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Abstract

Modern portfolio theory produces an optimal portfolio from esti-
mates of expected returns and a covariance matrix. We present
a method for portfolio optimization based on replacing expected
returns with sorting criteria, that is, with information about the
order of the expected returns but not their values. We give a sim-
ple and economically rational definition of optimal portfolios that
extends Markowitz’ definition in a natural way; in particular, our
construction allows full use of covariance information. We give
efficient numerical algorithms for constructing optimal portfolios.
This formulation is very general and is easily extended to more gen-
eral cases: where assets are divided into multiple sectors or there
are multiple sorting criteria available, and may be combined with
transaction cost restrictions. Using both real and simulated data,
we demonstrate dramatic improvement over simpler strategies.
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1 Introduction

This paper presents a framework for portfolio selection when an investor
possesses information about the order of expected returns in the cross-
section of stocks. Such ordering information is any information about the
order of expected returns, such as the rank of expected returns across
all stocks, multiple sorts or sorts within certain subsets of stocks such
as sectors or other subdivisions. We take such ordering information as
given and produce a simple, natural method of producing portfolios that
are in a certain well defined sense optimal with respect to this informa-
tion.

Portfolio selection as introduced by Markowitz (1952) constructs port-
folios from information about expected returns. It boils down to an opti-
mization problem in which expected return is maximized subject to a set
of constraints. Markowitz’ key contribution was the observation that an
optimizing investor should want to invest only in efficient portfolios, that
is, portfolios which deliver the maximum level of expected return for a
given level of risk. In the absence of expected returns it is not clear how
to generalize this approach to portfolio selection. On the other hand,
ordering information has become increasingly important to the financial
literature and the investment process. A host of researchers and practi-
tioners have associated both firm characteristics and recent price history
to expected returns in a manner that naturally gives rise to ordering in-
formation (Fama and French 1992; Fama and French 1996; Daniel and
Titman 1997; Daniel and Titman 1998; Banz 1981; Campbell, Grossman,
and Wang 1993).

The difficulty in constructing portfolios from ordering information
is that there is no obvious objective function that naturally relates to it.
One may construct an objective function in one of several ways including
estimating expected returns from the data that gives rise to the ordering
information. One can also develop ad hoc rules relating such character-
istics to expected returns and proceed in the same fashion. Finally, one
can simply develop ad hoc rules for constructing portfolios from order-
ing information, such as buying the top decile of stocks and selling the
bottom decile.

In this paper we propose a portfolio selection procedure that assumes
no information beyond the given ordering information and derives from
a simple, economically rational set of assumption. In this way, we do
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not rely on any expected return estimates or ad hoc rules to produce
portfolios. In fact, our method completely bypasses any auxilliary pro-
cedure and moves naturally from ordering information to portfolio. We
do not argue one way or the other whether one should or could obtain
better results by estimating expected returns and then performing ordi-
nary portfolio observation. We simply observe that there may be cases
where one either cannot obtain enough data to make such estimates or
where one does not have sufficient confidence in the reliability of such
estimates to warrant using this approach. Therefore our base assump-
tion is that the investor is in possession of no information beyond the
given ordering information.

Our approach starts with the observation that Markowitz portfolio
selection may be viewed as a statement about investor preferences. All
else being equal, an investor should prefer a portfolio with a higher ex-
pected return to one with a lower expected return. Efficient portfolios are
simply portfolios that are maxmially preferable among those with a fixed
level of risk. This is a very slight change in the point of view offered by
Markowitz, but yields a substantial generalization of Markowitz portfolio
selection theory. In the present paper we extend the notion of a portfo-
lio preferenc to one based on ordering information instead of expected
returns. Given such a preference relation we define an efficient portfolio
as one that is again maximally preferable for a given level of risk exactly
analogous to the Markowitz definition. The challenge of this paper is to
provide a simple, economically rational definition of such a preference
relation and then demonstate how to calculate efficient portfolios and
that these portfolios have desirable properties.

We start with the observation that for any ordering information there
is a set of expected returns that are consistent with this information.
For example, if we start with three stocks S1, S2, S3 and our information
consists of the belief that ρ1 ≥ ρ2 ≥ ρ3 where ρi is the expected return for
Si, then all triples of the form (r1, r2, r3)where r1 ≥ r2 ≥ r3 are consistent
with the ordering. We write Q for the set of all expected returns that
are consistent with the given ordering and for short call these consistent
returns. We then state that given two portfolios w1 and w2 an investor
should prefer w1 to w2 if w1 has a higher expected return than w2 for
every expected return consistent with the ordering, that is for every r ∈
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Q1.
In Section 2 we study the above defined preference relation in detail

and define an efficient portfolio to be one that is maximally preferable
subject to a given level of risk. Specifically if the covariance matrix of the
stocks in the portfolio is given by V , then for a given level of variance σ 2

a portfolio w is efficient if

wTVw ≤ σ 2

and there is no portfolio v such that v is preferable tow and vTVv ≤ σ 2.
Our definition of efficient is obviously a natural analog of the Markowitz

notion of efficient; in addition it reduces to exactly Markowitz’ efficient
set in the case of an information set consisting only of one expected
return vector. We exploit the mathematical structure of the set Q to
completely characterize the set of efficient portfolios. We also show how
to construct efficient portfolios and show how to extend these construc-
tions to more general constraint sets including market neutral portfolios
with a given level of risk and portfolios constrained by transaction cost
limits.

We note that the preference relation obtained from ordering infor-
mation is not strong enough to identify a unique efficient portfolio for
a given level of risk. For a fixed level of risk, Markowitz portfolio selec-
tion does identifiy a unique efficient portfolio; our process identifies an
infinite set of portfolios which are all equally preferable. That said, the
efficient set is extremely small relative to the entire constraint set. In
fact, it is on the order of less than 1/n! the measure of the constraint set,
where n is the number of stocks in the portfolio.

In Section 3 we refine the preference relation introduced in Section 2
to produce a unique efficient portfolio for each level of risk. This refine-
ment starts with the observation that while we certainly prefer w1 to w2

when its expected return is greater for all consistent returns, we would
in fact prefer it if its expected return were higher for a greater fraction of
consistent returns. To make sense of this notion we have no choice but

1For the purposes of the introduction only we have slightly simplified the defini-
tion of the preference relation to give its intuition. The actual definition is slightly
more complicated and involves decomposing each portfolio into directions that are
orthogonal and not orthogonal to Q and then looking at the expected returns on the
non-orthogonal parts of each portfolio. This step is necessary to make mathematical
and financial sense of the preference relation.
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to introduce a probability measure on the set of expected returns which
assesses the relative likelihood of different consistent returns being the
true expected returns. Once we specify such a probability measure we
are able to produce our natural refinement of the preference relation.

We show that the preference relation thus obtainted yields a unique
efficient portfolio for each level of risk. Moreover, we show that when
the probability distribtion obeys certain very natural symmetry proper-
ties, the related preference relation is completely characterized by a cer-
tain linear function called, for reasons that will become clear later, the
centroid. Specifically this function is defined by the center of mass, or
centroid, of the set Q under the probability measure. We call the effi-
cent portfolios with respect to the centroid preference relation centroid
optimal.

A natural probability distribution on the set of consistent returns is
one in which, roughly speaking, all expected returns are equally likely.
This is most consistent with the notion that we have no information about
expected returns beyond the ordering information. On the other hand,
one might argue that at least on a qualitative level consistent returns that
have very large or very small separation are relatively less likely than
those which have moderate separtion. For example, if the average re-
turn during the past twelve months among three stocks is .03 then while
(.0001, .0000001, .000000001) and (.05, .03, .02) and (1000,500,200) all
may be consistent, one might argue that the first and the last ought to
be less likely than the second. Fortunately, we show that to a large ex-
tent such considerations do not affect the outcome of our analysis in the
sense that for a large class of distributions, the centroid optimal portfo-
lio is the same. In particular, one may construct disrtibutions that assign
different probabilities as one scales a particular consistent expected re-
turn. For example if one has a certain probability on the interval [0,∞]
then one can move that distribution to the ray λ(.05, .03,02) for all λ ≥ 0.
If one extends this distribution so that it is the same along all such rays,
then we show that the centroid optimal portfolio is independent of what
distribution is chosen along each ray.

The rest of this paper is organized as follows. In Section 2 we give
a detailed discussion of preference relations and how they give rise to
efficient portfolios. In Section 3 we derive the theory behind centroid
optimal portfolios and explain how to calculate them. In Section 4 we
study a variety of different types of ordering information, including sorts
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within sectors, sorts that arise from index outperform versus underform
ratings, and multiple sorts that arise from multiple firm characteristics.
In each case we demonstrate how this information fits into our frame-
work and show how to calculate centroid optimal portfolios. In Section 5
we conduct two different studies. First, we demonstrate how to compute
centroid optimal portfolios for reversal strategies, that is, strategies that
involve ordering information derived from recent price action. We com-
pare performance history on a cross-section of stocks for four different
portfolio construction methodologies and show that the centroid optimal
portfolios outperform by a substantial margin. Our second set of tests
are based on simulated data. These tests are designed to examine the
robustness of our methods relative to imperfect knowledge of the exact
order of expected returns. We show that our method is highly robust to
rather large levels of information degradation.

2 Efficient Portfolios

This section studies portfolio selection from asset ordering information.
We construct portfolios which, by analogy to Modern Portfolio Theory
(MPT), are efficient in the sense that they are maximally preferable to
a rational investor for a fixed level of variance. In MPT investors start
with two sets of probability beliefs, concerning the first two moments of
the return distributions of the stocks in their universe, and seek to find
efficient portfolios, that is, portfolios that provide the maximum level of
expected return for a given level of variance. In our setting these expected
return beliefs are replaced by ordering beliefs whereby an investor has
a set of beliefs about the order of the expected returns of a universe of
assets.

We summarize the portfolio selection procedure in this section as fol-
lows. We start with a universe of stocks, a portfolio sort and a budget
contsraint set. A portfolio sort is information about an investor’s belief
as to the order of expected returns. This may be in the form of a complete
or partial sort and may possibly contain more than one sort. For exam-
ple, an investor may have one sort arising from book to market value
and another arising from market capitalization. The key example of a
budget constraint is portfolio variance, but more generally a budget con-
straint is any bounded, convex subest of the space of all portfolios. Given
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this information, we use the portfolio sort to define a unique preference
relation among portfolios whereby, roughly speaking, one portfolio is
preferred to another if it has a higher expected return for all expected
returns that are consistent with the sort. Given this preference relation
and the budget constraint we define a portfolio to be efficient if it is
maximally preferable within the budget constraint set.

The aim of this section is to make precise the notion of an efficient
portfolio and to show how we may calculate efficient portfolios. Along
the way we show that our preference relation naturally extends the port-
folio preference relation implicit in Markowitz’ portfolio selection in which
a rational investor prefers one portfolio to another if it has a higher ex-
pected return. The main difference that comes to light in building portfo-
lios from sorts is that the efficient set for a fixed budget constraint (e.g.,
for a fixed level of portfolio variance) is no longer a unique portfolio but
rather a bounded subset of the constraint set.

2.1 Modern Portfolio Theory

In order to motivate the development in this section, we briefly review
Modern Portfolio Theory, recast in terms that can we can generalize to
the case of portfolio selection from ordering information. We assume
throughout that we have a list of assets in a fixed order and that vec-
tors represent either expected returns for those assets or investments in
those assets. Thus a vector ρ = (ρ1, . . . , ρn) will represent expected re-
turn estimates for assets 1, . . . , n respectively, and a vectorw = (w1, . . . ,wn)
will refer to a portfolio of investments in assets 1, . . . , n respectively.2

Therefore the expected return of a portfolio w is wTρ.
Markowitz introduced the notion of efficient portfolios, that is, those

portfolios which provide the maximimum expected return subject to
having a given level of variance or less. He stated that optimizing in-
vestors should seek to invest only in efficient portfolios. Therefore, the
Markowitz portfolio selection problem may be stated as the constrained
optimization problem find the portfolio with the highest expected return
for a given level of variance. This problem can be easily re-cast in terms

2We take all vectors to be column vectors, and T denotes transpose, so the matrix
product wTr is equivalent to the standard Euclidean inner product w · r = 〈w,r〉.
This formality is useful when we extend our notation to mutiple linear conditions.



Almgren/Chriss: Optimal Portfolios Draft December 10, 2004 9

of preference relations.
Throughout this paper, we will use the symbol� to denote preference

between portfolios; v � w means that an optimizing investor prefers v
to w. In MPT, for a given ρ, optimizing investors set their preferences
on the basis of their expected returns subject to a risk constraint:

v � w if and only if vTρ ≥ wTρ.

An investor seeking an efficient portfolios wants to invest in only those
portfolios which are maximally preferable subject to having no more than
a fixed level of variance.

