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Abstract—(U.S) Rule-based policies to mitigate software risk
suggest to use the CVSS score to measure the individual vulner-
ability risk and act accordingly: an HIGH CVSS score according
to the NVD (National (U.S.) Vulnerability Database) is therefore
translated into a “Yes”. A key issue is whether such rule is
economically sensible, in particular if reported vulnerabilities
have been actually exploited in the wild, and whether the risk
score do actually match the risk of actual exploitation.

We compare the NVD dataset with two additional datasets, the
EDB for the white market of vulnerabilities (such as those present
in Metasploit), and the EKITS for the exploits traded in the black
market. We benchmark them against Symantec’s threat explorer
dataset (SYM) of actual exploit in the wild. We analyze the whole
spectrum of CVSS submetrics and use these characteristics to
perform a case-controlled analysis of CVSS scores (similar to
those used to link lung cancer and smoking) to test its reliability
as a risk factor for actual exploitation.

We conclude that (a) fixing just because a high CVSS score
in NVD only yields negligible risk reduction, (b) the additional
existence of proof of concepts exploits (e.g. in EDB) may yield
some additional but not large risk reduction, (c) fixing in response
to presence in black markets yields the equivalent risk reduction
of wearing safety belt in cars (you might also die but still. . . ).
On the negative side, our study shows that as industry we miss
a metric with high specificity (ruling out vulns for which we
shouldn’t worry).

I. INTRODUCTION

Software vulnerabilities assessments usually rely on the
National (US) Vulnerability Database1 (NVD for short). Each
vulnerability is published with its “technical assessment” given
by the Common Vulnerability Scoring System2 (CVSS) which
rate diverse aspects of the vulnerability [14].

Despite not being designed to be a metric for risk, the CVSS
score is often used as such. For example, the US Federal
government with QTA0-08-HC-B-0003 reference notice spec-
ified that IT products to manage and assess the security of
IT configurations must use the NIST certified S-CAP protocol
[20], which explicitly says: “Organizations should use CVSS
base scores to assist in prioritizing the remediation of known
security-related software flaws based on the relative severity
of the flaws.” In other words, a rule-based policy is enforced:
if the vulnerability is marked as ”high risk” by the CVSS
assessment, it must be fixed with high priority.

This interest from the industry is matched by many aca-
demic studies. On one side, Vulnerability Discovery Models
[2], [13] try to predict the number of vulnerabilities that affect
a software at a certain point in time, while empirical studies try

1http://nvd.nist.gov
2http://www.first.org/cvss

to identify trends between open and closed source software [8],
[24]. On the other, attack graphs [25] and attack surfaces [11]
aim at assessing in which ways a system is “attackable” by an
adversary and how easily he/she can succeed. Foundational to
both approaches is calculating a) the number of vulnerabilities
in the system and b) their individual “risk assessment”.

Beside NVD, many datasets are used in vulnerability stud-
ies, but are they the right databases? For example, Bozorgi et
al. [4] showed (as a side result) that the exploitability CVSS
subscore distribution do not correlate well with existence of
known exploit from the ExploitDB. There are two ways to
interpret this result: the exploitability of CVSS is the wrong
metric, or Bozorgi and his co-authors used the wrong DB. Ex-
ploitDB could just be used by security researchers to show off
their skills (and obtain more contracts as penetration testers)
but might not have a correlation with actual attacks by hackers.
The same problem is faced in [24] where a large majority
of “exploits” are reported as zero-days3. The “exploit” time
in OVSDB only measures the time when a proof-of-concept
exploit becomes known. Security researchers normally submit
proof-of-concept exploits to vendors and vulnerability white
markets in order to prove that the vulnerability is worth the
bounty [15]. So it is not surprising that there are a lot of “zero-
day” exploits; still, this does not mean that a bad hacker really
exploited those vulnerabilities.

A. Our Contribution

In this work we address the following questions:
1) To what extent can public vulnerability datasets be used

to measure software security?
2) Are the rule-based policies enforced, for example, by the

US Government effective in decreasing risk of attacks?
In other words, when new vulnerabilities are found, are we
measuring the rate at which security researchers try to extract
bounties from vendors (and should not worry)? or there is a
concrete risk that bad guys end up exploiting our systems (and
should worry)? This is particularly interesting for the majority
of internet users at large (individuals or corporations) who
have not enough individual value to justify a targeted attack4.
To this aim we analyzed three datasets:

• NVD, the benchmark universe of vulnerabilities;

3A zero-day exploit is present when the exploit is reported before or on
the date that the vulnerability is disclosed.

4Obviously, for a nuclear power plan any proof-of-concept exploit is a
problem as even a software crash may lead to a national emergency.

http://nvd.nist.gov
http://www.first.org/cvss


• EDB (Exploit-DB), which contains information on the
existence of proof-of-concept exploits;

• EKITS, our database containing vulnerabilities used in
exploit kits sold in the black market.

No previous study, to the best of our knowledge, extensively
looked at CVSS subscores throughout different datasets. We
benchmark these DBs against the vulnerabilities exploited
in the wild that we collected from Symantec’s Threats and
Attack Signatures databases (SYM). To make statistically
sound conclusions, we perform a case-controlled randomized
experiment in which we build random samples of the NVD,
EDB and EKITS datasets according to the characteristics of
exploits in SYM; our goal is to understand the conditional
probability that a CVSS (sub)score would lead to an attack.

The conclusion of our analysis is the following: the NVD
and EDB databases are not a reliable source of information
for exploits in the wild, and the CVSS score doesn’t help. The
CVSS score only shows a significant sensitivity (i.e. prediction
of attacks in the wild) for vulnerabilities bundled in exploit
kits in the black market (EKITS). Unfortunately, it does not
show a high specificity in any of our datasets, which means
that it is not suitable, as a metric, to rule out “un-interesting”
vulnerabilities (i.e. those not exploited).

