  int j ,i; 
  int bLen = count; 
  byte bp[] = b; 
  _padding = bLen % 8; 
  if (_padding != 0)  
  { 
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                          _padding = 8 - (bLen % 8); 
   bp = new byte[bLen + _padding]; 
   System.arraycopy(b, 0, bp, 0, bLen); 
   bLen = bp.length; 
  } 
 
  int intCount = bLen / 4; 
  int r[] = new int[2]; 
  int out[] = new int[intCount]; 
  for (i = 0, j = 0; j < bLen; j += 8, i += 2) 
  { 
  r[0] = (bp[j] << 24 ) | (((bp[j+1])&0xff) << 16) | 
 (((bp[j+2])&0xff) << 8) | ((bp[j+3])&0xff); 
  r[1] = (bp[j+4] << 24 ) | (((bp[j+5])&0xff) << 16) | 
(((bp[j+6])&0xff) << 8) | ((bp[j+7])&0xff); 
   r = encipher(r); 
   out[i] = r[0]; 
   out[i+1] = r[1]; 
   break; 
  } 
  return out; 
 } 
 
        public int padding() 
 { 
  return _padding; 
 } 
     
      public byte [] decode(byte b[], int count) 
 { 
  int i, j; 
  int intCount = count / 4; 
  int ini[] = new int[intCount]; 
  for (i = 0, j = 0; i < intCount; i += 2, j += 8) 
  { 
  ini[i] = (b[j] << 24 ) | (((b[j+1])&0xff) << 16) | 
 (((b[j+2])&0xff) << 8) | ((b[j+3])&0xff); 
  ini[i+1] = (b[j+4] << 24 ) | 
 (((b[j+5])&0xff) << 16) | (((b[j+6])&0xff) << 8) | ((b[j+7])&0xff); 
  } 
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 return decode(ini); 
 } 
  
 public byte [] decode(int b[]) 
 { 
  int intCount = b.length; 
  byte outb[] = new byte[intCount * 4]; 
  int tmp[] = new int[2]; 
  int i, j; 
  for (j = 0, i = 0; i < intCount; i += 2, j += 8) 
  { 
   tmp[0] = b[i]; 
   tmp[1] = b[i+1]; 
   tmp = decipher(tmp); 
   outb[j]   = (byte)(tmp[0] >>> 24); 
   outb[j+1] = (byte)(tmp[0] >>> 16); 
   outb[j+2] = (byte)(tmp[0] >>> 8); 
   outb[j+3] = (byte)(tmp[0]); 
   outb[j+4] = (byte)(tmp[1] >>> 24); 
   outb[j+5] = (byte)(tmp[1] >>> 16); 
   outb[j+6] = (byte)(tmp[1] >>> 8); 
   outb[j+7] = (byte)(tmp[1]); 
  } 
  return outb; 
 } 
 
 public int [] hexToBin(String hexStr) throws 
ArrayIndexOutOfBoundsException 
 { 
  int hexStrLen = hexStr.length(); 
  if ((hexStrLen % 8) != 0) 
  throw new ArrayIndexOutOfBoundsException 
("Hex string has incorrect length, required to be divisible by eight: 
 " + hexStrLen); 
 
             int outLen = hexStrLen / 8; 
  int out[] = new int[outLen]; 
  byte nibble[] = new byte[2]; 
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                   byte b[] = new byte[4]; 
  int posn = 0; 
  for (int i = 0; i <outLen; i++) 
  { 
   for (int j = 0; j < 4; j++) 
   { 
    for (int k = 0; k < 2; k++) 
    { 
    switch (hexStr.charAt(posn++)) 
    { 
    case '0': nibble[k] = (byte)0; break; 
    case '1': nibble[k] = (byte)1; break; 
    case '2': nibble[k] = (byte)2; break; 
    case '3': nibble[k] = (byte)3; break; 
    case '4': nibble[k] = (byte)4; break; 
    case '5': nibble[k] = (byte)5; break; 
    case '6': nibble[k] = (byte)6; break; 
    case '7': nibble[k] = (byte)7; break; 
    case '8': nibble[k] = (byte)8; break; 
    case '9': nibble[k] = (byte)9; break; 
    case 'A': nibble[k] = (byte)0xA; break; 
    case 'B': nibble[k] = (byte)0xB; break; 
    case 'C': nibble[k] = (byte)0xC; break; 
    case 'D': nibble[k] = (byte)0xD; break; 
    case 'E': nibble[k] = (byte)0xE; break; 
    case 'F': nibble[k] = (byte)0xF; break; 
    case 'a': nibble[k] = (byte)0xA; break; 
    case 'b': nibble[k] = (byte)0xB; break; 
    case 'c': nibble[k] = (byte)0xC; break; 
    case 'd': nibble[k] = (byte)0xD; break; 
    case 'e': nibble[k] = (byte)0xE; break; 
    case 'f': nibble[k] = (byte)0xF; break; 
    } 
    } 
    b[j] = (byte)(nibble[0] << 4 | nibble[1]); 
   } 
 