This small change in point of view (from maximizing expected returns
to finding most preferable portfolios) allows us to introduce the appro-
priate language for generalizing MPT to the case of portfolio selection
from ordering information. To do this we introduce two new notions:
expected return cones and relevant portfolio components.

Expected Return Cones Let

Q =
{
λρ
∣∣ λ ≥ 0

}
. (1)

be the smallest cone that contains ρ. We remind the reader that a subset
Q of a vector space is a cone if for every r ∈ Q and scalar λ > 0 we have
λr ∈ Q. Note that

v � w if and only if vTr ≥ wTr for all r ∈ Q.

Thus in terms of setting investor preferences a specific expected return
vector is interchangeable with the cone containing it. That is, it is not
the magnitude of the expected return vector that determines investor
preferences, but only its direction. In Section 2.2 we generalize this con-
struction to the case of portfolio beliefs.

We also define the half-space whose inward normal is ρ:

Q =
{
r ∈ Rn

∣∣ ρTr ≥ 0
}
.

We will see later in this section that this half-space contains the same
belief information as the vector ρ or the rayQ in terms of investor beliefs.
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Relevant and Irrelevant Portfolio Directions We now define a decom-
position of the space of portfolios into directions relevant and irrelevant
to a given expected return vector ρ.

R⊥ =
{
r ∈ Rn

∣∣ ρTr = 0
}
. (2)

This subspace is the complete collection of return vectors that are or-
thogonal to ρ. Let

R = (R⊥)⊥ =
{
w ∈ Rn

∣∣wTr = 0 for all r ∈ R⊥
}
.

be the orthogonal subspace to R⊥. This subspace contains ρ but is larger;
in particular it contains negative multiples of the base vector ρ. We note
that R and R⊥ define a unique decomposition of the space of portfolios
as follows. For a portfolio w we have that w may be written

w = w0 +w⊥ with w0 ∈ R and w⊥ ∈ R⊥.

R is the “relevant” subspace defined by our beliefs, as expressed by the
expected return vector ρ. It is relevant in the sense that its complemen-
tary component w⊥ has zero expected return.

The portfolio preference relation defined above may now be re-written
as

v � w if and only if vT
0r ≥ wT

0r for all r ∈ Q

where w0 and v0 are the relevant components of w and v respectively.
Note now we have two very different ways of expressing the same pref-
erence relation among portfolios. On the one hand we may compare
portfolios v and w versus the returns in the cone Q while on the other
hand we may compare the relevant parts of each portfolio versus all ex-
pected returns in the half-spaceQ. These two formuations are equivalent
in terms of the preference relation they yield, but as we shall see in Sec-
tion 2.3 the half-space formulation may be generalized to the case of
preference relations arising from portfolio sorts.

2.2 The set of returns consistent with a sort

In this section we tackle in more detail the notion of portfolio sorts and
formalize some notation. We define the key object of study in relation to
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portfolio sorts, which is the set of expected returns which are consistent
with a sort. Intuitively this is the set of all possible expected returns
which could be the actual set of expected returns given an investors be-
liefs.

We start with an investor who possesses a list of n stocks with ex-
pected return r = (r1, . . . , rn) and covariance matrix V . We assume the
investor does not know r but has m distinct beliefs about the relation-
ship between the components of r , expressed by m different sets of
inequalities. In this sense each belief is a linear inequality relationship
among the expected returns. As an example, a belief might be of the
form r4 ≥ r8 or 4r2+2r3 ≥ r4. We restrict our attention to homogeneous
linear relationships, with no constant term. Thus, for example, we do not
allow beliefs of the form “the average of r1 and r2 is at least 3% annual.”

Each belief may be expressed in a mathematically compact form as
a linear combination of expected returns being greater than or equal to
zero. For example,

4r2 + 2r3 − r4 ≥ 0.

In this way we may place the coefficients of such inequalities into a col-
umn vectorD1 and write the inequality in the formDT

1r ≥ 0. In the above
example we would have

D1 = (0,4,2,−1,0, . . . ,0)T.

We can collect together all beliefs intom column vectorsD1, . . . ,Dm con-
taining the coefficients of the inequalities as above. We call each vector
Dj a belief vector, and our aim is to look at these in their totality.

The total set of beliefs may succinctly be expressed as Dr ≥ 0, where
D is the m × n belief matrix whose rows are DT

1, . . . ,DT
m, and a vector

is ≥ 0 if and only if each of its components is nonnegative. We do not
require that the belief vectors be independent, and we allow m < n,
m = n or m > n, that is, we may have any number of beliefs relative
to the number of assets that we wish. The only restriction on the set of
beliefs that our method requires is that the set of beliefs admits a set
of expected returns with a nonempty interior; this rules out the use of
certain opposing inequalities to impose equality conditions.

A vector r of expected returns is consistent with D if it satisfies the
given set of inequality conditions. That is, a consistent return vector is
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one that could occur given our beliefs. We write

Q =
{
r ∈ Rn

∣∣Dr ≥ 0
}

(3)

=
{
r ∈ Rn

∣∣DT
jr ≥ 0 for each j = 1, . . . ,m

}
for the set of consistent expected returns. This is a cone in the space Rn

of all possible expected returns, and it is the natural generalization of
(1) to the case of inequality information. Any vector r ∈ Q may be the
actual expected return vector.

A straightforward generalization of the classic construction in Sec-
tion 2.1 would now assert that v � w if and only if vTr ≥ wTr for all
r ∈ Q. However it will turn out that this is not the most useful definition
since it brings in the orthogonal components.

We now give a simple example. This is the motivation for our entire
work, but the real power of our approach is illustrated by the rich variety
of examples in Section 4.

Complete sort The simplest example is that of a complete sort where
we have sorted stocks so that

r1 ≥ r2 ≥ · · · ≥ rn.

We have m = n− 1 beliefs of the form rj − rj+1 ≥ 0 for j = 1, . . . , n− 1.
The belief vectors are of the form Dj = (0, . . . ,0,1,−1,0, . . . ,0)T, and the
matrix D is (empty spaces are zeros)

D =


DT

1

...

DT
m

 =


1 −1

1 −1
. . . . . .

1 −1

 . (4)

The consistent cone is a wedge shape in Rn, with a “spine” along the
diagonal (1, . . . ,1) direction.

2.3 The preference relation arising from a portfolio sort

In this section we show that there is a unique preference relation associ-
ated with a portfolio sorts. The preference relation extend the preference
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relation � of Section 2.1 to the case of inequality beliefs in a natural way.
Our main tool is an orthogonal decomposition of the return space and
of the portfolio space into two linear subspaces. Recalling the definition
(3), we set

R⊥ =
{
r ∈ Rn

∣∣Dr = 0
}
= Q∩ (−Q)

R = (R⊥)⊥ =
{
w ∈ Rn

∣∣wTr = 0 for all r ∈ R⊥
}

By standard linear algebra, R = span
(
D1, . . . ,Dm

)
=
{
DTx

∣∣x ∈ Rm }, the
subspace spanned by the rows of D. Again, R is the “relevant” subspace.

For any portfolio w we can again write

w = w0 +w⊥ with w0 ∈ R and w⊥ ∈ R⊥.

We want to define preference only in terms of the component w0 that is
relevant to our beliefs, ignoring the orthogonal component w⊥. Equiv-
alently, we want to compare portfolios using only components of the
return vector for which we have a sign belief, ignoring the perpendicular
components which may have either sign.

If w and v are two portfolios, decompose them into parallel parts
w0, v0 ∈ R and perpendicular parts w⊥, v⊥ ∈ R⊥. Then we define

v � w if and only if vT
0r ≥ wT

0r for all r ∈ Q.

Since any candidate return vector r = r0 + r⊥ may be similarly decom-
posed, with wTr = wT

0r0 +wT
⊥r⊥, an equivalent characterization is

v � w if and only if vTr ≥ wTr for all r ∈ Q,

where
Q = Q∩ R.

That is, it is equivalent whether we test the relevant part of the portfolio
weight vector against all consistent returns, or the entire weight vector
against returns for which we have a sign belief.

We further define strict preference as

v � w if and only if v � w and w è v ,

which is equivalent to stating
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v � w if and only if vTr ≥ wTr for all r ∈ Q,
and vTr > wTr for at least one r ∈ Q.

This notion of preference does not mean that portfolio w produces
a higher return than portfolio v for every consistent return r , since the
portfolios w and v may have different exposure to components of the
return vector about which we have no information or opinion, and which
may have either sign.

For example, in the complete sort case we write

w =
n−1∑
i=1

xiDi + xn (1, . . . ,1)T,

where x1, . . . , xn are real numbers. The “relevant” part of our beliefs is
spanned by the vectors Di. A long position in D1 = (1,−1,0, . . . ,0)T is an
investment in the belief that stock 1 has a higher expected return than
stock 2; for a universe of n stocks, there are n − 1 belief vectors. The
single remaining dimension is spanned by (1, . . . ,1)T, a vector which has
no significance in the context of our sort information.

This definition is weak since not every pair of portfolios w,v can be
compared. If here are some r ∈ Q for which wT

0r > vT
0r , and also some

r ∈ Q for which vT
0r > wT

0r , then neither v � w nor w � v . In Section 3
we refine the definition to permit such comparisons, but for now we
explore the consequences of this rather uncontroversial definition.

2.4 Efficient portfolios

In MPT investors seek out portfolios that provide the maximum level
of expected return for a given level of variance. Such portfolios are
called efficient. Viewing efficient portfolios as those which are maximally
preferable under the preference relation of Section 2.1 our goal is now to
identify “maximally preferable” portfolios under the preference relation
arising from a sort, subject to the constraints imposed by risk limits, to-
tal investment caps, or liquidity restrictions. These constraints are just
as important as the preference definition in constructing optimal portfo-
lios. In this section we prove two technical theorems which pave the way
for calculating efficient portfolios in the case of portfolio sorts. This will
prove more than a strictly academic exercise since in the end not only do
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we show that efficient portfolios exist, but we identify precisely which
portfolios are efficient and in the case of a risk budget we show how to
construct them.

LetM⊂ Rn denote the budget constraint set. This is the set of allow-
able portfolio weight vectors, those that satisfy our constraints. We say
that

w is efficient in M if there is no v ∈M with v � w.

That is, there is no other allowable portfolio that dominates w, in the
sense defined above. This does not mean that w � v for all v ∈ M;
there may be many v for which neither w � v nor v � w.

We define the efficient set M̂ ⊂M as

M̂ =
{
w ∈M

∣∣w is efficient in M
}
.

The efficient portfolios are far from unique and in fact for typical con-
straint sets and belief structures, M̂ can be rather large. Nonetheless the
construction of the efficient set already gives a lot of information.

The goal of this section is to characterize efficient points in terms
of the consistent cone Q and the constraint set M. From the examples
in Section 2.5 it is clear that reasonable sets M are convex, but do not
typically have smooth surfaces. For this reason, we need to be somewhat
careful with the mathematics.

Our main result in this section is the two theorems below: portfolio
w is efficient in M if and only if M has a supporting hyperplane at w
whose normal lies in both the cone Q and the hyperplane R. To give
the precise statement we need some definitions. These are based on
standard constructions (Boyd and Vandenberghe 2004) but we need some
modifications to properly account for our orthogonal subspaces.

For any set A ⊂ Rn, we define the dual (or polar ) set

A∗ =
{
x ∈ Rn

∣∣ xTy ≥ 0 for all y ∈ A
}

Thus v � w if v −w ∈ Q∗
, or equivalently, if v0 −w0 ∈ Q∗. It is also

useful to define the interior of the consistent cone

Q◦ =
{
r ∈ Rn

∣∣Dr > 0
}

and its planar restriction, the relative interior of Q in R,

Q◦ = Q◦ ∩ R.
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All of our sets have linear structure along R⊥: we may write Q = Q⊕R⊥
and Q◦ = Q◦ ⊕R⊥, where ⊕ denotes orthogonal sum. As a consequence,
Q◦ = ∅ if and only if Q◦ = ∅.

A normal to a supporting hyperplane for M at w is a nonzero vector
b ∈ Rn such that bT(v −w) ≤ 0 for all v ∈M. A strict normal is one for
which bT(v −w) < 0 for all v ∈M with v 6= w.

Now we can state and prove our two theorems that characterise the
relationship between normals and efficiency.

Theorem 1 Suppose that M has a supporting hyperplane at w whose
normal b ∈ Q. If b is a strict normal, or if b ∈ Q◦, then w is efficient.

Theorem 2 Suppose that Q has a nonempty interior, and suppose that
M is convex. Ifw is efficient inM, then there is a supporting hyperplane
to M at w whose normal b ∈ Q.

Since we have not assumed smoothness, these theorems apply to non-
smooth sets having faces and edges. In the next section, we show how to
determine the efficient sets explicitly for the examples of most interest.