The fact that EKITS vulnerabilities are actually exploited
in the wild is interesting in its own sake. “Malware sales”
are often scams for wanna-be scammers, such as credit-card
numbers sold over IRC channels [10]. Surprisingly, while the
final products (card numbers) sold on the black market are bad,
the software tools to get them from the source look good.

In the rest of the paper we introduce our four datasets (§II)
and draws a first, observational comparison (§III). The core
of the paper analyses the goodness of the CVSS global score
as a test for exploitation (§IV), digs down over the submetrics
(§V), and identifies trade-offs in the exploitation (§VI). Then
we describe our randomized case-controlled analysis (§VII),
and discuss the implication of our findings (§VIII) and threats
to validity (§IX). We finally discuss related works (§X) and
conclude (§XI).

II. DATASETS

NVD is the reference database for disclosed vulnerabilities
held by NIST. It has been widely used and analyzed in pre-
vious vulnerability studies [12], [24], [22]. Our NVD dataset
contains data on 49599 vulnerabilities.

The Exploit-db5 (EDB) includes information on proof-of-
concept exploits also represented in the Open Source Vulner-
ability Database (OSVDB). Both OSVDB6 and EDB7 derive
data from Metasploit Framework. EDB references exploited
CVEs by each entry in the db. Most notable studies relying
on either EDB or OSVDB are [24], [4]. EDB contains data
on 8122 vulnerabilities for which a proof-of-concept code is
reported.

5http://www.exploit-db.com/
6http://blog.osvdb.org/2012/08/15/august-2012-a-few-small-updates
7http://www.exploit-db.com/author/?a=3211&pg=1

TABLE I
SUMMARY OF OUR DATASETS

DB Content Collection method #Entries
NVD CVEs XML parsing 49599
EDB Publicly

exploited CVEs
Download and web pars-
ing to correlate with CVEs

8122

SYM CVEs exploited
in the wild

Web parsing to correlate
with CVEs

1277

EKITS CVEs in the
black market

ad-hoc analysis + Conta-
gio’s Exploit table

114

EKITS is our dataset of vulnerabilities bundled in Exploit
Kits8 sold on the black market. EKITS is a substantial expan-
sion on Contagio’s Exploit Pack Table9. EKITS repots exploits
114 unique CVEs bundled in 90+ exploit kits. We cannot
disclose the individual sources of the black-hat communities
because this might hamper us from future studies.

In order to determine whether a vulnerability has been
used in the wild we have collected exploited CVEs from
Symantec’s AttackSignature10 and ThreatExplorer11 public
data. The SYM dataset contains 1277 CVEs identified in
viruses (local threats) and remote attacks (network threats)
by Symantec’s commercial products. This has of course some
limitation as direct attacks by individual motivated hackers
against specific companies are not considered in this metric.
Note that SYM does not report volumes of exploits, but only
the binary information “evidence of an exploit in the wild for
that CVE is reported” or “is not reported”.

Table I summarizes the content of each dataset and the
collection methodology. They are available upon request12.

III. EXPLORATORY ANALYSIS OF DATASETS

As a starting point, we perform an exploratory analysis of
our four datasets: Given a dataset (NVD, EDB, EKITS), what
is the likelihood that a vulnerability it contains is going to be
exploited in the wild? i.e. occurs also in SYM?

Table II reports the likelihood of a vulnerability being a
threat if it is contained in one of our datasets. Each row rep-
resents a dataset from which the intersection with the smaller
ones has been ruled out: this is to avoid data overlapping that
would falsify the results. The vulnerabilities which exploits
are sold in the market (EKITS) have 75.73% chances of being
monitored as actively exploited. This percentage is much lower
for EDB-EKITS and NVD-(EDB+EKITS).

Figure 1 is a Venn diagram of our datasets; size of the area
is proportional to the number of vulnerabilities and the color
is an indication of the CVSS score (a detailed analysis of the
CVSS scores will follow up briefly).

8Exploit Kits are web sites that the attacker deploys on some public
webserver he/she owns. When the victim is fooled in making an HTTP
connection to the Exploit Kit, the latter checks for vulnerabilities on the
user’s system and, if any, tries to exploit them; eventually, it infects the victim
machine with malware of some sort.

9http://contagiodump.blogspot.it/2010/06/overview-of-exploit-packs-update.
html

10http://www.symantec.com/security response/attacksignatures/
11http://www.symantec.com/security response/threatexplorer/
12http://securitylab.disi.unitn.it/doku.php?id=datasets

http://blog.osvdb.org/2012/08/15/august-2012-a-few-small-updates
http://www.exploit-db.com/author/?a=3211&pg=1
http://contagiodump.blogspot.it/2010/06/overview-of-exploit-packs-update.html
http://contagiodump.blogspot.it/2010/06/overview-of-exploit-packs-update.html
http://www.symantec.com/security_response/attacksignatures/
http://www.symantec.com/security_response/threatexplorer/
http://securitylab.disi.unitn.it/doku.php?id=datasets


TABLE II
CONDITIONAL PROB. OF VULN. FROM A DATASET BEING A THREAT

Conditional probability that a vulnerability v is listed by Symantec as threat
knowing that it is contained in a dataset, i.e. P (v ∈ SYM | v ∈ dataset).

vuln in SYM vuln not in SYM
EKITS 75.73% 24.27%
EDB-EKITS 4.08% 95.92%
NVD-(EDB+EKITS) 2.10% 97.90%

Dimensions are proportional to data size. In red vulnerabilities with CVSS≥9
score. Medium score vulnerabilities are orange, and cyan represents vulnera-
bility with CVSS lower than 6. The two small rectangles outside of NVDspace
are vulnerabilities whose CVEs are not present in NVD.

