
Towards a Formal Foundation of Web Security

Devdatta Akhawe∗, Adam Barth∗, Peifung E. Lam†, John Mitchell† and Dawn Song∗
∗University of California, Berkeley

{devdatta,abarth,dawnsong}@cs.berkeley.edu
†Stanford University

{pflam,mitchell}@cs.stanford.edu

Abstract—We propose a formal model of web security based
on an abstraction of the web platform and use this model
to analyze the security of several sample web mechanisms
and applications. We identify three distinct threat models that
can be used to analyze web applications, ranging from a
web attacker who controls malicious web sites and clients, to
stronger attackers who can control the network and/or leverage
sites designed to display user-supplied content. We propose
two broadly applicable security goals and study five security
mechanisms. In our case studies, which include HTML5
forms, Referer validation, and a single sign-on solution, we
use a SAT-based model-checking tool to find two previously
known vulnerabilities and three new vulnerabilities. Our case
study of a Kerberos-based single sign-on system illustrates the
differences between a secure network protocol using custom
client software and a similar but vulnerable web protocol that
uses cookies, redirects, and embedded links instead.

I. INTRODUCTION

The web, indispensable in modern commerce, entertain-
ment, and social interaction, is a complex delivery platform
for sophisticated distributed applications with multifaceted
security requirements. However, most web browsers, servers,
network protocols, browser extensions, and their security
mechanisms were designed without analytical foundations.
Further complicating matters, the web continues to evolve
with new browser features, protocols, and standards added
at a rapid pace [1]–[6]. The specifications of new features
are often complex, lack clear threat models, and involve
unstated and unverified assumptions about other components
of the web. As a result, new features can introduce new
vulnerabilities and break security invariants assumed by web
applications [7]–[9]. Just as formal models and tools have
proven useful in evaluating the security of network protocols,
we believe that abstract yet informed models of the web
platform, web applications, and web security mechanisms
will be amenable to automation, reveal practical attacks, and
support useful evaluation of alternate designs.

In this paper, we take a first step towards building a com-
prehensive formal foundation for web security. In particular,
we propose a formal model for the web platform, which
includes a number of key web concepts, and demonstrate
that our model is useful for finding bugs in real-world web
security mechanisms. Our model is sufficiently abstract to
be amenable to formal analysis and yet appears sufficiently

detailed to express subtle attacks missed by expert human
analysts in several cases. We provide an executable im-
plementation of a subset of our model in Alloy [10] and
demonstrate the utility of this subset (and, more generally,
our model) via five case studies. Although we imagine our
model being used for more than vulnerability discovery, we
focus in this paper on analyzing existing protocols for design
errors. We show that our model can capture two previously
known and three previously unknown vulnerabilities.

The web security model consists of a selection of web
concepts, precise threat models, and two broadly applica-
ble security goals. These design choices are informed by
previous experience designing and (informally) evaluating
web security mechanisms, such as preventing cross-site
request forgery [11], securing browser frame communication
[12], preventing DNS rebinding [13], and protecting high-
security web sites from network attacks [14]. These and
other previous studies suggest that a few central modeling
concepts will prove useful for evaluating a wide range of
mechanisms.

The central web concepts we formalize in our model
include browsers, servers, scripts, HTTP, and DNS, as well
as ways they interact. For example, each script context, rep-
resenting execution of JavaScript within a browser execution
environment, is associated with a given “origin” and located
in a browser. By making use of browser APIs, such as
XMLHttpRequest, these script contexts can direct (restricted
forms of) HTTP requests to various DNS names, which
resolve to servers. These servers, in turn, respond to these
requests and influence the browser’s behavior. Although the
web security model we describe in section II also contains
other concepts such as frames, the location bar, and the lock
icon, our executable implementation described in section III
focuses on browsers, servers, scripts, HTTP, and DNS, which
form the “backbone” of the model.