out[i] = (b[0] << 24 ) | (((b[1])&0xff) << 16) | (((b[2])&0xff) << 8) | 
((b[3])&0xff); 
  } 
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 return out; 
 } 
 
 public String binToHex(int enc[]) throws     
ArrayIndexOutOfBoundsException 
 { 
  if ((enc.length % 2) == 1) 
  throw new ArrayIndexOutOfBoundsException 
("Odd number of ints found: " + enc.length); 
 
  StringBuffer sb = new StringBuffer(); 
  byte outb[] = new byte[8]; 
  int tmp[] = new int[2]; 
  int counter = enc.length / 2; 
  for (int i = 0; i < enc.length; i += 2) 
  { 
   outb[0]   = (byte)(enc[i] >>> 24); 
   outb[1] = (byte)(enc[i] >>> 16); 
   outb[2] = (byte)(enc[i] >>> 8); 
   outb[3] = (byte)(enc[i]); 
   outb[4] = (byte)(enc[i+1] >>> 24); 
   outb[5] = (byte)(enc[i+1] >>> 16); 
   outb[6] = (byte)(enc[i+1] >>> 8); 
   outb[7] = (byte)(enc[i+1]); 
 
   sb.append(getHex(outb)); 
  } 
  return sb.toString(); 
 } 
 
 public String getHex(byte b[]) 
 { 
  StringBuffer r = new StringBuffer(); 
  for (int i = 0; i < b.length; i++) 
  { 
   int c = ((b[i]) >>> 4) & 0xf; 
   r.append(hex[c]); 
   c = ((int)b[i] & 0xf); 
   r.append(hex[c]); 
  } 
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return r.toString(); 
 } 
 
 public String padPlaintext(String str, char pc) 
 { 
  StringBuffer sb = new StringBuffer(str); 
  int padding = sb.length() % 8; 
  for (int i = 0; i < padding; i++) 
  sb.append(pc); 
             return sb.toString(); 
 } 
 
 public String padPlaintext(String str) 
 { 
  return padPlaintext(str, ' '); 
 } 
 
} 
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Btea.html is a Java Script implementation of Block TEA. In this research it is  
 
implemented using the corrected round function.  

 
 

 
         Btea.html 
 

<html> 
  <head> 
    <title>TEA</title> 
    <meta http-equiv="content-type" content="text/html;  
          charset=iso-8859-1">    
    <style type="text/css"> <!-- p, td { font-family: Arial, sans-serif; } 
          --> </style> 
    <script type="text/javascript"> 
 
function callencode(val, key) 
{ 
    var v = strToLongs(escape(val).replace(/%20/g,' ')); 
    var k = keyToLongs(key); 
    var n = v.length; 
    if (n == 0) return("");   
    if (n == 1) v[n++]=0;     
    var z = v[n-1], y = v[0], delta = 0x9E3779B9; 
    var mx, e, q = Math.floor(6 + 52/n), sum = 0; 
    while (q-- > 0) {   
        sum += delta; 
        e = sum>>>2 & 3; 
        for (var p = 0; p < n-1; p++) { 
            y = v[p+1]; 
      mx = (z>>>5 ^ y<<2) + (y>>>3 ^ z<<4) ^ (sum^y) + (k[p&3 ^ e] ^ z) 
            z = v[p] += mx; 
        } 
        y = v[0]; 
        mx = (z>>>5 ^ y<<2) + (y>>>3 ^ z<<4) ^ (sum^y) + (k[p&3 ^ e] ^ z) 
        z = v[n-1] += mx; 
    } 
    return(longsToStr(v));   
} 
 