Fig. 1. Relative Map of vulnerabilities per dataset

As one can see from the picture many vulnerabilities in
the NVD are not exploited. The EDB is not overly better in
terms or representativeness of actual exploitation in the wild:
EDB and SYM share 393 vulnerabilities only. This means that
EDB does not contain about 75% of the threats measured by
Symantec in the wild. As a minor note, at the collection time
NVD did not reference all vulnerabilities we found: the SYM
and EDB datasets contain respectively 9 and 63 vulnerabilities
that are not present in the NVD dataset. CVSS data on these
vulnerabilities is therefore missing.

A rushing conclusion might be that, if one sees a vulner-
ability affecting his/her software in the black market, there
is roughly a 75% chance that it is exploited in the wild.
The same cannot be said about EDB and NVD, for which
the percentages is less than 5%. However, a possible counter
observation would be that EDB and NVD include many low
CVSS score vulnerabilities and therefore better results could
be obtained if we eliminate the vulnerabilities with little
chances of being exploited.

To analyze the CVSS score we report its histogram distri-

Fig. 2. Distribution of CVSS scores per dataset.

bution in Figure 2. We identify three clusters of vulnerabilities
throughout all our datasets and three corresponding categories
of scores:

1) HIGH: CVSS ≥ 9
2) MEDIUM: 6 ≤ CVSS < 9
3) LOW: CVSS < 6

In Figure 1, red, orange and cyan areas represent HIGH,
MEDIUM and LOW score vulnerabilities respectively. The
NVD reports a large number of HIGH CVSS vulnerabilities
that are not included in SYM. Similarly, while most of the
intersection between EDB and SYM is covered by HIGH
score CVEs, much of the red area for EDB is not included
in SYM. By looking only at HIGH and MEDIUM score
vulnerabilities in EDB one would deal with about 94% false
positives (i.e. HIGH and MEDIUM score vulnerabilities not
included in SYM). False positives decrease to 79% if one
considers vulnerabilities with HIGH scores only. Table III
reports distribution of HIGH, MEDIUM, LOW scores per each
dataset. Looking at SYM, 52% of its vulnerabilities have a
CVSS score strictly lower than 9 (665 out of 1277), and 21%
are strictly lower than 6 (272): 1 out of 5 vulnerabilities ex-
ploited in the wild is ranked as a “low risk vulnerability”, and
1 out of 2 as “non-high risk”. From a first look, HIGH CVSS
scores seem to be over-estimating the risk of exploitation for
a large volume of vulnerabilities both in NVD and EDB, and
not being representative of vulnerabilities in SYM.

However, this is only an observational analysis from which
it is hard to make statistically sound conclusions: (a) HIGH,
MEDIUM or LOW CVSS scores may only be loosely corre-
lated to inclusion of a vulnerability in SYM. (b) These results
are strongly influenced by the volume of the datasets: NVD



TABLE III
INCIDENCE OF CVSS SCORES PER DATASET

CVSS Score EKITS SYM EDB NVD
HIGH 86 612 1.209 7.026
MEDIUM 16 393 5.324 20.858
LOW 12 272 1.589 21.715
tot 114 1.277 8.122 49.599

TABLE IV
OBSERVATIONAL SPECIFICITY AND SENSITIVITY OF EACH DATASET.

Sensitivity is the probability of the CVSS score being medium or high for
vulnerabilities actually exploited in the wild. Specificity is the probability of

the CVSS score being low for vulnerability not exploited in the wild.

test(v.CVSS) = H v M — SYM EKITS EDB NVD
Sensitivity 97.4% 94.4% 78.7%
Specificity 32.0% 20.3% 44.4%

contains almost 50.000 vulnerabilities, while those monitored
in the wild are less than 1.300. In NVD and EDB there might
be a lot of “noisy” vulnerabilities that are not reported in
SYM because of other factors, such as age or software type
(i.e. old or rare vulnerabilities that Symantec may not detect).
To address (a) we measure the goodness of the CVSS score
as a test for exploitation by means of two metrics, namely
sensitivity and specificity (§IV). As for (b), we further explore
the CVSS subscores of vulnerabilities to underline technical
peculiarities of vulnerabilities in SYM (§V) and use these
as control variables to sample from EKITS, EDB, and NVD
vulnerabilities representative of those reported in SYM (§VII).

IV. SENSITIVITY AND SPECIFICITY

In the medical domain, the sensitivity of a test is the condi-
tional probability of the test giving positive results when the
illness is present. The specificity of the test is the conditional
probability of the test giving negative result when there is
no illness. In our context, we want to assess to what degree
our current test (the CVSS score) predicts the illness (the
vulnerability being actually exploited in the wild and tracked
in SYM).

Following the preliminary analysis in Section III we
consider MEDIUM and HIGH CVSS scores as positive
tests while LOW scores are negative tests. In formulae,
Sensitivity=Pr(v.score ≥ 6 | v ∈ SYM) while Specificity=
Pr(v.score < 6 | v /∈ SYM). Table IV reports the
observational specificity and sensitivity for each dataset.

For the CVSS score to be a good indicator within a dataset,
sensitivity and specificity should be both high, possibly over
90%. As shown in Table IV, EKITS is the dataset that per-
forms the best in terms of sensitivity: out of 100 vulnerability
exploited in the wild 97 are predicted to be dangerous (H or
M CVSS score). EDB scores well in terms of sensitivity too:
a proof-of-concept exploit and a HIGH or MEDIUM CVSS
score may be a good test for exploitation. Differently for NVD,
a HIGH or MEDIUM CVSS score is not a good indicator that
an exploit will actually show off in the wild: 21 vulnerabilities
out of 100 which are actually dangerous would fail to get the

TABLE V
POSSIBLE VALUES FOR THE EXPLOITABILITY AND IMPACT SUBSCORES.

Impact subscore
Confidentiality Integrity Availability

Undefined Undefined Undefined
None None None
Partial Partial Partial

Complete Complete Complete
Exploitability subscore

Access Vector Access complexity Authentication
Undefined Undefined Undefined

Local High Multiple
Adjacent Net. Medium Single

Network Low None

HIGH or MEDIUM score (79% sensitivity). Unfortunately,
all databases show poor specificity: more than 1 out of 2
not dangerous vulnerabilities would be wrongly tagged with a
HIGH or MEDIUM score. Loosely speaking, the CVSS test
would generate a medical unnecessary panic among otherwise
healthy individuals.