Proof of Theorem 1 First, suppose that b ∈ Q is a strict normal. If there
is a v ∈M with v � w, then in particular v � w, that is, (v −w)Tr ≥ 0
for all r ∈ Q. But this contradicts the hypothesis.

Second, suppose that b ∈ Q◦ is a normal, that is, that bT(v −w) ≤ 0
for all v ∈M. Suppose there is a v ∈M with v � w, that is, (v−w)Tr ≥
0 for all r ∈ Q; then (v−w)Tb = 0. Since b ∈ Q◦, for any s ∈ R, b+εs ∈ Q
for ε small. Then (v −w)T(b + εs) ≥ 0, which implies (v −w)Ts = 0 for
all s ∈ R, so v −w ∈ R⊥. But then it is impossible that (v −w)Tr > 0
for any r ∈ Q, so v æ w.

Simple examples show that the strictness conditions are necessary.

In proving Theorem 2, we must make use of the set

K =
{
w ∈ Rn

∣∣w � 0
}

=
{
w
∣∣wTr ≥ 0 for all r ∈ Q and wTr > 0 for at least one r ∈ Q

}
=
{
w
∣∣wT

0r ≥ 0 for all r ∈ Q and wT
0r > 0 for at least one r ∈ Q

}
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By the last representation, we have K = K0 ⊕ R⊥ with K0 ⊂ R.

Lemma K is convex, and K ∪ {0} is a convex cone.
Proof For w1,w2 ∈ K and α,β ≥ 0, we must show w̄ = αw1 + βw2 ∈ K
for α and β not both zero. Clearly w̄Tr ≥ 0 for r ∈ Q. And letting ri ∈ Q
be such that wT

i ri > 0 and setting r̄ = αr1+βr2 (Q is a convex cone), we
have w̄Tr̄ = α2wT

1r1 + β2wT
2r2 +αβ

(
wT

1r2 +wT
2r1
)
> 0.

Lemma If Q◦ is nonempty, then Q∗ ⊂ K ∪ R⊥.
Proof Take any w ∈ Q∗

, so wTr ≥ 0 for all r ∈ Q. Choose r0 ∈ Q◦;
then r0+ εs ∈ Q for all s ∈ R and for all ε small enough. If w ∉ R⊥, then
there are s so wTs 6= 0 and hence if wTr0 = 0 there would be r ∈ Q with
wTr < 0. Thus we must have wTr0 > 0 and w ∈ K.

Lemma If Q◦ is nonempty, then Q∗ ⊂ cl(K), where cl(·) is closure.
Proof We need to show that R⊥ ⊂ cl(K). But the previous Lemma but
one showed that 0 ∈ cl(K), and the result follows from K = K0 ⊕ R⊥.

The following facts are more or less standard; they are either proved in
Boyd and Vandenberghe (2004) or are quite simple:

If A ⊂ Rn is a closed convex cone, then (A∗)∗ = A.
If A ⊂ B, then B∗ ⊂ A∗.
cl(A)∗ = A∗.

Proof of Theorem 2 Since w is efficient, the convex sets w +K and M
are disjoint. By the Supporting Hyperplane Theorem,M has a supporting
hyperplane at w whose normal b has bT(v −w) ≥ 0 for all v −w ∈ K.
That is, b ∈ K∗ and we need b ∈ Q: we must show K∗ ⊂ Q.

This follows from the Lemmas: K∗ = cl(K)∗ ⊂
(
Q∗)∗ = Q.

This theorem is also true if M is the boundary of a convex set, since
it relies only on the existence of a separating hyperplane at w.

Need for interior As an example, suppose we believe that the “market,”
defined by equal weightings on all assets, will not go either up or down,
but we have no opinion about the relative motions of its components.
That is, we believe r1 + · · · + rn = 0. We might attempt to capture this
in our framework by setting D1 = (1, . . . ,1)T and D2 = (−1, . . . ,−1)T; the
consistent cone is then Q =

{
r = (r1, . . . , rn)

∣∣ r1 + · · · + rn = 0
}

which
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has empty interior. There are no pairs of portfolios for which w � v ,
and every point is efficient. The above theorems do not tell us anything
about normals to M.

Connection to classic theory Suppose we are given an expected return
vector ρ. In our new framework, we introduce the single belief vector
D1 = ρ. We are thus saying that we believe the actual return vector may
be any r ∈ Q; that is, we only believe that ρTr ≥ 0. This is a weaker
statement than the belief that r = ρ. However, the procedure outlined
here tells us to ignore the orthogonal directions, about which we have
no sign information. At any efficient point we have a normal b ∈ Q,
that is b = λρ for some λ > 0. This is exactly the same result that we
would have obtained in the classic formulation, and our new formulation
extends it to more general inequality belief structures.

Complete sort For constructing examples, it is useful to have an explicit
characterization of Q as a positive span of a set of basis vectors. That
is, we look for an n×m matrix E so that Q =

{
Ex

∣∣ x ≥ 0 in Rm
}
.

In general, finding the columns E1, . . . , Em of E is equivalent to finding
a convex hull. But ifD1, . . . ,Dm are linearly independent, which of course
requires m ≤ n, then E may be found as the Moore-Penrose pseudo-
inverse of D: span(E1, . . . , Em) = span(D1, . . . ,Dm) and ET

iDj = δij .
For a single sort, the dual of the (n− 1)×n matrix D from (4) is the

n× (n− 1) matrix

E = 1
n



n− 1 n− 2 n− 3 · · · 2 1
−1 n− 2 n− 3 · · · 2 1
−1 −2 n− 3 · · · 2 1
...

...
. . . . . .

...
−1 −2 −3 · · · −(n− 2) 1
−1 −2 −3 · · · −(n− 2) −(n− 1)


(5)

For n = 3, the difference vectors and their duals are

D1 =

 1
−1
0

 , D2 =

 0
1
−1

 , E1 =
1
3

 2
−1
−1

 , E2 =
1
3

 1
1
−2

 ,
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D1

D2

E1

E2

Q

Q

Q
E2

E1

M

Figure 1: Geometry for 3 assets, with two sorting conditions. The view is
from the direction of (1,1,1)T, so the image plane is R. The left panel is
in the space of expected return r , where Q is the consistent set; the full
three-dimensional shape is a wedge extending perpendicular to the image
plane. The right panel shows a smooth constraint set M of portfolio
vectors w; the efficient set is the shaded arc, where the normal is in the
positive cone of E1, E2. Along this arc, the normal must be in the image
plane; if M is curved in three dimensions, then the efficient set is only
this one-dimensional arc.

so that DT
iEj = δij . The angle between D1 and D2 is 120◦, the angle

between E1 and E2 is 60◦, and they all lie in the plane R whose normal is
(1,1,1)T, the plane of the image in Figure 1.

2.5 Examples of constraint sets

We now demonstrate the computation of efficient sets in the most com-
mon situations that arise in the practice of investment management:
when portfolio constraint sets are based a total risk budget or on a max-
imum investment constraint, with possible additional constraints from
market neutrality or transaction costs. As we have noted, the efficient
sets are defined by two independent but equal pieces of input:

1. The belief vectors D about the expected return vector r .

2. The constraint set M imposed on the portfolio w.
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We will consider several different structures for M, and within each we
will construct the efficient set for the complete sort example. In Section 4
we consider more general beliefs.

2.5.1 Total investment constraint

In our first example, we are limited to total investment at mostW dollars,
with long or short positions permitted in any asset. We take M=

{
w ∈

Rn
∣∣ |w1| + · · · + |wn| ≤ W

}
.

We first consider the case of a single sorted list. Start with a portfolio
weighting w = (w1, . . . ,wn). If wj > 0 for some j = 2, . . . , n, then form
the portfolio w′ = (w1 +wj, . . . ,0, . . . ,wn), in which the component wj
has been set to zero by moving its weight to the first element. This has
the same total investment as w if w1 ≥ 0, and strictly less if w1 < 0.
It is more optimal since the difference w′ − w = (wj, . . . ,−wj, . . . ) =
wj(D1 + · · · +Dj−1) is a positive combination of difference vectors.

Similarly, if any wj < 0 for j = 1, . . . , n− 1, we define a more optimal
portfolio w′ = (w1, . . . ,0, . . . ,wn +wj), which has the same or less total
investment, and is more optimal than w.

We conclude that the only possible efficient portfolios are of the form
w = (w1,0, . . . ,0,wn) with w1 ≥ 0, wn ≤ 0, and |w1| + |wn| = W , and
it is not hard to see that all such portfolios are efficient. This is the
classic portfolio of going maximally long the most positive asset, and
maximally short the most negative asset. In this example, the covariance
matrix plays no role.

By similar reasoning, the efficient portfolios in the case of multiple
sectors go long the top asset and short the bottom asset within each
sector; any combination of overall sector weightings is acceptable.

2.5.2 Risk constraint

Here we take M =
{
w ∈ Rn

∣∣wTVw ≤ σ 2
}
, where V is the variance-

covariance matrix of the n assets and σ is the maximum permissible
volatility. This set is a smooth ellipsoid, and at each surface point w it
has the unique strict normal b = Vw (up to multiplication by a positive
scalar). Conversely, given any vector b ∈ Rn, there is a unique surface
point w in M having normal b; w is a positive multiple of V−1b. As
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noted above, b is in effect a vector of imputed returns, and any such
vector correponds to exactly one efficient point on M.

By the theorems, w ∈ M is efficient if and only if b ∈ Q. So we may
parameterize the set M̂ of efficient points by b = Ex with x ∈ Rm with
x ≥ 0. We may write this explicitly as

w = V−1
m∑
j=1

xj Ej.

with appropriate scaling so wTVw = σ 2.
The efficient set M̂ is a portion of the surface of the risk ellipsoid

intersected with the plane where the local normal is in Q. For example,
in the case of a single sort it is a distorted simplex with n − 1 vertices
corresponding to only a single xj being nonzero. In general, each of
the n! possible orderings gives a different set M̂, and the set of these
possibilities covers the whole set M∩ V−1Q. That is, the size of M̂ is
1/n! of the entire possible set.

To select a single optimal portfolio we must pick one point within this
set. For example, we might take the “center” point with x = (1, . . . ,1),
which gives b = E1 + · · · + Em. In the case of a single sorted list, this
gives the linear return vector

bi =
n−1∑
j=1

Eij =
n+ 1

2
− i.

Of course, this is to be multiplied by V−1 and scaled to get the actual
weights. In Section 3 we propose a more logical definition of “center”
point, and in Section 5 we demonstrate that the difference is important.

Figure 2 shows the unique efficient portfolio in the case of two assets;
since there is only one vector E1 there is only a single point.

2.5.3 Risk constraint with market neutrality

Suppose that we impose two constraints. We require that the portfolio
have a maximum level of total volatility as described above. In addition,
we require that the portfolio be market-neutral, meaning that µTw = 0,
where µ is a vector defining the market weightings. We assume that
µ ∉ span(D1, . . . ,Dm). For example, for equal weightings, µ = (1, . . . ,1)T.
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Figure 2: Optimal portfolios for two assets. The lower solution in this
picture is the unique efficient point with no constraint of market neutral-
ity; the upper solution is the market-neutral solution. The risk ellipsoid
takes σ1 = 2σ2 and ρ = 0.5.

The setM is now an ellipsoid of dimension n−1. At “interior” points
where wTVw < σ 2, it has normal ±µ. At “boundary” points where
wTVw = σ 2, it has a one-parameter family of normals B = {αVw +
βµ |α ≥ 0, β ∈ R }. Proof: We need to show bT(w − v) ≥ 0 for all b ∈ B
and all v ∈ M. But bT(w − v) = α(wTVw −wTVv) + β(µTw − µTv) =
1
2α(w − v)TV(w − v) + 1

2α
(
wTVw − vTVv

)
≥ 0 since µTw = µTv = 0,

wTVw = σ 2, vTVv ≤ σ 2, and V is positive definite. It is clear that these
are the only normals since the boundary of M has dimension n−2. The
strict normals to M at w are those with α > 0.

For w to be efficient, we must have B ∩Q 6= ∅. That is, there must
exist α ≥ 0 and β not both zero and x1, . . . , xm ≥ 0, not all zero, so that

αVw + βµ = x1E1 + · · · + xmEm.

Since µ ∉ span(E1, . . . , Em), we must have α > 0, and this is equivalent
to

Vw = x1E1 + · · · + xmEm + yµ
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where y is determined so that µTw = 0. We may explicitly parameterize
the set of efficient w by

w = x1V−1E1 + · · · + xmV−1Em + yV−1µ

with

y = −x1µTV−1E1 + · · · + xmµTV−1Em
µTV−1µ

,

or

w = V−1
m∑
j=1

xj Ẽj, Ẽj = Ej −
µTV−1Ej
µTV−1µ

µ.

