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Abstract. In this article, we present a general solution for linear divide-and-conquer recurrences of the form

un =

k∑
i=1

aiub n
bi
c + g(n).

Our approach handles more cases than the Master method does[1]. We achieve this advantage by defining a new
transform - the Order transform - which has useful properties for providing asymptotic answers (compared to
other transforms which supply exact answers). This transform helps in mapping the sequence under consideration
to the two dimensional plane where the solution becomes easier to obtain. We demonstrate the power of the final
results by solving many “difficult” examples.
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1. Introduction

In this paper, we consider linear divide-and-conquer recurrences of the form:

un =

{
u0 n = 0∑k
i=1 aiub nbi c

+ g(n) n ≥ 1 (1)

where:

• u0, ai ∈ R∗+,
∑k
i=1 ai ≥ 1

• bi, k ∈ N, bi ≥ 2, k ≥ 1

• g(x) is defined for real valuesx, and is bounded, positive and nondecreasing function
∀x ≥ 0

• ∀c > 1,∃x1, k1 > 0 such thatg(xc ) ≥ k1g(x),∀x ≥ x1

Such equations arise when studying the running time of divide-and-conquer algorithms.
The Master method[1] addresses the problem for the casek = 1 only, with some restrictions
ong(n). The solution we present is valid∀k ≥ 1 and with minor restrictions ong(n).

The main idea is to define a transform to help in mapping Equation 1 into a larger
dimensional space where the order solution can be obtained easily. Consequently, we prove
that if p0 is the real solution of the characteristic equation
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k∑
i=1

aib
−p
i = 1

(which always exists and is unique and positive), then

un = Θ(np0) + Θ
(
np0

∫ n

n1

g(u)
up0+1

du
)

for n1 large enough. In particular,

1. If ∃ε > 0 such thatg(x) = O(xp0−ε), thenun = Θ(np0).

2. If ∃ε > 0 such thatg(x) = Ω(xp0+ε) andg(x)/xp0+ε is a non decreasing function,
thenun = Θ(g(n)).

3. If g(x) = Θ(xp0), thenun = Θ(np0 log n).

Section 4 illustrates how to apply the above results to solve several interesting recurrence
equations that cannot be handled by the Master method.

2. Literature Survey

According to Cormen, Leiserson, and Rivest [2], recurrences were studied as early as 1202
by L. Fibonacci, for whom the Fibonacci numbers are named. A. De Moivre introduced the
method of generating functions for solving recurrences. The master method was provided
by Bentley, Haken, and Saxe [1]. Knuth [3] and Liu [4] showed how to solve linear
recurrences using the method of generating functions. Purdom and Brown [5] contains an
extended discussion of recurrence solving. However, we are not aware of any work in the
literature that solves the above divide-and-conquer linear recurrences, which are the subject
of this paper.

3. The Solution

To determine the general form of the solution of Equation 1, we proceed as follows:

• In Theorem 1 we extend the domain of Equation 1 to the real line. The new “continuous”
recurrence is described in Equation 2. We show that the two equations have isomorphic
solutions.

• In Theorem 2 we define the Order transform and prove some of its interesting properties.
We use this transform to extend the domain of Equation 2 to the two-dimensional plane.

• In Lemma 2 we show that the functions of interest do possess an order transform.

• In Theorem 3 we use the properties of the Order transform to solve Equation 2 in the
plane.

• In Theorem 4 we show that our results agree with the Master method when the latter is
applicable.
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• In Corollary 1 we summarize the results as they apply for the original recurrence
equation.

Theorem 1 Let un be a sequence defined as in Equation 1. Letf(x) be a function
defined by:

f(x) =
{
u0 x ∈ [0, 1)∑k
i=1 aif( xbi ) + g(bxc) x ∈ [1,∞).

(2)

Then,

1. ∀x ≥ 0, f(x) = f(bxc).

2. ∀n ≥ 0, f(n) = un.

In other words,f(x) is a staircase function which matches withun at integer values ofx.
In proving the above theorem, we will use the following lemma whose proof can be found
in [2].

Lemma 1 if b ∈ N, b ≥ 1, andx ∈ R+, then⌊x
b

⌋
=
⌊bxc
b

⌋
.