However, this conclusion is only based on observational
data: we report all data without random sampling and con-
trolling for possible confounding variables that may influence
the inclusion in SYM. Therefore, these results should be used
to draw statistical conclusions with care. We will build a case-
controlled experiment in a later section based on the results
of our analysis on the Impact and Exploitability subscores.

V. THE IMPACT AND EXPLOITABILITY SUBSCORES

The general CVSS score takes into consideration two sub-
scores: Impact and Exploitability. The former is a measure of
the potential damage that the exploitation of the vulnerability
could cause to the victim system; the latter attempts at
measuring the likelihood-to-be-exploited of the vulnerability
[4]. They are calculated on the basis of further variables that
are reported in Table V.

The impact metric distribution is plotted in Figure 3.
Somewhat surprisingly, high impact score vulnerabilities are
not by default preferred by attackers: 20% of vulnerabilities in
SYM have a LOW Impact score. This effect is much reduced
for the EKITS dataset: only 8% of its vulnerabilities score
LOW. As for EDB and NVD, the picture change completely:
the greatest majority of vulnerabilities in EDB (5245, or 65%)
have a medium score, and the remaining 35% is equally split
between HIGH and LOW Impact vulnerabilities. This might
explain the low specificity for EDB: many vulnerabilities that
just have a proof-of-concept exploit are of little harm. In NVD
20% have HIGH Impact score, 40% are scored MEDIUM, and
40% LOW.

Looking in more detail into the Impact metric, Table VI
shows the incidence of values of the Confidentiality, In-
tegrity, Availability assessments for vulnerabilities in the SYM
dataset. Negligible configurations are represented by a handful
of vulnerabilities (e.g. the CCN case is represented by 1
vulnerability). Availability almost always assume the same
value as Integrity, apart from the case where both Integrity
and Confidentiality are set to “None”. The average variation



Fig. 3. Distribution of CVSS Impact subscores per dataset.

TABLE VI
INCIDENCE OF VALUES OF CIA TRIAD WITHIN THE SYM DATASET.

Confidentiality Integrity Availability SYM Negligible
C C C 51.53%
C C N 0.08% X
C N C 0.08% X
C N N 0.23% X
P P P 26.16%
P P N 1.64% X
P N P 0.16% X
P N N 7.67%
N C C 0.23% X
N P C 0.08%
N P P 0.63%
N P N 3.68%
N N C 1.57% X
N N P 6.26%

of the Impact score if Availability was not to be considered at
all is less than 1%.

For the sake of readability, we therefore exclude the Avail-
ability assessment from the analysis, and proceed by looking
at the two remaining Impact variables in the four datasets.
The analysis is reported in Table VII. Most vulnerabilities
in the NVD dataset score “partial” in the two Impact sub-
metrics. This effect is enhanced in the EDB dataset, where
almost 70% of vulnerabilities score partial in at least one
of either Confidentiality, or Integrity. The scenario changes
completely when looking at the SYM and EKITS datasets:
most vulnerabilities ( 50%, 75%) score “Complete”.

A. The Exploitability Subscore

Figure 4 shows the distribution of the Exploitability sub-
score per each dataset. Here the distinction between HIGH

TABLE VII
COMBINATIONS OF CONFIDENTIALITY AND INTEGRITY VALUES PER

DATASET.

Confidentiality Integrity SYM EKITS EDB NVD
C C 51.61% 74.76% 18.11% 20.19%
C P 0.00% 0.00% 0.02% 0.04%
C N 0.31% 0.97% 0.71% 0.88%
P C 0.00% 0.00% 0.01% 0.01%
P P 27.80% 16.50% 63.52% 37.84%
P N 7.83% 0.97% 5.61% 10.62%
N C 0.23% 0.00% 0.18% 0.22%
N P 4.39% 2.91% 5.07% 16.52%
N N 7.83% 3.88% 6.75% 13.69%

Fig. 4. Distribution of CVSS Exploitability subscores.

and MEDIUM Exploitability scores seem to be not very sig-
nificant: numbers are qualitatively identical among all datasets.
Almost all vulnerabilities, independently of the dataset, score
between 8 and 10. These observations confirm Bozorgi et
al.’s findings [4]: there is no direct relationship between
Exploitability score and actual likelihood of exploitation. The
Exploitability subscore looks therefore to be more a constant
than a variable. This means that it has little to no influence
on the variance of the final CVSS score, which may in turn
affect the suitability of the CVSS as a risk metric.

Table VIII reports the total distribution of the exploitability
variables. The greatest share of actual risk comes from vulner-
abilities that can be remotely exploited; just 3% of vulnerabil-
ities are only locally exploitable. Moreover, the great major-
ity of discovered vulnerabilities is network-based (87.31%).
Authentication is another essentially boolean variable: most
exploited vulnerabilities do not require any authentication.