As x1, . . . , xm range through all nonnegative values, this sweeps out all
efficient w, with suitable scaling to maintain wTVw = σ 2. As with the
previous case, this is a rather large efficient family, but in the next section
we will show how to choose a single optimal element. Figure 2 shows the
extremely simple case of two assets.

2.5.4 Transaction cost limits

An extremely important issue in practice is the transaction costs that will
be incurred in moving from the current portfolio to another one that has
been computed to be more optimal. If portfolios are regularly rebalanced,
then the holding period for the new portfolio will be finite, and the costs
of the transition must be directly balanced against the expected increase
in rate of return.

One common way to formulate this tradeoff follows the formulation
of volatility above: a rigid limit is given on the transaction costs that may
be incurred in any proposed rebalancing, and the efficient portfolios are
sought within the set of new portfolios that can be reached from the start-
ing portfolio without incurring unacceptable costs. In this formulation,
our procedure naturally incorporates transaction cost modeling.

Let w0 be the current portfolio, and w be a candidate new portfolio.
In order to rebalance w0 to w, wi−w0

i shares must be bought in the ith
asset, for i = 1, . . . , n; if this quantity is negative, then that number of
shares must be sold.

A popular and realistic model (Almgren and Chriss 2000; Almgren
2003) for market impact costs asserts that the cost per share of a trade
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execution schedule is proportional to the kth power of the “rate of trad-
ing” measured in shares per unit time, where k is some positive exponent;
k = 1

2 is a typical value. Assuming that the program is always executed
in a given fixed time, and recalling that the per-share cost is experienced
on wi −w0

i shares, the total cost of the rebalancing is

rebalancing cost ≡ F(w) =
n∑
i=1

ηi
∣∣wi −w0

i
∣∣k+1

whereηi is a stock-specific liquidity coefficient (we neglect “cross-impacts,”
where trading in stock i affects the price received on simultaneous trades
in stock j).

If a total cost limit C is imposed, then the constraint set becomes

M = M0 ∩
{
w ∈ Rn

∣∣F(w) ≤ C },
where M0 is a preexisting constraint set that may take any of the forms
describe above such as total risk limit. Since k > 0, F is a convex func-
tion and hence its level sets are convex. Since M0 is assumed convex,
the intersection M is also a convex set, and the theorems above apply.
Computing the efficient set is then a nontrivial problem in mathemati-
cal programming, though for the important special case k = 1

2 , methods
of cone programming may be applied. The geometry is illustrated in
Figure 3. Note that the intersection does not have a smooth boundary
although each individual set does; in the case shown here, efficient port-
folios will most likely be at the bottom right corner of the dark region.

3 Optimal Portfolios

In this section we extend the portfolio preference preference relation de-
veloped in the previous section to produce a unique efficient portfolio
among the efficient set M̂. The previous section’s preference relation
ranks one portfolio relatively higher than another when its expected re-
turn is greater than the other’s across all expected returns consistent with
the portfolio sort. This relation leads to the efficient set, but produces
no way of distinguishing among portolios in the consistent set.

In this section we refine the preference relation to distinguish between
efficient portfolios. We say that we prefer one portfolio to another when
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w
1

w
2

Figure 3: Transaction cost limit in combination with risk limit, for two
assets. The ellipsoid represents the total risk limit, with σ1/σ2 = 2 and
ρ = 0.5. The curved diamond represents the new portfolios that are
reachable from the given starting portfolio with a limit on total transition
cost; η2/η1 = 2.5, and the exponent k = 1

2 . The dark shaded region is the
set of new portfolios that satisfy both constraints.

its expected returns are greater than the other’s for a greater fraction of
the set of expected returns consistent with our beliefs. We show how to
make the previous statement precise by equipping the consistent cone
with any distribution from a broad class of distributions that live on this
cone. This allows us to quantify the subjective likelihood of any of a range
of expected returns being the actual expected returns. We then show that
the preference relation thus defined is completely captured by a linear
function on the space of portfolios. We show that this linear function is
defined by the geometric centroid (with respect to the measure) of the
consistent cone, so that a maximum of this linear function on a budget
constraint set is both efficient and has the property that compared with
any other portfolio, this portfolio has a higher expected return greater
than fifty percent of the time. It turns out that the centroid is rather
easy to compute in practice and therefore computing optimal portfolios
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is reduced to maximizing a certain linear function on a known budget
constraint set.

3.1 The centroid

The fundamental idea behind our refining of the previous preference re-
lation is to abandon the idea of comparing only those portfolios for which
all expected returns are better the other’s and replace it with the weaker
idea that more expected returns are better. The latter notion clearly ap-
plies to all portfolios once we make sense of what “more” means. To do
this requires placing a suitably defined probability measure on the set
of consistent expected returns. We can then define that one portfolio
is preferred to another precisely when the measure of the set where the
one has greater expected returns than the other is greater than where the
other has greater expected returns. We then prove the remarkable fact
that for a rather broad class of measures this preference relation is de-
fined precisely by the linear function defined by the center of mass–that
is, the centroid–of the consistent set.

Extended preference definition Consider two portfoliow and v , along
with their “relevant” partsw0 and v0 as defined in Section 2.3. In general,
unless w � v or v � w, there will be some consistent expected returns
for whichw0 has an expected return superior to v0, and a complementary
set of expected return vectors for whichv0 gives a higher expected return.
Only if w � v or v � w do all consistent expected return vectors give
better results for one portfolio or the other.

To define the extended preference relation we need to introduce some
notation. Although the portfolio vectors and the return vectors both
are elements of the vector space Rn, it will be convenient to denote the
space of return vectors by R and the space of portfolio vectors by W ;
the inner product wTr = 〈w,r〉 defines a bilinear map W ×R → R. For
any portfolio vector w ∈W , we define Qw ⊂ Q by

Qw =
{
r ∈ Q

∣∣wT
0r ≥ 0

}
.

Clearly,Qw andQ−w are complementary in the sense thatQw∪Q−w = Q.
We could equally well formulate the comparison by using a coneQw ={
r ∈ Q

∣∣ wTr ≥ 0
}
. These formulations will be equivalent under the
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mirror symmetry assumption below, but for now we continue as we have
started.

For two portfoliosw and v , we now consider the complementary sets
Qw0−v0 and Qv0−w0 . Here Qw0−v0 is the set of consistent return vectors
for which the portfolio w will be at least as large an expected return as
v , comparing only the relevant partsw0, v0. We now define the extended
preference relation, retaining the same notation v � w as meaning v is
preferred to w.

Let µ be a probability measure onR so that µ(Q) = 1. We say
that v � w (with respect to µ) if µ

(
Qv0−w0

)
≥ µ

(
Qw0−v0

)
.

This definition includes and extends the definition of the preference re-
lation of the previous section. Stated in these terms, that preference
relation said that v � w if µ

(
Qv0−w0

)
= 1.

We write v ' w if µ
(
Qv0−w0

)
= µ

(
Qw0−v0

)
and we write v � w

if µ
(
Qv0−w0

)
> µ

(
Qw0−v0

)
.

The above definition is fairly broad as it defines one preference relation
for every probability measure on Q. Below we make a specific choice for
the measure µ. But for now we assume that a density has been given,
and we follow through on some of the geometrical consequences.

The Centroid In order to find efficient portfolios with the new prefer-
ence relation, we will identify a real-valued function h(w) on the space
of portfolios W such that w � v if and only if h(w) > h(v). Then the
maximizer of this function on a given convex budget set is the unique
efficient portfolio under our preference relation.

To identify the function h(w), we consider its level sets, defined by
the relation w ' v for a given portfolio v . Any such w must satisfy the
condition

µ
(
Qw0−v0

)
= µ

(
Qv0−w0

)
= 1

2
,

where µ is the measure defined above.
To understand this properly we look at the space H of hyperplanes

through the origin in R. For w ∈W define w⊥ ⊂ R by

w⊥ =
{
r ∈ R

∣∣wTr = 0
}
.
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In this way each w ∈W defines a hyperplane H through the origin in R
whose normal isw. LetH be the set of all such hyperplanes. Conversely,
for any H ∈ H , there is a one-parameter family of normals w so that
H = w⊥: if w is a normal to H then so is λw for any λ ∈ R.

Now, for a given hyperplane H = w⊥ ∈H , we say that H bisects the
set of consistent returns Q if and only if

µ
(
Qw

)
= µ

(
Q−w

)
= 1

2
.

Clearly, w ' v if and only if the hyperplane (w0 − v0)⊥ bisects Q.
Let P be the subset of H of all hyperplanes through the origin that

bisect Q. Let c be the centroid or center of mass of Q; that is, the mean
of all points in Q under the measure µ as defined by the integral

c =
∫
r∈Q

r dµ.

The following standard result characterises P in terms of c:

Theorem 3 The line joining the origin and the centroid is the intersec-
tion of all hyperplanes through the origin in R that bisect Q:{

λc
∣∣ λ ∈ R } = ⋂

H∈P
H.

Since we are only interested in rays rather than points, we often say that
c “is” this intersection.

We now make the following assumption about the measure µ:

µ has mirror symmetry about the plane Q.

As a consequence, c ∈ Q and we have the minor

Lemma For any w ∈W , wTc = wT
0c.

Proof Write w = w0 +w⊥ and observe that wT
⊥c = 0 since c ∈ Q.

The symmetry assumption is natural given our lack of information about
return components orthogonal to our belief vectors, and it leads imme-
diately to a characterization of our portfolio preference relation in terms
of the centroid.
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Theorem 4 Let w,v ∈W be portfolios and c be the centroid vector as
defined above. Then we have

w ' v ⇐⇒ (w − v)Tc = 0

Proof By definition, w ' v if and only if µ(Qw0−v0) = µ(Qv0−w0). This
means precisely that (w0 −v0)⊥ must bisect Q. That is, (w0 −v0)⊥ ∈ P.
This implies that c ∈ (w0 − v0)⊥, or in other words (w0 − v0)Tc = 0. By
the Lemma, this is equivalent to (w − v)Tc = 0.

Conversely, if (w − v)Tc = 0 then (w0 − v0)Tc = 0; this means that
c ∈ (w0 − v0)⊥, which implies by Theorem 1 that (w0 − v0)⊥ ∈ P. That
is, that w ' v .

3.2 Centroid optimal portfolios

The theorems of the previous section characterize our portfolio prefer-
ence relation in terms of the centroid vector c. This means that the entire
problem of calculating efficient or optimal portfolios is reduced to ma-
nipulations involving the centroid vector: two portfolios are equivalently
preferable if and only if wTc = vTc. We now cast the notion of efficiency
in terms of the centroid vector c.

Given a convex budget set M, a point w ∈M is efficient (in the sense
that there is no portfolio inM preferred to it) if and only if (v−w)Tc ≤ 0
for all v ∈M. That is,Mmust have a supporting hyperplane atw whose
normal is c; as described in Section 2.4. We now summarize this in a
formal definition.

Definition Let c be the centroid vector related to a portfolio sort. Let
M⊂W be a convex budget constraint set. A candidate portfoliow ∈M
is centroid optimal if there is no portfolio v ∈M such that vTc > wTc.

We now state our main result which allows us to calculate centroid opti-
mal portfolios in practice.

Theorem 5 If w is centroid optimal, then M has a supporting hyper-
plane at w whose normal is c. Hence, by Theorem 4, it is efficient with
respect to the equivalance relation defined in Section(2.3).
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In order forw to be efficient in the sense of Section 2.4, we must further
require that c ∈ Q = Q ∩ R. This will be true if and only if the density
µ is symmetric about the plane R; symmetry in this sense is part of our
assumptions in the next section.

Just as in classic portfolio theory (Section 2.1), the magnitude of the
vector c has no effect on the resulting optimal portfolio, given a specified
budget constraint set. In effect, we consider the centroid c to be defined
only up to a scalar factor; we think of it as a ray through the origin
rather than a single point. In Appendix A we present efficient techniques
for computing the centroid vector c, both for single portfolios and for
collections of sectors.

The most common budget constraint is a risk constraint based on to-
tal portfolio variance as in Section 2.5.2. If the portfolio constraints are
of more complicated form involving, for example, position limits, short
sales constraints, or liquidity costs relative to an initial portfolio, then all
the standard machinery of constrained optimization may be brought to
bear in our situation. Constraints on the portfolio weights are “orthogo-
nal” to the inequality structure on the expected returns.

3.3 Symmetric distributions

The above work refines the portfolio preference relation of Section 2
to yield a unique optimal portfolio in terms of the centroid vector of
the consistent cone. Our refined preference relation and the centroid
depend on the specification of the distribution of expected returns, which
introduces an element of parametrization into the formulation of our
problem in that it characterizes how the expected returns consistent with
a sort are likely to be distributed.