 
                     Btea.html 
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function calldecode(val, key) 
{ 
    var v = strToLongs(val); 
    var k = keyToLongs(key); 
    var n = v.length; 
    if (n == 0) return(""); 
    var z = v[n-1], y = v[0], delta = 0x9E3779B9; 
    var mx, e, q = Math.floor(6 + 52/n), sum = q*delta; 
    while (sum != 0) { 
        e = sum>>>2 & 3; 
        for (var p = n-1; p > 0; p--) { 
            z = v[p-1]; 
            mx = (z>>>5 ^ y<<2) + (y>>>3 ^ z<<4) ^ (sum^y) + (k[p&3 ^ e] ^ z) 
            y = v[p] -= mx; 
        } 
        z = v[n-1]; 
        mx = (z>>>5 ^ y<<2) + (y>>>3 ^ z<<4) ^ (sum^y) + (k[p&3 ^ e] ^ z) 
        y = v[0] -= mx; 
        sum -= delta; 
    } 
 
    var s = longsToStr(v); 
    if (s.indexOf("\x00") != -1) { 
     s = s.substr(0, s.indexOf("\x00")); 
    } 
    return(unescape(s)); 
} 
 
function strToLongs(s) {   
    var l = new Array(Math.ceil(s.length/4)) 
    for (var i=0; i<l.length; i++) { 
        l[i] = s.charCodeAt(i*4) + (s.charCodeAt(i*4+1)<<8) +  
               (s.charCodeAt(i*4+2)<<16) + (s.charCodeAt(i*4+3)<<24); 
    } 
    return(l);   
}                
 
 
function keyToLongs(k) {   
    var l = new Array(4) 
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    for (var i=0; i<4; i++) { 
        l[i] = k.charCodeAt(i*4) + (k.charCodeAt(i*4+1)<<8) +  
         (k.charCodeAt(i*4+2)<<16) + (k.charCodeAt(i*4+3)<<24); 
    } 
    return(l);   
} 
 
function longsToStr(l) {   
    var s = ""; 
    for (var i=0; i<l.length; i++) { 
        s += String.fromCharCode(l[i] & 0xFF, l[i]>>>8 & 0xFF,  
                                l[i]>>>16 & 0xFF, l[i]>>>24 & 0xFF); 
    } 
    return(s); 
} 
 
 
    </script> 
  </head> 
  <body bgcolor="#00FFFF"> 
    <form name="f" action="none!"> 
    <body bgcolor="#00FFFF"> 
    <script type="text/javascript"> 
     document.write("<h1>Block Tiny Encryption Algorithm</h1>")   
     var d = new Date() 
     x=d.getMinutes() 
     y=d.getSeconds() 
     h=d.getHours() 
     no=Math.random()*1000000000000*x*y*h 
     document.write("You can use this sample generated random number as 
 a key: "); 
     document.write(Math.floor(no)) 
     </script>     
<p> &nbsp;</p>    
   <p>                                                        
   </p>      
     <p>Possible Equivalent key pairs to prove the key space is 127 instead of  
     128 (for Block TEA) <br> 
     <br> 
     Pair 1:<br> 
     00000000800000000000000000000000 <br> 
     00000000800000008000000080000000 <br> 
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<br> 
     Pair 2:<br> 
     80000000000000000000000000000000 <br> 
     80000000000000008000000080000000 <br> 
___________________________________________________________ 
___________________</p> 
 
   </body> 
      <table width="701" style="border-collapse: collapse" bordercolor= 
"#111111" cellpadding="0" cellspacing="0" height="200">    <tr> 
          <td width="697" height="35"><b><font size="4" 
face="Batang">&nbsp;</font></b></td> 
          <td width="4" height="35">&nbsp;</td>  </tr>   <tr> 
          <td width="697" height="41"><b><font size="4" face="Batang"> 
Please type the Plain Text</font></b><input type="text" name="val" 
size="100" ><p>&nbsp;</p> <p><b><font size="4" face="Batang"> 
Please type the Key </font></b><input type="text" name="key" size="32" > 
</p><p>&nbsp;</td> <td width="4" height="41">&nbsp;</td> 
/tr> <tr> <td width="697" height="54"><script type="text/javascript">var 
ciferText;</script>   <!-- use 'ciferText' because <input> field will truncate at  
null chars --> <input type="button" value="The Cipher text is" 
              onClick='f.encrypted.value = ciferText = callencode(f.val.value, 
f.key.value)'>&nbsp; <input type="text" name="encrypted" size="100"></td> 
        </tr><tr><td width="697" height="22">&nbsp;<p>&nbsp;</td> 
        </tr> <tr><td width="697" height="26"> 
          <input type="button" value="Decrypted Value of the cipher text is" 
                     onClick='f.decrypted.value = calldecode(ciferText, 
f.key.value)'>&nbsp;       <input type="text" name="decrypted" size="100"> 
</td>   </tr> <tr> <td width="697" height="22">&nbsp;</td> 
        </tr> </table></form> </body><p> 
___________________________________________________________ 
<p><br>  <br>&nbsp;</p> 
</html> 

 
 
 
 
 
 
 

  