TABLE VIII
EXPLOITABILITY SUBFACTORS FOR EACH DATASET.

metric value SYM EKITS EDB NVD

E
xp

lo
ita

bi
lit

y

Acc. Vec.
local 2.98% 0% 4.57% 13.18%
adj. 0.23% 0% 0.12% 0.35%
net 96.79% 100% 95.31% 87.31%

Acc. Com.
high 4.23% 4.85% 3.37% 4.54%
medium 38.35% 63.11% 25.49% 30.42%
low 57.24% 32.04% 71.14% 65.68%

Auth.
multiple 0% 0% 0.02% 0.05%
single 3.92% 0.97% 3.71% 5.35%
none 96.08% 99.03% 96.27% 95.45%

TABLE IX
RELATIONSHIP BETWEEN ACCESS COMPLEXITY, IMPACT AND ACTUAL

EXPLOITATION

Impact SYM EKITS EDB NVD

A
cc

es
s

C
om

pl
ex

ity High
HIGH 1.33% 2.91% 0.58% 0.92%
MEDIUM 1.88% 1.94% 2.34% 1.89%
LOW 1.02% 0.00% 0.46% 1.89%

Medium
HIGH 32.50% 55.34% 8.84% 7.65%
MEDIUM 3.60% 4.85% 11.35% 7.69%
LOW 2.43% 2.91% 5.29% 14.83%

Low
HIGH 18.09% 16.50% 8.89% 11.80%
MEDIUM 22.55% 10.68% 50.89% 30.43%
LOW 16.60% 4.85% 11.36% 22.90%

VI. EXPLOITATION TRADE-OFFS

Among all subscores, access complexity present some inter-
esting results: the percentage of “very difficult” vulnerabilities
is equal (and very low) among all datasets but the per-
centage of “medium-complexity” vulnerabilities in the SYM
and EKITS datasets is much higher than in EDB. Medium-
complexity vulnerabilities in the EKITS and SYM datasets
are respectively 63.11% and 38.35% of the totals. As a
comparison, only 25.49% of vulnerabilities in the EDB dataset
have medium-complexity. Exploits in EDB seem to mostly
capture easy vulnerabilities (71.14%).

To explain the higher average Complexity for vulnerabilities
exploited in the wild we hypothesized a trade-off for the
attacker: he/she is willing to put extra-effort in the exploitation
only if it is worth it (i.e. the vulnerability has HIGH Impact).
Table IX reports the results of the analysis. The trade-off
is particularly evident in the medium-complexity range of
vulnerabilities: if an attacker is going to exploit a medium
complexity vulnerability, most likely this will be a HIGH
impact one (32.50%). This trend is even more evident in the
EKITS dataset, in which this percentage increases to 55.34%.
This supports the hypothesis that the extra effort required to
write an exploit for a more complex vulnerability is to be
weighted with a corresponding “return on investment”. Upon
LOW Complexity vulnerabilities, on the other hand, there is no
clear difference between HIGH, MEDIUM and LOW impacts:
as long as exploitation is easy, the attacker may be willing of
exploiting it regardless of the Impact score.

VII. RANDOMIZED CASE-CONTROLLED STUDY

In order to obtain stronger statistical results on the suitability
of the CVSS score as a risk metric for vulnerabilities, we
use the distribution of CVSS characteristics (alongside with

TABLE X
CASE-CONTROLLED CONDITIONAL PROBABILITY

Case-controlled distribution among dataset of CVSS scores (explanatory
variable) vs actual exploit in the wild as reported by SYM (response variable).

EKITS’
v ∈ SYM v /∈ SYM p-value

CVSS H or M 379 (81.33%) 87 (18.67%)
< 2.2 exp−16CVSS L 20 (18.52%) 88 (81.48%)

EDB’
v ∈ SYM v /∈ SYM p-value

CVSS H or M 248(20.84%) 942 (79.16%)
3.55 exp−2CVSS L 3 (1.20%) 248 (98.80%)

NVD’
v ∈ SYM v /∈ SYM p-value

CVSS H or M 50 (4.98%) 954 (95.02%)
5.66 exp−4CVSS L 5 (1.77%) 277 (98.23%)

software and year of the vulnerability) to generate a case-
controlled study where the cases are the vulnerabilities in
SYM (loosely corresponding to cases of lung cancer), and
NVD, EDB, and EKITS correspond to patients from various
sources and medical conditions. We are looking for a control
variable (like smoking) that could overwhelmingly explain
exploitation (cancer). We identify as possible control variables
for inclusion in SYM confidentiality, integrity, availability,
software and year. We then generate three random samples
of vulnerabilities from the EKITS, NVD and EDB datasets;
because of the selection on the control variables, these sam-
ples contain vulnerabilities comparable to those present in
the SYM database, and are therefore representative of the
vulnerabilities detected by Symantec in the wild13.

Table X shows the data for each sample where we consider
as a (tentative) explanatory variable the value of the CVSS and
as response variable the presence of the vulnerability in SYM.
We run a Fisher’s exact test (because data is not normal) for
each of the datasets to check for statistical significance of the
results. The p-values are reported in Table X. We recall that
the p value does not measure the strength of an effect or an
association (it is up to us to see it in the data), but only the
certainty that the effect that we see in the data is not due to
chance. A p value less than 0.05 is considered statistically
significant because there is less than 5% chances that the data
could exhibit the distribution by chance.

The test shows that the results are statistical significant for
all the samples; however, the NVD’ and EDB’ are, in contrast
to EKITS’, not far from the p < 0.05 mark.

A. Rule-based policies for risk mitigation with CVSS

To understand wether a HIGH CVSS → HIGH risk policy
is meaningful, we adopt an approach similar to that used
by Evans in [6] to estimate the effectiveness of seat belts
in preventing fatalities. In his case, the “effectiveness” was
given by the difference in the probability of having a fatal car
crash when wearing a seatbelt and when not. More formally,
Pr(Death x Seat belt) - Pr(Death x not Seat belt). In our case,

13The sampling was performed with the statistical tool R-CRAN [21].



TABLE XI
RELATIVE RISK FOR CVSS SCORE

Relative risk (by difference or ratio of probabilities) for a vulnerability to be
exploited depending on the CVSS score and the database.

v ∈ SYM vs v 6∈ SYM Pr(H+M) - Pr(L) Pr(H+M) / Pr(L)
EKITS’ +62.81% 4.5x
EDB’ +19.64% 17.3x
NVD +3.2% 2.8x

the effect we are interested in is the ability of the CVSS score
(combined with the datasets) to predict the actual exploit in the
wild (i.e. present in SYM). Table XI shows both the difference
and the ratio of the probabilities. Either approach can be used
to evaluate the strength of an association.