We propose three distinct and important threat models:
a web attacker, an active network attacker, and a gadget
attacker. The most important threat model, at least for
mechanisms and studies we are familiar with, is the web
attacker. The web attacker operates a malicious web site and
may use a browser, but has no visibility into the network
beyond requests or responses directed towards the hosts it
operates. Many core web security mechanisms are designed

to resist the threats we formalize as the web attacker but fail
to provide protection against more powerful attackers. An
active network attacker has all the abilities of a web attacker
plus the ability to eavesdrop, block, and forge network
messages. The active network attacker we define is slightly
more powerful than the eponymous threat considered when
analyzing a traditional network protocol because our active
network attacker can make use of browser APIs. Finally,
we also consider a web attacker with the ability to inject
(limited kinds of) content into otherwise honest web sites,
corresponding to the gadget attacker considered in [12].
This threat lets us consider the robustness of web security
mechanisms in the presence of third-party content ranging
from comments on a blog to gadgets in a mashup.

The third part of our model formulates two widely ap-
plicable security goals that can be evaluated for various
mechanisms: (i) new mechanisms should not violate any of
the invariants that web sites commonly rely upon for security
and (ii) a “session integrity” condition, which states that
the attacker is unable to cause honest servers to undertake
potentially sensitive actions. There is a wide spectrum of
security goals we could investigate, but we focus on these
goals because they are generally applicable to many web
security mechanism, including those in our case studies.

Concretely, we implement the core components of our
model in Alloy [10], [15], an automated tool that translates
a declarative object-modeling syntax into propositional input
to a SAT solver. Using Alloy’s declarative input language,
we axiomatize the key concepts, threat models, and security
goals of our model. Our axiomatization is incomplete (both
because we do not implement all the concepts in our
model and because browser implementations might contain
bugs) but useful nonetheless. After modeling a specific web
security mechanism, the Alloy satisfiability (SAT) solver
attempts to find browser and site interactions that violate
specified security goals. Typically, we ask not whether a par-
ticular web security mechanism is secure, but how powerful
an attacker is required to defeat the security mechanism. In
this way, we aim to quantify the security of the mechanism.

To demonstrate the utility of our model, we conduct five
case studies. We use our model to analyze a proposed cross-
site request forgery defense based on the Origin header,
Cross-Origin Resource Sharing [3] (the security component
of the new cross-origin XMLHttpRequest API in the latest
browsers), a proposal [16] to use Referer validation to
prevent cross-site scripting, new functionality in the HTML5
form element, and WebAuth, a Kerberos-based single sign-
on system used at a number of universities. In each case,
our model finds a vulnerability in the mechanism, two of
which were previously known and three of which were
previously unknown. The Referer validation example, in
particular, demonstrates that our model is more sophisticated
than previous approaches because [16] analyzed the mech-
anism with Alloy and concluded that the mechanism was

secure. The WebAuth example shows that subtle security
issues arise when embedding a well-understood network
protocol (Kerberos) in a web security mechanism because of
interactions between the assumptions made by the protocol
and the behavior of the web platform.
Related Work: There is a large body of work on for-
mally verifying security properties of network protocols,
including model checking using a variety of tools [17]–
[20], constraint-based methods [21], and formal and auto-
mated proof methods [22]–[25]. Some of our previous non-
formalized work on web security (e.g., [26]) hints at formal
analysis by showing the existence of a frame communication
bug that is apparent as soon as the protocol is written
down formally. There has also been some work on formal
verification of web service security [27], [28]. A number
of the notions we formalize in this paper have been used
informally in the past. For example, MashupOS [29] con-
templates web attacker-like threats and the gadget attacker
makes an explicit appearance in [30]. The designers of the
OP browser [31] use formal methods to verify some security
properties of their design (whether or not the security
indicators behave as expected). Formal methods have also
been used to verify code-level properties of the status bar in
Internet Explorer [32]. The most closely related work [16]
uses Alloy to verify the security properties of a particular
cross-site scripting defense (which we analyze further in this
paper). However, none of these works attempt to formulate
a general model of web security applicable beyond a single
mechanism.
Organization: The remainder of this paper is organized as
follows. Section II presents our formal model. Section III
explains how we implement our model in Alloy. Section IV
analyzes five example web security mechanisms using our
model. Section V contains some operational statistics and
advice about the model. Section VI concludes.