What is the correct probability distribution on the space of consis-
tent expected returns? By hypothesis, we have no information about the
expected return vector other than the inequality constraints that define
the consistent set (recall that we believe that the covariance structure is
not related to the expected moments). This forces us to make the most
“neutral” possible choice.

We assume that the probability density µ is radially symmetric about
the origin, restricted to the consistent coneQ. A radially symmetric den-
sity is one which is the same along any ray from the origin. That is, we



Almgren/Chriss: Optimal Portfolios Draft December 10, 2004 31

consider densities that can be written in the form µ(r) = f
(
|r |
)
g
(
r/|r |

)
where f(ρ) for ρ ≥ 0 contains the radial structure and g(ω)with |ω| = 1
contains the azimuthal structure. We then require that g(ω) be a con-
stant density, restricted to the segment of the unit sphere included in
the wedge Q. The radial function f(ρ) may have any form, as long as it
decreases sufficiently rapidly as ρ →∞ so that the total measure is finite.

For example, then-component uncorrelated normal distribution, with
density proportional to f(ρ) = ρn−1 exp

(
−ρ2/2R2

)
, is a candidate dis-

tribution. Or, we could choose a distribution uniform on the sphere of
radius R. In both of these examples, R is a typical scale of return magni-
tude, for example 5% per year, and may have any value.

An essential feature of our construction is that we do not need to
specify the value of the radius R or even the structure of the distribu-
tion: the relative classification of returns is identical under any radially
symmetric density. This will be apparent from the construction below,
and mirrors the observation in Section 2.1 that with a fixed risk budget,
the classic mean-variance portfolio depends only on the direction of the
expected return, not on its magnitude. In effect, since all the sets of
interest to us are cones, we measure their size by their angular measure.

Radial symmetry means geometrically that two points in return space
R have equal probability if they have the same Euclidean distance from
the origin: |r |2 = r 2

1 + · · · + r 2
n . It is not obvious that this distance is

the most appropriate measure; one might argue that the metric should
depend somehow on the covariance matrix. But, as we have argued in
Section 2, we assume that our information about the first moments of
the return distribution is independent of the second moments. Thus we
propose this as the only definition that respects our lack of information
aside from the homogeneous inequality constraints.

3.4 Computing the centroid

The key fact about the centroid vector is that we capture a rather com-
plicated equivalence relation for portfolios in a very simple geometric
construction. We have shown that if we have a formula for the centroid
then we transform the problem of finding efficient portfolios into a linear
optimization problem, which is solvable by known means. Equation 3.1
gives us the key to calculating the centroid for an arbitrary portfolio sort
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via a straightforward Monte Carlo approach.
In Appendix A we demonstrate how to do this Monte Carlo simulation

in some detail. The key observation about this approach is that it is
straightforward and directly related to Equation 3.1. The entire trick to
the computation is providing a method for randomly sampling from the
consistent cone Q associated to a given sort. This method, therefore,
works in principle for any sort, whether it be a complete sort, partial
sort, or even the cone associated to multiple sorts (see 4 for more on
this).

In the case of a complete sort the method for sampling from the con-
sistent cone Q boils down to generating a draw from an uncorrelated
n-dimensional Gaussian and then sorting the draw according to the sort.
This sorting process is equivalent to applying a sequence of reflections
in Rn that move the draw into the consistent cone. The Monte Carlo sim-
ulation is then the process of averaging of these draws which in effect
computes the integral in Equation 3.1.

In the case of a complete sort the averaging process is equivalent to
drawing from the order statistics of a Gaussian. The component asso-
ciated to the top ranked stock is a draw from the average of the largest
draw from n independent draws from a Gaussian, the next ranked stock
is the average of the second largest draw fromn independent draws from
a Gaussian, etc. We show in the appendix that this procedure produces
something very close to the inverse image of a set of equally spaced
points of the cumulative normal function (see section 4) for a picture of
what this looks like.

Thus, centroid optimal portfolios in the case of a complete sort are
equivalent to portfolios constructed by creating a set of expected returns
from the inverse image of the cumulative normal function, where the top
ranked stock receives the highest alpha, and the alphas have the same
order as the stocks themselves. So, the centroid optimal portfolio is the
same portfolio as the Markowitz optimal portfolio corresponding to a set
of expected returns that are normally distributed in the order of the cor-
responding stocks. This is remarkable in light of the completely general
framework from which this fact was derived. In a completely natural,
economic way, the optimal portfolio to trade is exactly that portfolio
derived in the Markowitz framework from a set of normally distributed
expected returns.

But, because our approach in this paper is completely general and
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applies to any portfolio sort, we can apply the method to a much broader
set of sorts than simply complete sorts. In the next section we examine
these in detail.

4 A Variety of Sorts

Above we outlined in detail how to calculate centroid optimal portfo-
lios. Our construction was completely general. We showed that given
the equivalence relation that states we prefer one portfolio to another
when the one’s expected return is greater than the other’s (on its set of
relevant direction) for returns consistent with the ordering more often
(with respect to a certain measure µ) than it is not greater. We showed
that this equivalance relation is completely characterized by the linear
function given by the centroid of the cone of consistent returns Q with
respect to µ.

The purpose of this section is to illustrate the variety of inequality cri-
teria to which our methodology can be applied, and to show the centroid
in all these cases.

4.1 Complete sort

To begin, we illustrate the simple sort used as an example in Section 2.
Figure 4 shows the centroid vector, for a moderate portfolio of 50 assets,
compared to the linear weighting. These vectors are defined only up to a
scalar constant; for the plot they have been scaled to have the same sum
of squares. As suggested in Section 2.5.2, the linear portfolio is a natural
way to smoothly weight the portfolio from the first (believed best) asset
to the the last (believed worst).

The linear portfolio in effect assigns equal weight to each difference
component. By comparison, the centroid portfolio curves up at the ends,
assigning greater weight to the differences at the ends than the differ-
ences in the middle of the portfolio. The reason for this is that typical
distributions have long “tails,”, so two neighboring samples near the end-
points are likely to be more different from each other than two samples
near the middle. In fact, the centroid profile looks like the graph of the
inverse cumulative normal distribution; this is indeed true when n is
reasonably large and is exploited in Appendix A.
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Figure 4: The centroid vector for a complete sort of 50 assets, compared
with linear weights. The centroid overweights very high and very low
ranked stocks while underweighting the middle. The weights have been
chosen so that the sum of the absolute value of each are the same.

4.2 Sector sorts

Next, we look at the case where we assume that each stock in our universe
is assigned to a distinct sector and that within each sector we have a
complete sort. If we have k sectors with mi stocks in sector i then we
can order our stocks as follows:

(r1, r2, . . . , rn1), (rn1+1, . . . , rn2), . . . , (rnk−1+1, . . . , rn)

with n1 = m1, n2 = m1 +m2, . . . , nk = m1 + · · · +mk = n. Then we
assume a sort within each group:

r1 ≥ · · · ≥ rn1 , rn1+1 ≥ · · · ≥ rn2 , · · · , rnk−1+1 ≥ · · · ≥ rn.

This is almost as much information about as in the complete sort case
except that we do not have information about the relationships at the
sector transitions. If there are k sectors, there are m = n − k columns
Dj of the form (0, . . . ,0,1,−1,0, . . . ,0)T, and the matrix D is of size (n−
k)×n. The consistent cone Q is a Cartesian product of the sector cones
of dimension m1, . . . ,mk.



Almgren/Chriss: Optimal Portfolios Draft December 10, 2004 35

As a specific example, if there are five assets, divided into two sectors
of length two and three, then

D =

 1 −1
1 −1

1 −1

 .
Orthogonal decomposition For k sectors, there are k orthogonal direc-
tions, corresponding to the mean expected returns within each sector.
R⊥ has dimension k, and R has dimension n− k.

Matrix structure The dual matrix is multiple copies of the single-sector
dual in (5).

Centroid profile Figure 5 shows the centroid portfolio for two sectors:
one sector has 10 assets and the other has 50 assets, for a total portfolio
size of n = 60. Within each sector, the vector is a scaled version of the
centroid vector for a single sector. Although the overall scaling of the
graph is arbitrary, the relative scaling between the two sectors is fixed
by our construction and is quite consistent with intuition. It assigns
larger weight to the extreme elements of the larger sector, than to the
extreme elements of the smaller sector. This is natural because we have
asserted that we believe the first element of the sector with 50 elements
dominates 49 other components, whereas the first element of the sector
with 10 elements dominates only 9 other assets.

4.3 Complete sort with long-short beliefs

As a modification of the above case, we imagine that the stocks are di-
vided into two groups: a “long” group that we believe will go up, and a
“short” group that we believe will go down. Within each group we addi-
tionally have ranking information. If ` is the number of long stocks, then
these beliefs may be expressed as

r1 ≥ · · · ≥ r` ≥ 0 ≥ r`+1 ≥ · · · ≥ rn
which is a total of m = n beliefs. This includes the special cases ` = n
when we believe all assets will have positive return, and ` = 0 when we
believe all will have negative return.
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Figure 5: The centroid portfolio for two sectors of sizes m1 = 10 and
m2 = 50.

To illustrate, let us take five assets, with the first two believed to have
positive return, the last three to have negative. Then n = 5, ` = 2, and

D =


1 −1

1
−1

1 −1
1 −1

 . (6)

Orthogonal decomposition For a complete sort with long-short classifi-
cation, there are no orthogonal directions sincem = n. Every component
of the return vector is relevant to our forecast. R⊥ = {0}, and R = Rn.

Matrix structure The dual matrix is (6),

E = D−1 =


1 1

1
−1
−1 −1
−1 −1 −1

 .
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Figure 6: The centroid vector for a single sector of 20 assets, with sorting
information plus the additional belief that the first 7 will have positive
return while the last 13 will have negative return.

Centroid profile Figure 6 shows the centroid vector with long/short
constraints, for the case n = 20 and ` = 7. This vector is not a simple
linear transformation of the centroid vector without the zero constraint;
its shape is more complicated.

4.4 Performance relative to index

We define an index to be a linear weighting of the assets

I = µ1 S1 + · · · + µn Sn

with
µj > 0 and µ1 + · · · + µn = 1.

We believe that the first ` stocks with overperform the index, and the
last n− ` will underperform, with 0 < ` < n. Thus our beliefs are

rj −
(
µ1r1 + · · · + µnrn

)
≥ 0, j = 1, . . . , `(

µ1r1 + · · · + µnrn
)
− rj ≥ 0, j = ` + 1, . . . , n.



Almgren/Chriss: Optimal Portfolios Draft December 10, 2004 38

and the belief matrix is

D =



1− µ1 · · · −µ` −µ`+1 · · · −µn
...

. . .
...

...
...

−µ1 · · · 1− µ` −µ`+1 · · · −µn
µ1 · · · µ` µ`+1 − 1 · · · µn
...

...
...

. . .
...

µ1 · · · µ` µ`+1 · · · µn − 1


Each of the belief vectors is orthogonal to (1, . . . ,1)T. Thus the n belief
vectors are in an (n− 1)-dimensional subspace, and cannot be indepen-
dents. But the cone Q =

{
Dr ≥ 0

}
has a nonempty interior

{
Dr > 0

}
; in

fact it contains the vector r = (1, . . . ,1,−1, . . . ,−1)T for which

(Dr)i =

2
(
µ`+1 + · · · + µn

)
, i = 1, . . . , `,

2
(
µ1 + · · · + µ`

)
, i = ` + 1, . . . , n.

Thus the theorems of Section 2 apply.

4.5 Partial and overlapping information

Below we review several different varieties of sorts that arise in practice.

Partial Sorts The centroid method works well for producing optimal
portfolios from partial sorts, that is, from sorts that do not extend across
an entire universe of stocks. The most natural way this arises in practice
is in the case of a universe of stocks broken up into sectors. In this case
a portfolio manager might have sorting criteria appropriate for stocks
within a sector but which do not necessarily work for stocks across sec-
tors.

Multiple Sorts In practice it is possible to have multiple sorting crite-
ria. For example one might sort stocks according their book-to-market
ratio and size, for example, the logarithm of market capitalization. These
characteristics provide two different sort, but the resulting sorts are dif-
ferent and hence it is impossible that they both be true. Nevertheless,
both contain useful information that it would be suboptimal to discard.
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Our portfolio optimization framework is valid in this case. LetQ1 and
Q2 be the consistent cones under the two different criteria (e.g., Q1 is
the consistent cone for the book-to-market sort, andQ2 is the consistent
cone for the size sort). To apply our methodology, we have to supply
a measure µ on the union of Q1 and Q2. We may do so by creating a
density that assigns a probability p of finding an expected return in Q1

and 1−p in Q2. The centroid of the combined set under this measure is
simply the weighted average of the two individual centroids. Using only
the inequality information given by the sorts for Q1 and Q2 that have
been specified, this is the only natural construction.