Each row in the table tells us the chances that a vulnerability
with a MEDIUM or HIGH CVSS score is actually exploited
in the while vs one with LOW scores.

For EKITS’we see that a HIGH-MEDIUM vulnerability has
around +62% more chances of being exploited (difference)
and more than 4.5 times the chances of being exploited than a
vulnerability with LOW (ratio). Both methods tell that ending
up in the black market is a bad sign. For EDB’, the evidence
is less strong. We only have +20% more chances albeit the
ratio is 17 times higher. The reason for this conflicting result
is the low prevalence rate of exploited vulnerabilities in EDB.
Many of them are not exploited, even after controlling for
SYM-like characteristics and this dominate the difference of
probability. NVD’ has even weaker association for the same
reasons: we only have +3.2% increase in chances and a ratio of
3 times. For NVD’ and EDB’, patching HIGH or MEDIUM
risk vulnerabilities would only diminish the overall risk of
being actually attacked by 3% and 20% respectively.

As a consequence, getting rid of all HIGH CVSS vulnera-
bilities first may not be a good strategy, as otherwise suggested
by rule-based policies [20]: this would results in a negligible
reduction in relative risk.

B. Sensitivity and specificity for case-controlled study

The higher ratio of NVD’ and EDB’ determines new values
for the specificity and sensitivity of the CVSS score, reported
in Table XII. The sensitivity of the test is quite high among all
the datasets. This result is interesting in particular with respect
to EDB’, for whom HIGH CVSS scores might be a good test
for exploitation. Yet, the CVSS score has a dramatically poor
specificity for all datasets. Sampling SYM-like characteristics
does not help in scoring vulnerabilities as “non-dangerous”
ones. In particular, if we consider a specificity of 25%, only
1 out of 4 non-attacked vulnerabilities are marked as LOW
score. The remaining three are instead marked as MEDIUM
or HIGH.

Given our results on case-controlled specificity and sensitiv-
ity of CVSS, we conclude that the CVSS score is not a reliable
risk test for vulnerabilities; different results among different
datasets evidence that its reliability varies depending on the
reference dataset.

TABLE XII
CASE-CONTROLLED SPECIFICITY AND SENSITIVITY.

Case-controlled sensitivity and specificity of the CVSS score being medium
or high and the vulnerability being actually exploited in the wild (i.e. in
SYM). Data has been random sampled from EDB and NVD according

SYM’s distribution of values for CVSS subscores.
CVSS H v M — Exploit EKITS EDB’ NVD’
sensitivity 94.98% 97.60% 90.90%
specificity 50.28% 22.02% 22.72%

VIII. DISCUSSION AND IMPLICATIONS

Vulnerability assessment and patching has traditionally been
a matter of great discussion within the community [5], [23],
[24]. Here we summarize the main implications from our
study.

Implication #1. Vulnerabilities exploited in the wild show
specific patterns in the CVSS subscores; these observations
can help to improve the sensitivity and specificity of the
CVSS score. Some conclusions are more absolute (exceptions
counted on one’s fingers), while others are only statistically
significant (hence the adverb “usually”), with a p-value lower
than < 2.2E − 16 for Fisher’s exact test.

1) Actually exploited vulnerabilities are remotely ex-
ploitable and do not require multiple authentication.
Despite SYM containing local threats, only 3% of
vulnerabilities are assessed as “only locally exploitable”.
Vulnerabilities exploitable from an adjacent network are
even less interesting. 4% of vulnerabilities require a
single instance of authentication; none of them require
multiple authentication.

2) Availability impact is irrelevant. The impact of more
than 96% of vulnerabilities in SYM can still be ac-
curately assessed without taking into consideration the
value of Availability.

3) Confidentiality and Integrity losses usually go hand-in-
hand. The overwhelming majority of vulnerabilities in
SYM have complete or partial losses for both Confiden-
tiality and Integrity: other combinations are less likely
to be exploited.

4) “Exploits” in EDB are usually for easy vulnerabilities.
Proof-of-concept exploits released in the EDB are for
vulnerabilities easier to exploit than those actually ex-
ploited by attackers.

5) Medium-complexity vulnerabilities are usually interest-
ing only if they come along with a high impact. Non-
trivial to exploit vulnerabilities seem to be of interest for
the attacker only if they come with a higher final impact
on the vulnerable system. In contrast, Low-complexity
vulnerabilities are exploited uniformly among all impact
scores.

Implication #2. Rule-based policies based on CVSS score,
like the US Government NIST SCAP protocol [20], may not
make for an effective strategy: only a negligible number of
low-risk vulnerabilities are ruled out, even after controlling
for “significant” vulnerabilities. Security policies may require
a major adjustment to meet these observations. In particular,



while the CVSS score underlines interesting characteristics of
exploited vulnerabilities, it may be not expressive enough to
reliably represent exploitation. Other factors such as software
popularity, presence of the exploit in the market and existence
of easier vulnerabilities for that software are all “contextual
factors” that might be worth exploring in future work.

Implication #3. The black market can be a good source to
assess which vulnerabilities represent high risk. Exploits for
vulnerabilities traded in the black market significantly overlap
with those recorded in the wild, which may indicate that the
presence of an exploit in the black markets can be a good
indicator of the associated vulnerability risk.

IX. THREATS TO VALIDITY

We identify a number of threats to validity. [19].
Construct validity A number of issues we encountered

while collecting SYM and EKITS may affect the soundness
of the data collection. Because of the unstructured dataset of
the original SYM dataset, to build SYM we needed to take
some preliminary steps. We couldn’t be sure about whether
the collected CVEs were relevant to the threat. To address
this issue, we proceeded in two steps. First, we manually
analyzed a random selection of about 50 entries to check
for the relevance of the CVE entries in the “description”
and “additional references” sections of each entry. To double-
check our evaluation, we questioned Symantec in an informal
communication: our contact confirmed that the CVEs are
indeed relevant. Another issue is what data from Symantec’s
attack-signature and threat-explorer datasets to use. Attack
and infection dynamics are not always straightforward, and
network and host-based threats often overlap. However, in
this case, we are interested in a general evaluation of risk.
Moreover, Exploit Kits enforce a drive-by download attack
mechanism, therefore they are related to both the network and
local threat scenario. We therefore can safely rely on both the
datasets for our analyses.