II. GENERAL MODEL

There are many threats associated with web browsing and
web applications, including phishing, drive-by downloads,
blog spam, account takeover, and click fraud. Although some
of these threats revolve around exploiting implementation
vulnerabilities (such as memory safety errors in browsers
or tricking the user), we focus, in this paper, on ways in
which an attacker can abuse web functionality that exists
by design. For example, an HTML form element lets a
malicious web site generate GET and POST requests to
arbitrary web sites, leading to security risks like cross-site
request forgery (CSRF). Web sites use a number of different
strategies to defend themselves against CSRF [11], but we
lack a scientifically rigorous methodology for studying these
defenses. By formulating an accurate model of the web, we
can evaluate the security of these defenses and determine
how they interact with extensions to the web platform.

A core idea in our model is to describe what could occur
if a user navigates the web and visits sites in the ways that
the web is designed to be used. For example, the user could
choose to type any web address into the address bar and
visit any site, or click on a link provided by one site to
visit another. Because browsers support the “back” button,
returning the user to a previously visited page, many sites
in effect allow a user to click on all of the links presented
on a page, not just one. When the user visits a site, the
site could serve a page with any number of characteristics,
possibly setting a cookie, or redirecting the user to another
site. The set of events that could occur, therefore, includes
browser requests, responses, cookies, redirects, and so on,
transmitted over HTTP or HTTPS.

We believe that examining the set of possible events
accurately captures the way that web security mechanisms
are designed. For example, the web is designed to allow a
user to visit a good site in one window and a potentially
malicious site in another. Because the back button is so
popular, web security mechanisms are usually designed to be
secure even if the user returns to a previously visited page
and progresses differently the second (or third or fourth)
time.

The model we propose has three main parts: web con-
cepts, threat models, and security goals. The web concepts
represent the conceptual universe defined by web stan-
dards. Our formalization of these concepts includes a set of
browsers, operated by potential victims, each with its user
and a browsing history, interacting with an arbitrary number
of web servers that receive and send HTTP requests and
responses, possibly encrypted using SSL/TLS. Our model
considers a spectrum of threats, ranging from a web attacker
to a network attacker to a gadget attacker. For example, a
web attacker controls one or more web sites that the user
visits, and may operate a browser to visit sites, but does
not control the network used to visit other sites. Finally, we
regard security goals as predicates that distinguish felicitous
outcomes from attacks.

A. Web Concepts

The central concepts of the web are common to virtually
every web security mechanism we wish to analyze. For ex-
ample, web mechanisms involve a web browser that interacts
with one or more web servers via a series of HTTP requests
and responses. The browser, server, and network behavior
form the “backbone” of the model, much in the same
way that cryptographic primitives provide the backbone of
network protocols. Many of the surprising behaviors of
the web platform, which lead to attacks against security
mechanisms, arise from the complex interaction between
these concepts. By modeling these concepts precisely, we
can check their interactions automatically.
Non-Linear Time: We use a branching notion of time
because of the browser’s “back” button. In other words, we

are not concerned with the actual temporal order between
unrelated actions. Instead, if a user could click on either of
two links, then use the back button to click on the other,
we represent this as two actions that are unordered in time.
In effect, our temporal order represent necessary “happens
before” relations between events (e.g., an HTTP request
must happen before the browser can receive the correspond-
ing HTTP response). Instead of regarding these branches
as possible futures, we regard them as all having occurred,
for example letting an attacker transport knowledge from
one branch to another. In addition to conceptual economy,
abstracting from the accidental linear order can reduce the
number of possible states in need of exploration.

This notion of time leads to a model that is largely
monotonic. If an attacker can undertake an action at one
point in time, we assume that action is thereafter always
available to the attacker (because the user can usually return
to that state via the back button). In contrast, traditional
models of network protocol security are non-monotonic:
once the protocol state machine advances to step 3, the
attacker can no longer cause the state machine to accept a
message expected in step 2. Although we do not exploit this
monotonicity directly in this paper, we believe this property
bears further investigation.
Browser: The user’s web browser, of course, plays a central
role in our model of web security. However, the key question
is what level of abstraction to use for the browser. If we
model the browser at too low a level (say bytes received over
the network being parsed by an HTML parser and rendered
via the CSS box model into pixels on the screen), our model
will quickly become unwieldy. The HTML5 specification
alone is some 45,000 lines of text. Instead, we abstract the
browser into three key pieces:
• Script Context. A script context represents all the scripts

running in the browser on behalf of a single web
origin. The browser does not provide any isolation
guarantees between content within an origin: all same-
origin scripts “share fate.” Correspondingly, we group
the various scripts running in different web pages
within an origin into a single script context and imagine
them acting in unison.