This formulation clearly applies to more than two nonoverlapping
weightings; we simply take the centroid of the combined set, which is an
equal-weighted combination of the individual centroids. As an example,
suppose that three orderings are given, and that two are close to each
other. Then this algorithm will produce a centroid close to the centroids
of the two close orderings.

Missing information The above logic clearly indicates how to proceed
when some information is considered unreliable. Suppose, for exam-
ple, that it is believed that in the middle one-third of the asset list, the
rankings have no significance. That is, the investor’s beliefs are that all
rankings within that subset are equally probable.

The extension of the above strategy says to simply compute the su-
perposition of the centroids of all the compatible orderings. The result
of this is simply to average the centroid components within the uncertain
index range.

5 Empirical Tests

In this section we provide empirical examples of applications of opti-
mization from ordering information using the linear, centroid, optimized
linear and optimized centroid algorithm. Throughout this section we
look to quantify the absolute and relative performance of the optimized
centroid portfolios to portfolios constructed using the other methodolo-
gies. In particular, we would like to study the significance of incorpo-
rating covariance information into portfolio formation, especially as it



Almgren/Chriss: Optimal Portfolios Draft December 10, 2004 40

pertains to improving performance relative to methods that omit this in-
formation. Since in practice many portfolio managers who use ordering
information ignore covariance information, we believe an important part
of this work involves examining the extent to which using this method
improves investment performance over existing methods. Put simply,
we have proved the theoretical superiority of the centroid optimization
method. Now we examine its practical significance.

We take two approaches to this, one based on studying an actual port-
folio sort on real historical data, and the other based on simulations. In
both approaches we create backtests over a period of time and for each
time within the backtest period produce portfolios using four different
construction methods from a single sort. The four methods we look at
are the optimized and unoptimized versions of the linear and centroid
methods, as described above.

To evaluate performance we examine at the information ratio, that
is, the annualized ratio of the sample mean and sample standard devi-
ation of daily returns, of each time series derived from returns using
the different construction methods. In our empirical work, we study re-
versal strategies, which simply put derive from the hypothesis that the
magnitude of recent short horizon returns contain information about fu-
ture returns over short horizons. Reversal strategies are easy to use test
portfolio construction methods using ordering information because in
this case the ordering information is provided simply by recent returns.
To be precise we sort stocks within a universe of stocks based on the
magnitude of past returns and then use the linear and centroid meth-
ods to construct portfolios and record thei returns. The reversal work
in this section demonstrates that the centroid optimization method pro-
vides a significant risk-adjusted performance boost over the unoptimized
methods as well as a smaller, but significant, performance boost over the
optimized linear method.

In our simulated work, we simulate markets using a stationary return
generating process of which we have complete knowledge. We then build
portfolios based on the resulting asset sort and covariance information.
We also look at the effect of creating portfolio sorts based on the correct
asset ordering information after being re-arranged with a permutation.
We study the relationship between the variance of the permutation, that
is, the extent of the variance that the permutation introduces into the
asset sort and the resulting portfolio performance.
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5.1 Portfolio formation methods and backtests

The empirical sections below show tests of the relative performance of
different methodologies of forming portfolios from stock sorts. Both
sections will take the same approach though the first section will be a
real empirical study while the second will be based on simulations.

To briefly review the definitions and results of Sections 2 and 3, all
portfolio construction methods start with a list of portfolio constituents
and a portfolio sort, which is an order or arrangement for the stocks in
the portfolio S1, . . . , Sn such that r1 ≥ · · · ≥ rn, where ri is the expected
return for Si. The portfolio formation methods are procedures for trans-
forming a portfolio sort and (possibly) a covariance matrix into a portfo-
lio. Here a portfolio is a list of dollar investments for each stock Si in the
portfolio, where the investment can be a postive number (representing
a long position) or a negative number (representing a short position). In
this instance, each portfolio is assumed to be held for a fixed time hori-
zon at which point the portfolio is rebalanced, that is, replaced, with a
new portfolio. The return to such a portfolio over this fixed horizon is
then defined as the sum of the products of the dollar investments mul-
tiplied by the stock returns over those fixed horizons. This is equivalent
to looking at the dollar profit and loss to the portfolio over that period
of time divided by the gross market value of the portfolio. We shall com-
pare the relative performance of the four basic approaches for portfolio
formation looked at in this paper: linear, centroid, optimized linear, and
optimized centroid.

In the linear and the centroid portfolio, the weights are specified di-
rectly with no use made of the covariance matrix. The linear portfolio is
the portfolio that forms a dollar neutral portfolio with linearly decreasing
weights, assigning the highest weight to the highest ranked stock and the
lowest weight to the lowest ranked stock. Variants of this portfolio are
used in practice quite often in the asset management community. The
(unoptimized) centroid portfolio is the portfolio formed by assigning a
weight proportional to that of the centroid vector to each stock accord-
ing to the rank of the stock. Intuitively, this portfolio is similar to the
linear portfolio but with the tails overweighted; that is, the highest and
lowest rank stocks receive proportionately more weight in this portfolio
than the linear one.

The two “optimized” construction methods make use of the covari-
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ance matrix and are extremal in the sense of Section 2. Roughly speak-
ing, they construct mean-variance optimal portfolios as if the expected
returns for the asset universes have a respectively linear (for the opti-
mized linear) or centroid (for the optimized centroid) profile with respect
to their rankings.

For the purposes of this section a backtest is a method for testing
the joint procedure of forming a portfolio sort and constructing a port-
folio using a particular construction method. That is, a backtest tests
the investment performance of a particular portfolio sorting procedure
(for example, the reversal sort) combined with a particular portfolio con-
struction method. The basic premise is that a superior portfolio sort
combined with a superior portfolio construction method will produce a
superior risk adjusted return. A backtest then produces a timeseries of
investment returns based on repeated application of a consistent port-
folio construction method to a particular portfolio sorting procedure.
Performance is measured by the information ratio which measures the
return per unit of risk as the annualized ratio of the average return of
the portfolio to the standard deviation of that return.

In all that follows we will produce backtests for a single portfolio
sorting method while forming all four of the above portfolios (linear,
centroid, optimized linear, optimized centroid) and compare information
coefficients.

A backtest has several major components:

1. Periodicity: This is the time frequency over which portfolio returns
are produced. A daily backtest produces portfolio returns for each
day.

2. Length: This is the number of time steps (where each time step’s
length is determined by the periodicity) of the backtest.

3. Start Date: This is the first date on which a return is produced for
the backtest.

4. End Date: This is the last date on which a return is produced for
the backtest.

5. Portfolio Formation Dates: These are dates on which portfolios are
formed within the backtest.
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In our backtests below we will use the following basic procedure for
each portfolio formation date between a specified start date and end date:

1. Determine portfolio sort;

2. Compute covariance matrix;

3. Form the four portfolios: linear, centroid, optimized linear, opti-
mized centroid;

4. Determine return of each portfolio held from formation date to next
formation date.

In each step of the above procedure we take care to avoid look-ahead bias
in both our covariance computations and the production of our sorts.

5.2 Reversal strategies

In this empirical example we look at reversal strategies that seek to buy
stocks whose prices appear to have moved too low or too high due to
liquidity and not due to fundamental reasons. Effectively the strategy
seeks to buy stocks at a discount and sell stocks at a premium to fair
prices in order to satisfy a counterparty’s requirements for immediacy.

The theoretical underpinnings for reversal strategies and empirical
evidence for them are discussed in Campbell, Grossman, and Wang (1993).
These authors looked specifically at stocks with large price movements
accompanied by large trading volume and measured observed serial cor-
relation around these events. We call the hypothesis that stock prices
reverse in the manner just described the reversal hypothesis and take
as given that trading strategies exploiting these strategies will produce
positive expected returns.

We build a simple portfolio sort to exploit the tendency for stocks
to reverse. We produce the sort from the magnitude of recent past re-
turns and sort stocks from highest to lowest according to their negative.
Stocks whose past returns are most negative are therefore deemed most
favorable, while stocks whose returns are most postive are viewed least
favorably. This provides us with a straightforward method for demon-
strating the effectiveness of the portfolio construction methods in this
paper. We do not explicitly form expected returns from the information
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about past returns, we only sort stocks according to this information and
construct portfolios accordingly.

5.2.1 Data, portfolio formation and reversal factor

Since we aim to produce an overall picture of the relative performance of
the four portfolio formation methods we will look at the reversal strategy
across a range of possible variations of its basic parameters. Below is a
list of the key variants in the reversal strategy tests.

1. The portfolio size N is the number of stocks in the portfolio on
any given date. For all of our studies the number of stocks in the
portfolio remains constant over the test period. We study portfolios
of sizes 25, 50, 100, 150, 200, 250, 300, and 500.

2. The reversal period K is the number of days of return data to in-
clude in the computation of the reversal factor. We study strategies
with reversal periods 5, 10, 15, 20, and 25. For example, a reversal
period of 5 means that we sort stocks based on past returns over
five day periods.

3. The reversal lag L is the number of days prior to a given portfolio
formation date that the reversal factor is computed over. We study
strategies with reversal lags 0 and 1.

We use the Center for Research in Security Prices (CRSP) database of
daily US stock prices from NYSE, Amex and Nasdaq. The return of a stock
on day t is the CRSP total return of the stock: the arithmetic return of
the price from day t − 1 to day t plus the effect of dividends and other
income that would accrue to the investor over that period.

For each reversal strategy variant above the following procedure is
undertaken. We start with the CRSP database of returns from January 19,
1990 to December 31, 2002. On the first date of this period we choose
a universe consisting of the 1,000 largest stocks sorted by capitalization
for which there also exists at least 1,000 valid days of data prior to the
start date. On each subsequent date if a stock drops out of the universe
(e.g., if the stock is delisted, merges or goes bankrupt), we replace it
with a new stock that (a) is not already in our universe, (b) has at least
1,000 valid days of data through that date, and (c) is the largest possible
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stock that meets the criteria (a) and (b). After this universe is created,
reversal strategy parameters are selected: a value is chosen for portfolio
size N, reversal lag L, and reversal period K. From this data a backtest
is conducted as follows:

1. For each date t in the backtest period we form a portfolio list for
date t, by criteria (a), (b), and (c) above. The portfolio list is the list
of candidate stocks for the portfolio on that date.

2. The N constituents of the portfolio formed on date t−1 are chosen
randomly from the portfolio list.

3. The sort parameter on date t − 1 is the negative of the cumulative
total return from date t−L−K to t−L−1. The stocks are rearranged
into decreasing order by this variable. Thus stock with index i is
always the stock whose performance is expected to be ith from the
top, but this will be a different stock on different dates.

4. For a portfolio formed on date t − 1 we compute a covariance ma-
trix from a rectangular matrix of data consisting of the N columns
and 2N rows of data from days up to but not including day t. By
construction all elements of this rectangular grid contain a valid
total return for the portfolio constituents at time t − 1.

5. For each date t in the backtest period we form linear, centroid,
optimized linear, and optimized centroid portfolios on date t − 1
using a portfolio sort and covariance matrix. The portfolios are
normalized to have unit ex ante risk as measured by the estimated
covariance matrix. They are not contrained to be market neutral.

6. The portfolio formed on day t−1 is held from t−1 to t. Its return
over this period is calculated as the sum of the product of the return
of each stock in the portfolio on day t−1 multiplied by the portfolio
holding in that stock on day t − 1. The portfolio is assumed to be
rebalanced at the close of day t, that is, traded into at a price equal
to the closing price on day t and then held until day t + 1. In this
way the entire backtest is run.
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5.2.2 Comments

Our method for producing the active universe from which to form port-
folios was designed to create a universe which had no look-ahead or sur-
vivorship biases present, and which was compact enough to allow us to
use simple methods for computing the covariance matrices. We make no
attempt to measure transaction costs or to form realistic trading strate-
gies to minimize turnover. (It is anecdotally known that even trading
strategies with reported information ratios as high as 5 before transac-
tion costs and commissions still do not return a profit in actual trading.)

While our strategies do not suffer from look-ahead or survivorship
bias, they are not necessarily realistic. For example, when the reversal
lag is set to zero, the reversal factor is literally formed from returns data
including the same day’s closing prices as is supposedly captured in the
rebalance. Therefore, a reversal lag of zero is technically impossible, but
actually the limit as time tends to zero of a procedure which is technically
possible once transaction costs are taken into account. Nevertheless, the
procedure does not incorporate data in any way that could not be (at
least theoretically) known prior to portfolio formation. In addition, while
a reversal lag of zero is impossible, a reversal lag of one is unrealistically
long since no realistic trading strategy would form a factor and wait an
entire day before trading.