Due to the shady nature of the tools, the list of exploited
CVEs in EKITS may be incomplete and/or incorrect. We don’t
know any straightforward way to address this issue; to mitigate
the problem, we crossed-referenced entries with knowledge
from the security research community and from our direct
observation of the black markets.

External validity is concerned with the applicability of
our results to real-world scenarios. Symantec is a world-
wide company and a leader in the security industry. We are
therefore confident is considering their data representative
sample of real-world scenarios. Yet, our conclusion cannot be
generalized to the risk due to targeted attacks. Targeted attacks
in the wild of a specific platform or system are less likely
to generate an entry into a general anti-virus product, and
therefore less likely to be represented in the SYM database.

X. RELATED WORKS

Many studies before ours analyzed and modeled trends in
vulnerabilities. Among all, Frei et al. [8] were maybe the first
to link the idea of life-cycle of a vulnerability to the patching

process. Their dataset was a composition of NVD, OSVDB
and ‘FVDB’ (Frei’s Vulnerability DataBase, obtained from the
examination of security advisories for patches). The life-cycle
of a vulnerability includes discovery time, exploitation time
and patching time. They showed that, according to their data,
exploits are often quicker to arrive than patches are. They were
the first to look, in particular, at the difference in time between
time of first “exploit” and time of disclosure of the vulner-
ability. This work have recently been extended by Shahzad
et al. [24], which presented a comprehensive vulnerability
study on NVD and OSVDB datasets (+ Frei’s) that included
vendors and software in the analysis. Many interesting trends
on vulnerability patching and exploitation are presented, and
support Frei’s conclusion. However, they basically looked at
the same data: looking at EDB or OSVDB may say little
about actual threats and exploitation of vulnerabilities. The
difference with our paper, here, is that we look at a sample
of actual attack data (SYM) and underline differences in
vulnerability characteristics with other datasets. For a thorough
description of our datasets and a preliminary discussion on
the data, see [3]. An analysis of the distribution of CVSS
scores and subscores has been presented by Scarfone et al. in
[22] and Gallon [9]. However, while including CVSS subscore
analysis, their results are limited to data from NVD and do
not provide any insight on vulnerability exploitation. In this
sense, Bozorgi et al. [4] were probably the first in looking
at CVSS subscores against exploitation. They showed that
the “exploitability” metric, usually interpreted as “likelihood
to exploit” did not match with data from EDB: their results
were the first to show that the interpretation of CVSS metrics
might not be entirely straightforward. We extended their first
observation with a in-depth analysis of subscores and of actual
exploitation data.

On a slightly different line of research are studies concerned
with the discovery of vulnerabilities. In [5] Clark et. al. under-
lined the presence of a ‘honeymoon effect’ in the discovery
of the first vulnerability for a software, that is related with the
“familiarity” of the product. In other words, the more popular
the software the smaller the gap between software release and
first vulnerability disclosure.

Other studies focused on the modeling of the vulnerability
discovery processes. Foundational in this sense are the works
of Alhazmi et al. [2] and Ozment’s [18]. The former fits 6 vul-
nerability models to vulnerability data of four major operative
systems, and shows that Alhazmi’s ‘S shaped’ model is the one
that performs the better. However, as previously underlined
by Ozment [18], vulnerability models often rely on unsound
assumptions such as the independence of vulnerability dis-
coveries. Current vulnerability discovery models are indeed
not general enough to represent trends for all software [13].
Moreover, vulnerability disclosure and discovery are complex
processes [17], and can be influenced by {black/white}-hat
community activities [5], [8] and economics [15].

Our analysis of the vulnerabilities marketed in exploit-
kits is also interesting because it confirms that the market
for exploits is significantly different than the IRC markets



for credit cards and other stolen goods. Indeed, dismantling
some previous analysis [7], Herley et al. [10] shown that IRC
markets feature all the characteristics of a typical “market for
lemons” [1]: the vendor has no drawbacks in scamming the
buyer because of the complete absence of a unique-ID and
of a reputation system. Moreover, the buyer cannot in any
way assess the quality of the good (e.g. the amount of credit
available) beforehand.

In contrast, Savage et al. [16] analyzed the private messages
exchanged in 6 underground forums. Most interestingly, their
analysis shows that these markets feature the characteristics
typical of a regular market: sellers do re-use the same ID,
the transactions are moderated, and reputation systems are in
place and seem to work properly. These observations coincide
with our direct exploration of the black markets. The results
reported in this paper show that by buying exploit kits one buys
something that might actually work: the exploits in exploit kits
are actually seen in the wild.

XI. CONCLUSION

In this paper we presented our four datasets of vulnerabili-
ties (NVD), proof-of-concept exploits (EDB), exploits traded
in the black market (EKITS), and exploits recorded in the
wild(SYM). We showed that, in general, the CVSS score and
its submetrics capture some interesting characteristics of the
vulnerabilities whose exploits are recorded in the wild but
it is not expressive enough to be used as a reliable test for
exploitation (with both high sensitivity and high specificity).

Alas, the bottom-line answer to the question set out in the
title of this paper is not entirely satisfactory. You should surely
worry in a few cases:

• your vulnerability is listed by an exploit kit in the black
market and have a medium-high CVSS score;

• your vulnerability has a proof of concept exploit (eg
in EDB), requires no authentication, can be exploited
over the network and have medium complexity but high-
impact (with a medium-high CVSS score).