Proof of Theorem 1: To prove thatf(x) = f(bxc), we use strong induction.
Note that∀x ∈ [0, 1) we havef(x) = u0 andf(bxc) = f(0) = u0. Hence,f(bxc) = f(x).
Now assume thatf(bxc) = f(x)∀x ∈ [0, n), and let us prove that it is true∀x ∈ [n, n+1).
Consider

f(x) =
k∑
i=1

aif
( x
bi

)
+ g(bxc). (3)

Let x ∈ [n, n+ 1), then

x

bi
∈
(

0,
n+ 1

2

)
sincebi ≥ 2.

But (
0,
n+ 1

2

)
⊂ [0, n) for n ≥ 1.

Hence, we conclude that

x

bi
∈ [0, n),

bxc
bi
∈ [0, n) and

⌊bxc
bi

⌋
=
⌊ x
bi

⌋
∈ [0, n) (using Lemma 1).
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Therefore,

f
( x
bi

)
= f

(⌊ x
bi

⌋)
(by assumption)

= f
(⌊bxc

bi

⌋)
(using Lemma 1)

= f
(bxc
bi

)
(by assumption).

Replacing in Equation 3, we obtain

f(x) =
k∑
i=1

aif
(bxc
bi

)
+ g(bxc).

However,

f(bxc) =
k∑
i=1

aif
(bxc
bi

)
+ g(bxc).

Therefore,

f(x) = f(bxc)∀x ≥ 0,

which completes the proof of Part 1 of the theorem.
To prove thatf(n) = un, we use strong induction again.
The equality holds trivially forn = 0. Assume it is true for allm < n and consider

f(n) =
k∑
i=1

aif
( n
bi

)
+ g(n) (4)

Let n ≥ 1. We already proved in Part 1 thatf(n/bi) = f(bn/bic). Now sincebn/bic ∈
[0, n) we concludef(bn/bic) = ubn/bic. Replacing in Equation 4, we obtain

f(n) =
k∑
i=1

aiub nbi c
+ g(n).

But,

un =
k∑
i=1

aiub nbi c
+ g(n).

So,f(n) = un, which completes the proof.

Definition 1. (Regularity Conditions) LetS be the set of all real-valued functionf(x)
of the real variablex satisfying the following conditions:

1. ∀x ≥ 0, f(x) is bounded.
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2. ∀x ≥ 0, f(x) is nondecreasing.

3. ∀c > 1,∃x1, k1 > 0 such that∀x ≥ x1, f(xc ) ≥ k1f(x),

In Lemma 2 we will show that the functionsf(x) andg(bxc) as defined in Theorem 1 both
belong to S.

Theorem 2 (The Order Transform) LetP{} be a mapping that assigns to each function
f(x) ∈ S a real-valued functionF (s, p) of the real variabless ∈ R+ andp, defined by:

F (s, p) = P{f(x)} ≡
∫ s

1

f(u)u−p−1du.

ThenP{} satisfies the following properties:

1. P{} exists.

2. P{} is linear.

3. P{} is one-to-one.

4. (Scaling property) Letf(x) ∈ S, F (s, p) = P{f(x)}, a ∈ R anda > 1. Then,

P
{
f
(x
a

)}
= a−pF (s, p)−Θs

(f(s)
sp

)
+ Θs(1),

whereΘs(h(s, p)) is a function bounded betweenc1(p)h(s, p) andc2(p)h(s, p), -for
some positive functionsc1(p), c2(p)-, ∀s > s0,∀p.

Proof:

1. Sincef is bounded and the range of the integral is finite, thenP{} exists.

2. Linearity of the transform is trivial.

3. Letf1(x), f2(x) ∈ S and letP{f1(x)} = P{f2(x)}. Then,∫ s

1

f1(u)u−p−1du =
∫ s

1

f2(u)u−p−1du

∂

∂s

∫ s

1

f1(u)u−p−1du =
∂

∂s

∫ s

1

f2(u)u−p−1du

f1(s)s−p−1 = f2(s)s−p−1

f1(s) = f2(s)

which completes the proof thatP{} is one-to-one.
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4. To prove the scaling property, let

F1(s, p) =
∫ s

1

f
(u
a

)
u−p−1du

Making a change of variablev = u/a, we obtain

F1(s, p) =
∫ s/a

1/a

f(v)(av)−p−1adv

= a−p
∫ s/a

1/a

f(v)v−p−1dv

= a−p
[ ∫ s

1

−
∫ s

s/a

+
∫ 1

1/a

f(v)v−p−1dv
]

= a−pF (s, p)− a−p
∫ s

s/a

f(v)v−p−1dv

+a−p
∫ 1

1/a

f(v)v−p−1dv (5)

Note that the last term

a−p
∫ 1

1/a

f(v)v−p−1dv = Θs(1). (6)

Let us investigate the asymptotic behavior ofa−p
∫ s
s/a

f(v)v−p−1dv with respect tos.
Sincef ∈ S, then

(A) ∀v > 0, f(v) is a non decreasing function, and

(B) ∃k1, s1 > 0 such thatk1(v) ≤ f(v/a) ∀v ≥ s1.