The key aim of this example is to examine the relative performance
of a strategy based on centroid optimization versus a linear weighting
scheme. We are not attempting to test either the availability of excess
returns or the validity of a certain hypothesis about a certain pricing
anomaly. In fact, we take as given that reversal hypothesis holds. It is
obvious that building a portfolio from reversal information will produce
positive returns if the reversal hypothesis holds. It is also seems obvious
that by using only information about the relative strength of the expected
reversal and not information about the covariance structure of the stocks
in the universe, one cannot expect to construct a portfolio with maximum
information ratio. What is not obvious, however, is the degree to which
the covariance structure can improve the information ratio. This is the
empirical piece of information we are attempting to calibrate.
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Number Reversal Period (days)
of stocks 5 10 15 20 25

25
2.50 2.47 2.36 2.40 1.72 1.75 1.42 1.45 1.59 1.61
3.21 3.20 2.37 2.50 1.84 1.95 1.69 1.93 1.63 1.79

50
2.88 2.95 2.92 3.10 2.39 2.52 2.07 2.16 2.06 2.14
3.53 3.99 3.26 3.63 3.03 3.35 2.93 3.30 2.79 3.07

100
3.18 3.20 2.98 3.12 2.46 2.61 2.09 2.17 2.17 2.19
4.26 4.76 3.65 4.09 3.54 3.95 3.19 3.73 3.10 3.43

150
3.04 3.14 2.83 2.99 2.57 2.69 2.21 2.33 2.29 2.34
4.79 5.65 4.15 4.82 4.13 4.80 3.69 4.44 3.53 3.97

250
2.80 2.93 2.43 2.64 2.16 2.33 1.94 2.10 2.06 2.20
4.88 5.73 3.67 4.47 3.61 4.27 3.39 4.12 3.13 3.68

500
2.97 3.22 2.40 2.72 2.11 2.37 1.91 2.19 1.93 2.16
5.82 6.88 4.33 5.38 4.31 5.25 4.44 5.40 4.31 5.10

25
2.32 2.32 2.10 2.15 1.61 1.61 1.20 1.24 1.46 1.46
2.39 2.41 1.84 1.86 1.35 1.40 1.25 1.43 1.35 1.48

50
2.91 2.97 2.80 2.96 2.29 2.37 1.85 1.90 1.93 1.97
2.58 2.89 2.52 2.85 2.46 2.65 2.32 2.54 2.30 2.48

100
3.25 3.15 2.77 2.84 2.29 2.38 1.81 1.85 1.95 1.94
3.07 3.30 2.47 2.83 2.62 3.02 2.34 2.87 2.38 2.68

150
3.31 3.23 2.68 2.73 2.38 2.44 1.89 1.98 2.00 2.04
3.55 3.89 3.07 3.48 3.24 3.69 2.72 3.28 2.75 3.05

250
2.94 2.90 2.22 2.32 1.87 1.97 1.59 1.69 1.68 1.80
3.41 3.86 2.41 2.90 2.35 2.88 2.26 2.86 2.10 2.54

500
2.72 2.84 1.95 2.15 1.60 1.81 1.36 1.59 1.37 1.60
3.55 4.20 2.27 2.95 2.47 3.19 2.74 3.46 2.71 3.30

Table 1: Information ratios for the four strategies considered in this
paper, for all combinations of input parameters. Upper panel is zero lag,
lower panel is lag of 1 day. Within each box, the left column is based
on the linear portfolio, the right on the centroid; the upper row is the
unoptimized portfolios and the lower row is the optimized portfolios.
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Figure 7: Mean realized Information Ratios of the four algorithms de-
scribed in this paper, using a reversal strategy with reversal period of 5
days. From bottom to top the curves represent the unoptimized linear,
the unoptimized centroid, optimized linear, and optimized centroid con-
structions; the linear portfolios are drawn with dashed lines and the op-
timized portfolios are drawn with round markers. The left panel shows
reversal lag of zero, meaning that information is used instantly; the right
panel shows a lag of one day. For large portfolios, the optimized centroid
gives more than a two-fold improvement over the unoptimized linear,
and is substantially better than the optimized linear.

5.2.3 Backtest Results for Reversal Strategies

Figure 7 shows a concise summary of the results. For a reversal period
of 5 days, we show the Information Ratios (mean return divided by its
standard deviation) for the four strategies described above, for lag of
zero and lag of one day. Table 1 shows the full set of results.

The information ratios of the unoptimized portfolios are consistently
around three or less. Use of the covariance matrix dramatically improves
the results: both the optimized linear and the optimized centroid algo-
rithms achieve information ratios that are always better than either un-
optimized version, and the improvement increases logarithmically with
portfolio size.

Most significantly, for all portfolio sizes the optimized centroid algo-
rithm performs substantially better than the optimized linear algorithm,
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Figure 8: Percentage of days, months, and years on which the optimized
centroid portfolio realises higher return than the unoptimized linear
portfolio (dashed lines, square markers) and than the optimized linear
portfolio (solid lines, round markers). From bottom to top, the curves
show 1 day, 20 day (heavy lines), and 250 day non-overlapping periods.

although the two unoptimized portfolios are essentially equivalent. This
supports the main argument of this paper, that the centroid construction
is the best way to combine covariance information with sorts. The results
shown here cannot be achieved for any portfolio construction algorithm
based on linear profiles.

The improvement is weaker for a lag of one day, but still substantial.
For longer reversal periods, the results are similar though less dramatic.

To reinforce this point, in Figure 8 we show the percentage of nonover-
lapping days, months, and years for which our optimized centroid algo-
rithm realises a higher return than its two competitors: the unoptimized
linear algorithm and the optimized linear algorithm. For example, in the
monthly returns (heavy lines), the optimized centroid realizes a better
return over 80% of the time for large portfolios, with zero lag.

Note that this is not a direct test of the reasoning underlying our
centroid algorithm. In Section 3 we constructed the centroid vector to
maximise the fraction of realizations of the expected return vector for
which it would be optimal. In this test we measure the actual returns,
which depend additionally on the covariance structure and any possible
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non-Gaussian properties. Our intention has been to provide a realistic
and financially meaningful test of the algorithm in practice.

5.3 Simulation Results

We now seek to explore our portfolio construction methods in an envi-
ronment where we have complete control and knowledge of all the return
generating processes and portfolio sorts. This section has two aims. The
first is to test the limits of the method and understand in numerical terms
what the limits of the method are when perfect knowledge of portfolio
sorts is available. The second is to characterize the impact of information
degradation on our methods. We do this by turning perfect knowledge
of portfolio sorts into less-then-perfect knowledge of portfolio sorts by
introducing the effect of a permutation on the precise expected return
ordering and studying the ensuing breakdown of portfolio performance.

We run backtests using the portfolio construction methods of this
paper and using the same structure as in the reversal tests above. In this
case, however, we simulated stock returns and have perfect knowledge of
the key elements necessary to estimate our models. That is, we retain per-
fect knowledge of the covariance matrix and order of expected returns.
We do this in a variety of scenarios across different portfolio sizes (from
25 to 500 stocks) and different volatility structures (from very low lev-
els to very high levels of cross-sectional volatility). For each scenario we
run multiple iterations and record the average performance across itera-
tions to ensure that the results are representative of the average expected
performance levels. Most importantly, we study the degradation of per-
formance, both absolute (in terms of information ratios) and relative (in
terms of the improvement of optimized methods to non-optimized meth-
ods), as we degrade information. We introduce a measure of information
distortion generated by examining the amount of variance introduced
into the system by permuting the indices of the correct order and relate
this to the correlation coefficient of a Gaussian copula.

5.3.1 Simulated stock returns

In order to simulate backtests of our results, we simulate stock returns
for a universe of stocks and then use these return histories as in sec-
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tion 5.1. Presently, we discuss in detail the parameters that define our
simulated stock histories.

As we are mainly interested in bounding the overall expected levels
of performance of the portfolios we construct from sorting data, we fo-
cus on variables that we believe ex ante provide the greatest degree of
variability in overall portfolio performance. In our view these are cross-
sectional volatility and expected return spread, and number of stocks in
the portfolio. Cross-sectional volatility refers, roughly speaking, to the
variability of volatility at a point in time in the cross-section of stocks in
the universe. Return spread refers to the differential in expected return
spread in the cross-section of stocks.

A critical other variable that will clearly determine the success of our
methods is the extent of ones knowledge of the order of expected re-
turns. In the main text of this paper we assumed perfect knowledge,
but in practice perfect knowledge is impossible to come by. Therefore
we turn our sights to performance in the presence of information that is
correlated to, but not identical to, the precise order of expected returns.

We simulate the returns of a portfolio by assuming that variation
among its constituents is generated by a system consisting of a com-
mon factor and an idiosynchratic component. We assume we have a
portfolio with N stocks S1, . . . , SN whose expected returns r1, . . . , rN are
in descending order, that is, they satisfy the inequalities r1 ≤ · · · ≤ rN .

In our simulations, the realized return rit of stock i at time t is gen-
erated by the factor equation

rit = Ft + εit + µi, (7)

where Ft is regarded as a “factor return” at time t. We assume the Ft are
independent, identically distributed normal random variables. Similarly,
εit is “idiosyncratic risk” and for a fixed i, the εit are indepent, iden-
tically distributed normal random variables. We have each εit is mean
zero and with variance set to the number σ 2

i /2; likewise F is a normally
distributed random variable with mean zero and variance equal to the
average variance of the εi, that is:

σ 2(F) = 1
N

∑
i

σ 2
i

2

The σi’s are set to be equally spaced in log space and sorted so that

σ1 < σ2 < ... < σN
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That is, if σmin and σmax are respectively associated with the minimum
and maximum idiosyncratic volatility, then if σ1 = σmin and σN = σmax

then we have
logσ1, logσ2 . . . , logσN

are equally spaced. We do this so that in the space of stocks the occurence
of high volatility stocks is less frequent then that of low volatility stocks.
Also, we specify the distance in log-space between the minimum and
maxmimum volatility, δ and call this the volatility dispersion. It is defined
by

σmax = δσmin

Finally, the variable µi is a constant for each simulation that defines the
cross-sectional expecetd return spread. It is sorted so that

µ1 ≤ µ2 ≤ · · · ≤ µN

and the vector (µ1, . . . , µN) is generated as the ascending sort of N i.i.d.
draws from a normal distribution with mean and variance equal to both
equal to .6

16 · σ 2(F). This means that the average daily Sharpe ratio in
the cross-section of stocks is approximately .6/16 so that the annualized
Sharpe ratio of each stock is approximately 0.6.

The volatilities of the stocks in the cross-section are calibrated as
follows. For each simulation run we choose a volatility dispersion δ and
build equal log-spaced volatilities, σi, with σmin = .005/

√
(2) and σmax =

δ · σmin.
To relate this characterization of volatility dispersion to US markets,

we briefly examine recent market behavior. Volatility dispersion is some-
what difficult to measure in practice due to outliers in the cross-section
of volatility within the US market. But to give a sense, in a randomly
selected sample of 500 of the largest US stocks we have the following
observations. We compute volatility by computing annualized standard
deviation of past 250 day returns. For a given day we then compute the
cross-sectional standard deviation of volatility and trim those volatilities
which exceed three standard deviations above or below the mean. Using
such a measure, the dispersion of volatility has ranged from 4.31 to 16.7
in our data set.
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5.3.2 Permutations and information distortion

In practice we do not expect portfolio managers to know the exact order
of the expected returns of a list of stocks. Rather, we expect a proposed
ordering to be correlated with the true ordering of the expected returns.
In this section we provide a measurement of the difference between the
exact ordering of expected returns and a permutation of that ordering.
To describe this, we begin with a list of stocks

S1, S2, . . . , SN

whose true expected returns satisfy

r1 ≤ r2 ≤ · · · ≤ rN .

A permutation π of the list is a mapping

π : {S1, . . . , SN}, {Sπ(1), . . . , Sπ(N)}

representing the relationship between the true ordering and our partially
erroneous information. The minimally distorting permuation πmin is the
identity map (S1, . . . , SN) , (S1, . . . , SN), representing perfect informa-
tion. The maximally distorting permutation πmax is the permutation that
completely reverses the order of the indices: (S1, . . . , SN) , (SN , . . . , S1)
representing information that is perfectly wrong. We define the distance
σ of a permutation π to measure position between these two extremes:

σ(π) =

√√√√ ∑(
π(i)− i

)2∑(
πmax(i)− i

)2 =
√

1
2

(
1− b),

where b is the coefficient in the linear regression to the points
(
i,π(i)

)
.

Thus permutation distance σ(π) is a number between zero and one,
that measures the degradation of our information about the order of
the expected returns. It is a general measure of information loss. Fig-
ure 9 provides a graphical representation of permutation distances. As
permutation distance increases from zero, the quality of our information
about the sort decreases; maximal uncertainty, or complete randomness,
is obtained at σ = 1/

√
2.