Unfortunately, nor CVSS subscores, nor the existence of
exploits, nor the trading on the black market offer a statistically
sound test for ruling out the 98% of the cases for which users
at large shouldn’t worry. However, it is not clear whether
you should really fix it quick or you can wait: the chances
of suffering from an attack do not increase much if you do
not, even if the CVSS is high and the vulnerability is similar
to others already exploited. You should at least check if a
proof-of-concept exploit exist, but the overall risk status of
the system will not remarkably diminish.

This makes CVSS rule-based policies not straightforward
to implement: the compliance with current regulations is in
contrast with measurably low gains in terms of actual security.

A robust claim can instead be made for the databases subject
of this study: using NVD, EDB (or consequently OVSDB) to
assess software exploits in the wild is the wrong thing to do.
Without additional attention, those databases can only be used
to assess the upper hand in the race between software vendors
and security researchers.

ACKNOWLEDGEMENTS

This work was partly supported by the EU-SEC-CP-
SECONOMICS and MIUR-PRIN-TENACE Projects. We
would like to thank Tudor Dimitras and Viet H. Nguyen for
the many useful discussions. Viet actually wrote the second
script used for cross-checking the SYM dataset. No statement
in this paper should be interpreted as endorsed by Symantec.

REFERENCES

[1] G. A. Akerlof. The market for ”lemons”: Quality uncertainty and the
market mechanism. The Quarterly Jour. of Econ., 84:pp. 488–500, 1970.

[2] O. Alhazmi and Y. Malaiya. Application of vulnerability discovery
models to major operating systems. IEEE Trans. on Rel., 57(1):14 –
22, march 2008.

[3] L. Allodi and F. Massacci. A preliminary analysis of vulnerability scores
for attacks in wild. In ACM Proc. of CCS BADGERS’12, 2012.

[4] M. Bozorgi, L. K. Saul, S. Savage, and G. M. Voelker. Beyond heuristics:
learning to classify vulnerabilities and predict exploits. In Proc. of
SIGKDD’10, pages 105–114. ACM, 2010.

[5] S. Clark, S. Frei, M. Blaze, and J. Smith. Familiarity breeds contempt:
the honeymoon effect and the role of legacy code in zero-day vulnera-
bilities. In Proc. of ACSAC’10, pages 251–260, 2010.

[6] L. Evans. The effectiveness of safety belts in preventing fatalities.
Accident Anal. & Prev., 18(3):229–241, 1986.

[7] J. Franklin, V. Paxson, A. Perrig, and S. Savage. An inquiry into the
nature and causes of the wealth of internet miscreants. In Proc. of
CCS’07, pages 375–388, 2007.

[8] S. Frei, M. May, U. Fiedler, and B. Plattner. Large-scale vulnerability
analysis. In Proc. of LSAD’06, pages 131–138. ACM, 2006.

[9] L. Gallon. Vulnerability discrimination using cvss framework. In Proc.
of NTMS’11, pages 1–6, 2011.

[10] C. Herley and D. Florencio. Nobody sells gold for the price of silver:
Dishonesty, uncertainty and the underground economy. Springer Econ.
of Inf. Sec. and Priv., 2010.

[11] M. Howard, J. Pincus, and J. Wing. Measuring relative attack surfaces.
Comp. Sec. in the 21st Century, pages 109–137, 2005.

[12] F. Massacci, S. Neuhaus, and V. Nguyen. After-life vulnerabilities: A
study on firefox evolution, its vulnerabilities, and fixes. In Proc. of
ESSoS’11, LNCS, pages 195–208, 2011.

[13] F. Massacci and V. Nguyen. An independent validation of vulnerability
discovery models. In Proc. of ASIACCS’12, 2012.

[14] P. Mell and K. Scarfone. A Complete Guide to the Common Vulnerability
Scoring System Version 2.0. CMU, 2007.

[15] C. Miller. The legitimate vulnerability market: Inside the secretive world
of 0-day exploit sales. In Proc. of WEIS’07, 2007.

[16] M. Motoyama, D. McCoy, S. Savage, and G. M. Voelker. An analysis
of underground forums. In Proc. of IMC’11, 2011.

[17] A. Ozment. The likelihood of vulnerability rediscovery and the social
utility of vulnerability hunting. In Proc. of WEIS’05, 2005.

[18] A. Ozment. Improving vulnerability discovery models. In Proc. of
QoP’07, pages 6–11, 2007.

[19] D. E. Perry, A. A. Porter, and L. G. Votta. Empirical studies of software
engineering: a roadmap. In Proc. of ICSE’00, pages 345–355. ACM,
2000.

[20] S. D. Quinn, K. A. Scarfone, M. Barrett, and C. S. Johnson. Sp 800-117.
guide to adopting and using the security content automation protocol
(scap) version 1.0. Technical report, 2010.

[21] R Core Team. R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing, Vienna, Austria, 2012.
ISBN 3-900051-07-0.

[22] K. Scarfone and P. Mell. An analysis of cvss version 2 vulnerability
scoring. In Proc. of ESEM’09, pages 516–525, 2009.

[23] G. Schryen. Is open source security a myth? Comm. ACM, 54, 2011.
[24] M. Shahzad, M. Z. Shafiq, and A. X. Liu. A large scale exploratory

analysis of software vulnerability life cycles. In Proc. of ICSE’12, pages
771–781. IEEE Press, 2012.

[25] L. Wang, T. Islam, T. Long, A. Singhal, and S. Jajodia. An attack graph-
based probabilistic security metric. In Proc. of DAS’08, volume 5094
of LNCS, pages 283–296. Springer, 2008.


	Introduction
	Our Contribution

	Datasets
	Exploratory analysis of datasets
	Sensitivity and specificity
	The Impact and Exploitability Subscores
	The Exploitability Subscore

	Exploitation Trade-offs
	Randomized Case-Controlled study
	Rule-based policies for risk mitigation with CVSS
	Sensitivity and specificity for case-controlled study

	Discussion and implications
	Threats to validity
	Related works
	Conclusion
	References