Therefore,∀v ∈ [s/a, s] we have

f(s/a) ≤ f(v) ≤ f(s).

Since fors ≥ s1 we havek1f(s) ≤ f(s/a), then

k1f(s) ≤ f(v) ≤ f(s) ∀s > s1,

k1
f(s)
vp+1

≤ f(v)
vp+1

≤ f(s)
vp+1

∀s > s1,

k1f(s)
∫ s

s/a

dv

vp+1
≤
∫ s

s/a

f(v)
vp+1

dv ≤ f(s)
∫ s

s/a

dv

vp+1
∀s > s1. (7)

We have two cases to consider, the case ofp 6= 0 and the case ofp = 0.
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(A) If p 6= 0, we get∫ s

s/a

dv

vp+1
= −1

p

[ 1
vp

]s
s/a

=
1
sp

(ap − 1
ap

)
.

Replacing in Equation 7, we obtain

k1
f(s)
sp

(ap − 1
p

)
≤
∫ s

s/a

f(v)
vp+1

dv ≤ f(s)
sp

(ap − 1
p

)
∀s > s1,

i.e.,
∫ s

s/a

f(v)
vp+1

dv = Θs

(f(s)
sp

)
(
ap − 1
p

> 0, sincea > 1)

(B) If p = 0 then∫ s

s/a

dv

vp+1
dv = log(s)− log

( s
a

)
= log a =

log a
sp

.

Replacing in Equation 7, we obtain

k1 log a
f(s)
sp
≤
∫ s

s/a

f(v)
vp+1

dv ≤ log a
f(s)
sp
∀s > s1,

i.e.,
∫ s

s/a

f(v)
vp+1

dv = Θs

(f(s)
sp

)
(note thatlog a > 0). (8)

Replacing Equations 6 and 8 in 5, we obtain

F1(s, p) = a−pF (s, p)−Θs

(f(s)
sp

)
+ Θs(1),

which completes the proof.

Lemma 2 Letf(x) be a function defined as in Theorem 1. In other words,

f(x) =

{
u0 x ∈ [0, 1)∑k
i=1 aif

(
b xbi c

)
+ g(bxc) x ∈ [1,∞) (9)

where:

• u0, ai ∈ R∗+,
∑k
i=1 ai ≥ 1

• bi, k ∈ N, bi ≥ 2, k ≥ 1
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• g(x) is a bounded, positive and nondecreasing function∀x ≥ 0

• ∀c > 1,∃x1, k1 > 0 such thatg(xc ) ≥ k1g(x),∀x ≥ x1.

Then,

1. g(bxc) ∈ S,

2. f(x) ∈ S (see footnote)1.

Proof:

1. Note thatg(x) ∈ S by definition. Hence,g(bxc) is clearly bounded and non-decreasing.
Moreover,g(bxc) is positive. There remains to prove that

∀c > 1,∃x2, k2, such thatg(bx
c
c) ≥ k2g(bxc) ∀x ≥ x2.

Let c > 1 be given. Letx > max{x1 + c+1, c2

c−1 +1}, then the following three useful
inequalities can be derived:

x > x1 + c+ 1
bxc > x1 + c

bxc − c > x1 (10)

On the other hand,

x >
c2

c− 1
+ 1

bxc > c2

c− 1
bxc(c− 1) > c2

bxc − bxc
c

> c

bxc − c >
bxc
c

(11)

Finally,

x > x1 + c+ 1
bxc > x1 (12)

Using Inequalities 10, 11, and 12, we conclude

g
(⌊x

c

⌋)
= g

(⌊bxc
c

⌋)
(using Lemma 1)

≥ g
(bxc
c
− 1
)

(sinceg is non-decreasing)
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= g
(bxc − c

c

)
≥ k1g(bxc − c) (using Inequality 10)

> k1g
(bxc
c

)
(using Inequality 11)

> k1
2g(bxc) (using Inequality 12).