• Security UI. Some parts of the browser’s user interface
have security properties. For example, the browser
guarantees that the location bar accurately displays
the URL of the top-level frame. We include these
elements (notably, the location bar, the lock icon, and
the extended validation indicator) in our model and
imbue them with their security properties. In addition,
we model a forest of frames, in which each frame is
associated with a script context and each tree of frames
is associated with a constellation of security indicators.
We assume that each frame can overwrite or display
(but not read) the pixels drawn by the frame below it
in the hierarchy, modeling (at a high level) how web

pages are drawn.
• State Storage. Finally, the browser contains some

amount of persistent storage, such as a cookie store
and a password database. We assume that confidential
information contained in these state stores is associated
with an origin and can be read by a script context
running on behalf of that origin. To keep the model
monotonic, we model these state stores as “append-
only,” which is not entirely accurate but simplifies the
model considerably.

Servers: We model web servers as existing at network
locations (which are an abstraction of IP addresses). Each
web server is owned by a single principal, who controls
how the server responds to network messages. Servers
controlled by “honest” principals follow the specification
but a server controlled by a malicious principal might
not. Servers have a many-to-many relation to DNS names
(e.g., www.example.com), which themselves existing in
a delegation hierarchy (e.g., www delegates to example,
which delegates to com). Holding servers in a many-to-many
relation with DNS names is essential for modeling various
tricky situations, such as DNS rebinding [13], where the
attacker points a malicious DNS name at an honest server.
Network: Finally, browsers and servers communicate by
way of a network. In contrast to traditional models of
network security, our model of the network has significant
internal structure. Browsers issue HTTP requests to URLs,
which are mapped to servers via DNS. The requests contain
a method (e.g., GET, POST, DELETE, or PUT) and a set
of HTTP headers. Individual headers carry semantics. For
example, the Cookie header contains information retrieved
from the browser’s cookie store and the Referer header
identifies the script context that initiated the request. It is
an important part of security mechanisms such as CSRF
defenses [11] that the Referer header, for example, is set by
the browser and not controlled by content rendered in the
browser.

Network requests can be generated by a number of
web APIs, including HTML forms, XMLHttpRequest, and
HTTP redirects, each of which imposes different security
constraints on the network messages. For example, requests
generated by XMLHttpRequest can be sent only to the
same origin (in the absence of CORS [3]), whereas requests
generated by HTML forms can be sent to any origin but can
contain only certain methods and headers. These restrictions
are essential for understanding the security of the web
platform. For example, the Google Web Toolkit relies on
the restrictions on custom HTTP headers imposed by the
HTML form element to protect against CSRF [33].

B. Threat Models

When evaluating the security of web applications, we are
concerned with a spectrum of threats. The weakest threat is
that of a web attacker: a malicious principal who operates a

web site visited by the user. Starting with the web attacker
as a base, we can consider more advanced threats, such as
an active network attacker and a gadget attacker.
Web attacker: Although the informal notion of a web
attacker has appeared in our previous work [11], [12], [14],
[34], [35], we articulate the web attacker’s abilities precisely.

• Web Server. The web attacker controls at least one web
server and can respond to HTTP requests with arbitrary
content. Intuitively, we imagine the web attacker as
having “root access” to these web servers. The web
attacker controls some number of DNS names, which
the attacker can point to any server. Canonically, we
imagine the DNS name attacker.com referring
to the attacker’s main web server. The web attacker
can obtain an HTTPS certificate for domains owned
by the attacker from certificate authorities trusted
by the user’s browser. Using these certificates, the
attacker can host malicious content at URLs like
https://attacker.com/.