For any value of ε there are many permutations whose distance is ap-
proximately ε. Naturally, for a given ε, there is a finite space of permuta-
tions of N indices with distance ε which have varying characteristics. As



Almgren/Chriss: Optimal Portfolios Draft December 10, 2004 54

σ = 0.1 σ = 0.2

σ = 0.3 σ = 0.5

Figure 9: Permutations with specified distances, for N = 500. The points
have coordinates (i,π(i)), where i is a permutation index and π(i) is
its destination under the permutation; the line is the linear regression of
slope 1− 2σ 2. A distance of 0.71 is completely random.

a consequence in our simulations below where we study the impact of
permutation of order on investment performance we are careful to mul-
tiple iterations of simulations for given permutation distances, sampling
randomly from the space of correlations.

5.3.3 Simulation results

For each scenario the following parameters apply:
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1. Portfolio Size: The portfolio size describes the number of stocks
N in the portfolio. In our simulations, the portfolio sizes vary from
25 to 500 stocks.

2. Factor Structure: Factor structure describes the structure of the
return generating process for the stocks in the simulated portfolio
and is given by Eq. (7).

3. Volatility Dispersion: As described above. In our simulations volatil-
ity dispersion ranges from 1 to 20.

4. Permutation Distance: We generate 10 permutations with distances
equal to 0, 0.01, 0.05, 0.075, 0.1, 0.125, 0.15, 0.175, 0.2, 0.25, 0.5,
and 0.7071.

5. Simulation Length: Simulation length describes the number of time
steps in each simulation. In this backtest the simulation length
is always set to 2000, meaning that each simulation simulates a
backtest of 2000 timesteps.

6. Iterations: The number of iterations computed for each set of pa-
rameters over which to compute statistics. For all simulation pa-
rameter sets in this paper we compute 50 iterations.

Our simulated results provide insight into the possible improvements
that our methodologies provide. All of the basic relationships hold. In-
formation ratios increase with volatility dispersion and number of stocks
in our portfolios increase. Also, holding other factors constant, informa-
tion ratios decrease as permutation distance increases. This indicates, as
expected, that as the quality of a portfolio manager’s sort decreases, so
does investment performance. Of course, we also see that the algorithm
is highly robust to information loss. Examining Table 2 we see that even
for high degrees of information loss, the strategies still provide signifi-
cant return on risk.

An important observation which can also be seen in Table 2 is that,
holding other factors constant, as permutation distance increases the ex-
tent of the improvement between the optimized centroid and optimized
linear algorithm narrows. For example, for 500 stocks, a volatility dis-
persion of 20 and with zero permutation distance (the perfect knowledge
scenario) the opimized linear algorithm provides an average information
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Figure 10: Mean improvement in Sharpe ratio of the risk-optimized cen-
troid algorithm relative to the linear portfolio weighting, for simulated
portfolios of 250 assets. The horizontal axis is permutation distance as
defined in the text. From bottom to top, the curves have volatility dis-
persion 1, 2, 4, 8, 12, 16, 20. The improvement is quite dramatic when
substantial dispersion is present, and degrades only very slowly.

ratio (over 50 trials) of 37.4 while the optimized centroid provides an
information ratio of 40.4, an improvement of over 8%. For a permuta-
tion distance of .5, the optimized linear algorithm provides an average
information ratio of 15.3 while the optimized centroid provides an infor-
mation ratio of 15.7, a spread of only 2.6%.

The above-described pattern of contracting optimized centroid per-
formance in the presence of information degration is present throughout
the table. In an indirect way it confirms one of the central arguments of
our paper which is that the optimized centroid not only outperforms
the unoptimized algorithms but other extremal optimized algorithms.
An intuitive explanation for this may be found by recalling the nature
of the optimized centroid algorithm. In our simulations, roughly speak-
ing subject to a risk budget the optimized centroid algorithm maximizes
exposure to difference assets.

Difference assets are assets that express a single belief, such as “stock
one is better than stock two.” Such a belief is expressed by means of a
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difference asset by maximizing exposure to such an asset. For the pre-
ceding example, belief the asset would be D = S1 − S2. Now, what does
“perfect information” concerning the order of expected returns mean in
the context of difference assets? The answer is clear: it implies that
every difference asset has a positive expected return. Now, when we in-
troduce permutations, that is information degradation, into the picture,
what happens is we switch some of the difference assets from having
positive to having negative expected returns. The upshot of this is that
the algorithm which maximizes exposure to the difference assets should
have the most rapid degradation of performance relative due to the in-
troduction of permutations. This naturally suggests a possible avenue
of further research. Is there a robust version of the centroid algorithm
which better deals with information degradation in assuming that a cer-
tain percentage of the difference assets might swap from positive to neg-
ative expected returns? And, would such an algorithm outperform in
real-life scenarios the centroid algorithm?

6 Conclusions

This paper began with a simple question: what is the best way to form an
investment portfolio given a list of assets, an ordering of relative pref-
erences on those assets, and a covariance matrix? A large part of the
motivation came from the observation that existing methods were very
ad hoc and had no way to incorporate volatility and correlation informa-
tion. These methods were therefore incompatible with the main stream
of portfolio methods going back to Markowitz, who emphasized the im-
portance of incorporating risk into the construction of the optimal port-
folio.

In the course of developing this solution, we were led to develop a
very robust and powerful framework for thinking about portfolio opti-
mization problems. This framework includes “classic” portfolio theory
as a special case, and provides a natural generalization to a broad class of
ordering information. It also includes more modern constructions such
as robust optimization, as we now discuss.

To summarize, our formulation has three ingredients:

1. Ordering information which gives rise to a cone of consistent re-
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Vol. Permutation Distance σ
Disp. 0 0.1 0.2 0.5 0.7

1
18.1 18.6 18.0 18.3 16.9 17.2 9.5 9.6 0.0 0.0
21.0 21.4 20.7 21.1 19.5 19.9 11.1 11.2 0.0 0.0

2
17.3 17.5 17.1 17.3 16.2 16.3 9.1 9.2 -0.1 -0.1
21.4 22.0 21.0 21.6 19.9 20.3 10.8 11.0 0.1 0.2

4
15.4 15.2 15.3 15.1 14.5 14.4 8.5 8.6 0.0 0.0
23.4 24.3 22.9 23.6 21.5 22.1 11.3 11.5 -0.2 -0.3

8
13.3 12.8 13.1 12.6 12.7 12.2 7.8 7.7 0.0 0.0
27.2 28.8 26.4 27.8 24.7 25.8 12.3 12.5 0.5 0.5

16
11.6 11.0 11.5 10.9 11.2 10.6 6.9 6.8 0.0 -0.1
34.3 36.8 33.0 35.1 30.3 31.9 14.1 14.4 -0.1 0.0

20
11.1 10.4 10.9 10.3 10.6 9.9 6.8 6.7 0.0 0.0
37.4 40.4 36.4 39.2 32.6 34.5 15.3 15.7 -0.8 -0.8

Table 2: Information ratios for backtests run on simulated markets gen-
erated with a one factor model with volatility dispersions and permu-
tation distance (information degradation) as shown. Each cell of this
table represents the mean information ratios for the four portfolio con-
struction algorithms described in this paper laid out as in Table 1. All
portfolios have 500 stocks and all backtests are run over a period of
2000 days. Stocks are calibrated so that they have on average an annu-
alized information ratio of 0.6, assuming each time-step is one day and
each year has 256 days. Information ratios are annualized assuming that
each time step is one day and each year has 256 days.

turns. This is a set in which the true expected return vector is be-
lieved to lie. In the examples considered in this paper, this cone is
always constructed as the intersection of half-spaces corresponding
to a finite list of homogeneous inequality beliefs. But more gener-
ally, we may specify any convex cone, with curved edges or other
more complicated geometrical structure; our construction can in
principle be carried out for any such set.

2. A probability density within the belief cone: a measure that speci-
fies our belief about the relative probability of the actual expected
return vector being any particular location within the belief cone. In
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this paper, we have considered only the case in which this density
has radial symmetry, but the framework also allows more general
densities.

3. A constraint set in which the portfolio is constrained to lie. In the
most important application, this constraint set is determined by a
total risk limit given by a covariance matrix, but it may be any con-
vex set. In particular, it may include short sales constraints or posi-
tion limits; all the standard techniques of constrained optimization
may be brought into play.

Empirical tests show that the resulting portfolios are substantially better
than the ones given by the ad hoc formluations.

In classic Markowitz theory, a single expected return vector is given.
In our formulation, that single vector generates a half-space of possible
expected return vectors that have nonnegative inner product with the
given vector. For any given constraint set, our construction of the effi-
cient set and then the optimal portfolio gives the identical result to the
Markowitz theory. If further inequality constraints are then added we
naturally incorporate those beliefs.

In robust optimization, it is recognized that the actual expected re-
turn vector may not be exactly equal to the single given vector. In effect,
a probability density is introduced centered on the given vector, and var-
ious minimax techniques are used to generate optimal portfolios. In our
framework, the density would be modeled directly, and it could addition-
ally be constrained by inequality relationships.

Our construction provides a rich and flexible framework for exploring
the nature of optimal portfolios. In future work, we plan to consider
some of these extensions and applications.

A Computation of centroid vector

Given a wedge domain Q, the centroid c is defined as the geometric cen-
troid of Q, under any radially symmetric density function. Of course,
c is defined only up to a positive scalar constant, and hence the radial
structure of the density is not important.
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Monte Carlo

The simplest way to calculate c is by Monte Carlo. Let x be a sample from
an n-dimensional uncorrelated Gaussian, and for the single-sector case,
let y be the vector whose components are the components of x sorted
into decreasing order. Then y ∈ Q, and since the sorting operation con-
sists only of interchanges of components which are equivalent to planar
reflections, the density of y is a radially symmetric Gaussian restricted
to Q. The estimate of c is then the sample average of many independent
draws of y .

The multiple-sector case is handled simply by sorting only within each
sector. Note that this automatically determines the relative weights be-
tween the sectors.

The case with comparison to zero is also easily handled. The initial
Gaussian vector is sign corrected so that its first ` components are non-
negative and its last n − ` components are nonpositive; then a sort is
performed within each section. Clearly, each of these operations pre-
serves measure.

For more complicated inequality information structures, the geome-
try is not always so simple; it is not always possible to reduce a general
point x into the wedge Q by measure-preserving reflections. Each new
situation must be evaluated on its own.

Direct calculation

For a single sort, computing the centroid is a special case of the general
problem of order statistics (David and Nagaraja 2003). Let x be a n-
vector of independent samples from a distribution with density f(x) and
cumulative distribution F(x); in our case this density will be a standard
Gaussian so that the density of x is spherically symmetric. Let y be the
vector consisting of the components of x sorted into decreasing order.
Then elementary reasoning shows that the density of the jth component
yj,n is

Prob
{
w < yj,n < w+dw

}
= n!
(j − 1)!(n− j)! F(w)

n−j(1−F(w))j−1f(w)dw.
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The centroid component cj,n is the mean of this distribution:

cj,n =
n!

(j − 1)!(n− j)!

∫∞
−∞
w F(w)n−j

(
1− F(w)

)j−1 f(w)dw

= n!
(j − 1)!(n− j)!

∫ 1

0
F−1(z) zn−j(1− z)j−1dz = Eg

(
F−1(z)

)
(8)

where Eg(·) denotes expectation under the probability density

g(z) = n!
(j − 1)!(n− j)! z

n−j(1− z)j−1.

When j and n are large, this distribution is narrow. Thus reasonable
approximations to the integral are either F−1(zmean) or F−1(zmax), where
the mean and the peak of the distribution are

zmean =
n− j + 1
n+ 1

, zmax =
n− j
n− 1

(Using the max value has the disadvantage that it requires F−1(z) at z =
0,1, which is not defined.)

For the normal distribution, these formulas are special cases, with
α = 0,1, of “Blom’s approximation” (Blom 1958)

cj,n ≈ N−1
(
n+ 1− j −α
n− 2α+ 1

)
.

Blom shows (in part analytically, in part reasoning from numerical re-
sults) that the values α = 0.33 and 0.50 provide lower and upper bounds
for the true value of cj,n, and he suggests that α = 0.375 is a reasonable
approximation for all values of j,n. More detailed calculations (Harter
1961) suggest that values closer to α = 0.40 give more accurate results
when n is large.

By comparison with numerical integration of (8), we have found that
an excellent approximation isα = A−Bj−β, withA = 0.4424, B = 0.1185,
and β = 0.21. This gives centroid components with maximum fractional
error less than one-half percent when n is very small, decreasing rapidly
as n increases. Since c is defined only up to a scalar factor the errors in
the normalized coefficients will be smaller.

For multiple sectors, the above procedure may simply be applied
within each sector. Because we have been careful to preserve the nor-
malization, the relative magnitudes are correct.
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