Therefore,∀c > 1,∃x2 = max(x1 + c + 1, c2

c−1 + 1) > 0, k2 = k1
2 > 0, such that

g(bxc c) ≥ k2g(bxc), which completes the proof thatg(bxc) ∈ S.

2. To prove thatf(x) ∈ S, note thatf is defined in terms of a finite sum of positive
terms each of which is bounded and also positive. So,f is bounded and positive. Also
according to Theorem 1,f(x) = f(bxc). So, it is sufficient to prove that

(A) f(n) is non-decreasing for alln > 0,

(B) ∀c > 1,∃n3, k3 such thatf(nc ) ≥ k3f(n) ∀n > n3.

To prove thatf(n) is non-decreasing, we use strong induction. Note that

f(0) = u0,

f(1) =
k∑
i=1

aiu0 + g(1) ≥ u0 (since
∑k
i=1 ai ≥ 1 andg(1) ≥ 0)

Assume that for allk < n we havef(k) ≥ f(k − 1), and let us prove thatf(n) ≥
f(n− 1). Consider

f(n) =
k∑
i=1

aif
( n
bi

)
+ g(n)

=
k∑
i=1

aif
(⌊ n
bi

⌋)
+ g(n)

≥
k∑
i=1

aif
(⌊n− 1

bi

⌋)
+ g(n− 1) (g(n) is nondecreasing)

=
k∑
i=1

aif
(n− 1

bi

)
+ g(n− 1)

= f(n− 1).

So, for alln ≥ 1 we havef(n) ≥ f(n− 1). Therefore,f is non-decreasing.
To prove the other regularity condition, we use strong induction again. Using the results
of the previous Part,∃k2, x2, such thatg(bxc c) ≥ k2g(bxc) ∀x ≥ x2,∀c > 1. Consider

n0 = bx2c,

k3 = min
{ f(0)
f(n0)

, k2

}
.
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f is nondecreasing and strictly positive. So,∀m ∈ [0, n0]

f
(m
c

)
≥ f(0)

≥ f(0)
f(m)
f(n0)

= f(m)
f(0)
f(n0)

≥ f(m)k3

i.e.,∀m ∈ [0, n0] we havef(mc ) ≥ k3f(m). Now assume that for allm ∈ [0, n) where
n > n0 we havef(mc ) ≥ k3f(m), and let us prove thatf(nc ) ≥ k3f(n). Sincen > n0,
we haven/c > 1. So,

f
(n
c

)
=

k∑
i=1

f
(n/ai

c

)
+ g
(⌊n

c

⌋)
=

k∑
i=1

f
(⌊n/ai

c

⌋)
+ g
(⌊n

c

⌋)
(sincef(n) = f(bnc)) ,

=
k∑
i=1

f
(⌊bn/aic

c

⌋)
+ g
(⌊n

c

⌋)
(since

⌊n
c

⌋
=
⌊bnc
c

⌋
),

=
k∑
i=1

f
(bn/aic

c

)
+ g
(⌊n

c

⌋)
(sincef(n) = f(bnc)),

≥
k∑
i=1

k3f
(⌊ n
ai

⌋)
+ k3g(n) (since

⌊ n
ai

⌋
< n andg(n) ∈ S),

=
k∑
i=1

k3f
( n
ai

)
+ k3g(n) (sincef(n) = f(bnc)),

= k3f(n).

As a result,

∀c > 1,∃n3 = 0, k3 = min
{ f(0)
f(n0)

, k2

}
, such thatf

(n
c

)
≥ k3f(n) ∀n ≥ n3,

which completes the proof.

Theorem 3 Letf(x) be a function defined as in Theorem 1. Letp0 be the real solution
of the characteristic equation

∑k
i=1 aib

−p
i = 1. Thenp0 always exists and is unique and

positive. Furthermore,

f(x) = Θ(xp0) + Θ
(
xp0

∫ x

x1

g(u)
up0+1

du
)
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for x1 large enough.