• Network. The web attacker has no special network
privileges. The web attacker can respond only to HTTP
requests directed at his or her own servers. However, the
attacker can send HTTP requests to honest servers from
attacker-controlled network endpoints. These HTTP re-
quests need not comply with the HTTP specification,
nor must the attacker process the responses in the
usual way (although the attacker can simulate a browser
locally if desired). For example, attacker can send an ar-
bitrary value in the Referer header and need not follow
HTTP redirects. Notice that the web attacker’s abilities
are decidedly weaker than the usual network attacker
considered in studies of network security because the
web attacker can neither eavesdrop on messages to
other recipients nor forge messages from other senders.

• Browser. When the user visits the attacker’s web site,
the attacker is “introduced” to the user’s browser. Once
introduced, the attacker has access to the browser’s web
APIs. For example, the attacker can create new browser
windows by calling the window.open() API. We
assume the attacker’s use of these APIs is constrained
by the browser’s security policy (colloquially known as
the “same-origin policy” [36]), that is, the attacker uses
only the privileges afforded to every web site. One of
the most useful browser APIs, from the attacker’s point
of view, is the ability to generate cross-origin HTTPS
requests via hyperlinks or the HTML form element.
Attacks often use these APIs in preference to directly
sending HTTP requests because (1) the requests contain
the user’s cookies and (2) the responses are interpreted
by the user’s browser.

A subtle consequence of these assumptions is that (once
introduced) the attacker can maintain a persistent thread of
control in the user’s browser. This thread of control, easily

achieved in practice using a widely known web application
programming technique [37], can communicate freely with
(and receive instructions from) the attacker’s servers. We
do not model this thread of control directly. Instead, we
abstract these details by imagining a single coherent attacker
operating at servers and able to generate specific kinds of
events in the user’s browser (accurately associated with the
attacker’s origin).
Network Attacker: An active network attacker has all the
abilities of a web attacker as well as the ability to read,
control, and block the contents of all unencrypted network
traffic. In particular, the active network attacker need not be
present at a network endpoint to send or receive messages at
that endpoint. We assume the attacker cannot corrupt HTTPS
traffic between honest principals because trusted certificate
authorities are unwilling to issue the attacker certificates for
honest DNS names, although these certificate authorities are
willing to issue the attacker HTTPS certificates for malicious
DNS names and the attacker can, of course, always self-
sign a certificate for an honest DNS name. Without the
appropriate certificates, we assume the attacker cannot read
or modify the contents of HTTPS requests or responses.
Gadget Attacker: The gadget attacker [26] has all the
abilities of a web attacker as well as the ability to inject some
limited kinds of content into honest web sites. The exact
kind of content the gadget attacker can inject depends on
the web application. In many web applications, the attacker
can inject a hyperlink (e.g., in email or in blog comments).
In some applications, such as forums, the attacker can inject
images. In more advanced applications, such as Facebook
or iGoogle, the attacker can inject full-blown gadgets with
extensive opportunity for misdeeds. We include the gadget
attacker to analyze the robustness of security mechanisms
to web sites hosting (sanitized) third-party content.
User Behavior: The most delicate part of our threat model
is how to constrain user behavior. If we do not constrain
user behavior at all, the user could simply send his or
her password to the attacker, defeating most web security
mechanisms. On the other hand, if we constrain the user
too much, we risk missing practical attacks.
• Introduction. We assume the user might visit any web

site, including the attacker’s web site. We make this
assumption because we believe that an honest user’s
interaction with an honest site should be secure even
if the user separately visits a malicious site in a differ-
ent browser window. A concerted attacker can always
acquire traffic by placing advertisements. For example,
in a previous study [13], we mounted a web attack by
purchasing over 50,000 impressions for $30. In other
words, we believe that this threat model is an accurate
abstraction of normal web behavior, not an assumption
that web users promiscuously visit all possible bad sites
in order to tempt fate.

• Not Confused. Even though the user visits the at-

tacker’s web site, we assume the user does not con-
fuse the attacker’s web site with an honest web site.
In particular, we assume the user correctly interprets
the browser’s security indicators, such as the location
bar, and enters confidential information into a browser
window only if the location bar displays the URL of
the intended site. This assumption rules out phishing
attacks [38], [39], in which the attacker attempts to
fool the user by choosing a confusing domain name
(e.g., bankofthevvest.com) or using other social
engineering. In particular, we do not assume a user
treats attacker.com as if it were another site. How-
ever, these assumptions could be relaxed or varied in
order to study the effectiveness of specific mechanisms
when users are presented with deceptive content.