Proof:
Sinceg(x) ∈ S, then according to Lemma 1 bothg(bxc) andf(x) belong toS. Hence,

both functions possess an Order transform. Rewriting the definition off(x),

f(x) =
k∑
i=1

aif
( x
bi

)
+ g(bxc) ∀x > 1

P{f(x)} = P
{ k∑
i=1

aif
( x
bi

)
+ g(bxc)

}
∀s > 1

P{f(x)} =
k∑
i=1

aiP
{
f
( x
bi

)}
+
∫ s

1

g(buc)
up+1

du

F (s, p) =
k∑
i=1

ai

(
b−pi F (s, p)−Θs

(f(s)
sp

)
+ Θs(1)

)
+
∫ s

1

g(buc)
up+1

du

i.e.,F (s, p)
(

1−
k∑
i=1

aib
−p
i

)
+ Θs

(f(s)
sp

)
=
∫ s

1

g(buc)
up+1

du+ Θs(1). (13)

Let h(p) = 1−
∑k
i=1 aib

−p
i . Then,

h(0) = 1−
k∑
i=1

ai ≤ 0,

lim
p→∞

h(p) = 1 > 0,

d

dp
h(p) =

k∑
i=1

ai(log bi)b
−p
i > 0,∀p (bi ≥ 2, ai > 0).

So,h(p) = 0 has a unique positive solutionp0. Replacingp0 in Equation 13, we get

Θs

(f(s)
sp0

)
=
∫ s

1

g(buc)
up0+1

du+ Θs(1)

i.e.,f(x) = Θ
(
xp0

∫ x

1

g(buc)
up0+1

)
du+ Θ(xp0). (14)

Sinceg(x) ∈ S andg(x) is non-decreasing, then

∀x ≥ 1, g
(x

2

)
≤ g(bxc) ≤ g(x), and

∃k1, x1 > 0 such thatg
(x

2

)
≥ k1g(x)∀x > x1.
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In other words,∀x > x1, k1g(x) < g(bxc) < g(x),

i.e.,k1

∫ x

x1

g(u)
up0+1

du ≤
∫ x

x1

g(buc)
up0+1

du ≤
∫ x

x1

g(u)
up0+1

du

i.e.,xp0

∫ x

x1

g(buc)
up0+1

du = Θ
(
xp0

∫ x

x1

g(u)
up0+1

du
)
.

Replacing in Equation 14 we obtain

f(x) = Θ
(
xp0

∫ x1

1

g(buc)
up0+1

du
)

+ Θ
(
xp0

∫ x

x1

g(u)
up0+1

du
)

+ Θ(xp0)

i.e.,f(x) = Θ(xp0) + Θ
(
xp0

∫ x

x1

g(u)
up0+1

du
)
,

which completes the proof.

Theorem 4 Letf(x) be a function defined as in Theorem 1. Letp0 be the unique solution
of the characteristic equation. Then,

1. If ∃ε > 0 such thatg(x) = O(xp0−ε), thenf(x) = Θ(xp0).

2. If ∃ε > 0 such thatg(x) = Ω(xp0+ε) andg(x)/xp0+ε is a non decreasing function,
thenf(x) = Θ(g(x)).

3. If g(x) = Θ(xp0) thenf(x) = Θ(xp0 log x).

Proof:

1. Suppose∃ε > 0 such thatg(x) = O(xp0−ε), i.e.,

∃x0, k > 0, such thatg(x) < kxp0−ε ,∀x > x0.

Let x1 > x0, then∀x > x1 we have∫ x

x1

g(u)
up0+1

du ≤ k

∫ x

x1

kup0−ε

up0+1
du

= k

∫ x

x1

du

up0+1

=
k

ε

( 1
xε1
− 1
xε

)
<

k

ε

1
xε1

= O(1) (15)
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But we proved in Theorem 3 that

f(x) = Θ(xp0) + Θ
(
xp0

∫ x

x1

g(u)
up0+1

du
)

(16)

Replacing Equation 16 in 15 we obtain

f(x) = Θ(xp0) +O(xp0) = Θ(xp0)

which completes the proof.

2. Suppose∃ε > 0 such thatg(x) = Ω(xp0+ε) and g(x)/xp0+ε is a non-decreasing
function for largex. Letφ(x) = g(x)/xp0+ε. Then,

g(x) = φ(x)xp0+ε

i.e.,xp0

∫ x

x1

g(u)
up0+1

du = xp0

∫ x

x1

φ(u)uε−1du

for x1 large enough to makeφ(x) non-decreasing. Therefore,∀x > x1

xp0

∫ x

x1

g(u)
up0+1

du < xp0φ(x)
∫ x

x1

uε−1du

= xp0φ(x)
1
ε

(xε − xε1)

< xp0φ(x)
1
ε
xε

=
1
ε
g(x)

= O(g(x)) (17)

Furthermore,

xp0

∫ x

x1

g(u)
up0+1

du = xp0

∫ x

x/a

g(u)
up0+1

du+ xp0

∫ x/a

x1

g(u)
up0+1

du.

But g(x) ∈ S, so∫ x

x/a

g(u)
up0+1

du = Θ
(g(x)
xp0

)
(from proof of scaling property)

Therefore,

xp0

∫ x

x1

g(u)
up0+1

du = Θ(g(x)) + xp0

∫ x/a

x1

g(u)
up0+1

du

= Ω(g(x)) (18)
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Equations 17 and 18 imply that:

xp0

∫ x

x1

g(u)
up0+1

du = Θ(g(x)) (19)

But we proved in Theorem 3 that

f(x) = Θ(xp0) + Θ
(
xp0

∫ x

x1

g(u)
up0+1

du
)

replacing Equation 19 in the above equation we obtain

f(x) = Θ(xp0) + Θ(g(x))
= Θ(g(x)) sinceg(x) = Ω(xp0+ε),

which completes the proof.

3. Supposeg(x) = Θ(xp0). Replacing in the result of Theorem 3, we get

f(x) = Θ(xp0

∫ x

x1

du

u
) + Θ(xp0)

= Θ(xp0 log x),

which completes the proof.

Corollary 1 Letun be a sequence defined as in Equation 1. Then,

un = Θ(np0) + Θ
(
np0

∫ n

n1

g(u)
up0+1

du
)

for n1 large enough,

wherep0 is the real solution of the equation
∑k
i=1 aib

−p
i = 1 which always exists and is

unique and positive. Furthermore,

1. if ∃ε > 0 such thatg(x) = O(xp0−ε) thenun = Θ(np0).

2. If ∃ε > 0 such thatg(x) = Ω(xp0+ε), andg(x)/xp0+ε is a non-decreasing function,
thenun = Θ(g(n)).

3. If g(x) = Θ(xp0) thenun = Θ(np0 log n).

Proof: The proof can be quickly obtained by combining the results of Theorems 1, 2, 3,
and 4.
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4. Illustrative Examples

In this section we present five examples illustrating how to apply the above results.

Example: un = 2ubn2 c + Θ(n log2 log n)

Solving the characteristic equation, we get

2× 2−p0 = 1
p0 = 1.

So,

un = Θ(n) + Θ
(
n

∫ n

n1

u log2 log u
u2

du
)

= Θ(n) + Θ(n log u(2− 2 log log u− log2 log u)]nn1
)

= Θ(n log log2 log n).

Example: un = 2ubn3 c + 1.5ubn4 c + 5ubn2 c + Θ(n2)

Solving the characteristic equation, we get

2× 3−p0 + 1.5× 4−p0 + 5× 2−p0 = 1
p0 = 2.57450.

Since∃ε > 0 such thatx2 = O(x2.57450−ε), thenun = Θ(n2.5745).

Example: un = 2ubn5 c + ubn6 c + Θ(n2)

Solving the characteristic equation, we get

2× 5−p0 + 6−p0 = 1
p0 = 0.678670.

Since∃ε > 0 such thatx2 = Ω(x0.678670+ε), andx2/n0.678670+ε is non-decreasing, then
un = Θ(n2).

Example: un =
4
3
ubn2 c + 3ubn3 c +

16
3
ubn4 c + Θ(n2 log logn)

Solving the characteristic equation, we get

4
3

2−p0 + 3× 3−p0 +
16
3

4−p0 = 1

p0 = 2.
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So,

un = Θ(n2) + Θ
(
n2

∫ n

1

u2 log log u
u3

du
)

= Θ(n2) + Θ(n2 log n log logn)
= Θ(n2 log n log logn).

Example: un =
3
4
ubn2 c + ubn3 c + ubn6 c + ubn8 c + Θ(n)

Solving the characteristic equation, we get

3
4

2−p + 3−p + 6−p + 8−p = 1

p0 = 1.

Sinceg(x) = Θ(x) = Θ(xp0), thenun = Θ(n log n).

5. Conclusion

In this article we provided a general method for solving linear divide-and-conquer recur-
rences. The solution turned out to have an integral form. The solution includes a parameter
p0 which is the root of the recurrence characteristic equation. The root can be computed
by simple numerical algorithms.

Notes

1. The proof of this Lemma is quite lengthy and may be skipped at first reading.
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