C. Security Goals

Although different web security mechanisms have differ-
ent security goals, there are two security goals that seem to
be fairly common:

• Security Invariants. The web contains a large number
of existing web applications that make assumptions
about web security. For example, some applications
assume that a user’s browser will never generate a
cross-origin HTTP request with DELETE method be-
cause that property is ensured by today’s browsers
(even though cross-origin GET and POST requests are
possible). When analyzing the security of new elements
of the web platform, it is essential to check that these
elements respect these (implicit) security invariants and
“don’t break the web” (i.e., introduce vulnerabilities
into existing applications). We formalize this goal as a
set of invariants servers expect to remain true of the web
platform. Although we focus at present on invariants
relevant to the mechanisms at hand, we believe that
future work on web security can fruitfully aim to
identify more invariants.

• Session Integrity. When a server takes action based on
receiving an HTTP request (e.g., transfers money from
one bank account to another), the server often wishes
to ensure that the request was generated by a trusted
principal and not an attacker. For example, a traditional
cross-site request forgery vulnerability results from
failing to meet this goal. We formalize this goal by
recording the “cause” of each HTTP request (be it
an API invoked by a script or an HTTP redirect) and
checking whether the attacker is in this casual chain.

We are unaware of previous work that recognizes the value
of identifying clear web security invariants. However, be-
cause many web security mechanisms depend on comple-
mentary properties of the browser, web protocols, and user
behavior, we believe that these invariants form the core of
a comprehensive scientific understanding of web security.

III. IMPLEMENTATION IN ALLOY

We implement a subset of our formal model in the
Alloy modeling language. Although incomplete, our im-
plementation [40] contains the bulk of the networking and
scripting concepts and is sufficiently powerful to find new
and previously known vulnerabilities in our case studies.
In this section, we summarize how we implement the key
concepts from the model in this language. We first express
the base model, containing the web concepts and threats, and
then add details of the proposed web mechanism. Finally,
we add a constraint that negates the security goal of the
mechanism and ask Alloy for a satisfying instance. If Alloy
can produce such an instance, that instance represents an
attack because the security goal has failed.

Expressing our model in Alloy has several benefits. First,
expressing our model in an executable form ensures that our
model has precise, testable semantics. In creating the model,
we found a number of errors by running simple “sanity
checks.” Second, Alloy lets us express a model of unbounded
size and then later specify a size bound when checking
properties. We plan to use this distinction in future work
to prove a “small model” theorem bounding the necessary
search size (similar to [41]). Finally, Alloy translates our
high-level, declarative, relational expression of the model
into a SAT instance that can be solved by state-of-the-art
SAT solvers (e.g. [42]), letting us leverage recent advances
in the SAT solving community.

A. An Introduction to Alloy

Alloy [10], [15], [43] is a declarative language based on
first order relational logic. All data types are represented as
relations and are defined by their type signatures; each type
signature plays the role of a type or subtype in the type
system. A type signature declaration consists of the type
name, the declarations of fields, and an optional signature
fact constraining elements of the signature. A subsignature is
a type signature that extends another, and is represented as a
subset of the base signature. The immediate subsignatures of
a signature are disjoint. A top-level signature is a signature
that does not extend any other signature. An abstract signa-
ture, marked abstract, represents a classification of elements
that is intended to be refined further by more “concrete”
subsignatures.

In Alloy, a fact is a constraint that must always hold. A
function is a named expression with declaration parameters
and a declaration expression as a result. A predicate is
a named logical formula with declaration parameters. An
assertion is a constraint that is intended to follow from the
facts of a model.

The union (+), difference (−) and intersection (&) op-
erators are the standard set operators. The join (.) of two
relations is the relation obtained by taking concatenations
of a tuple from the first relation and another tuple from the
second relation, with the constraint that the last element of

the first tuple matches the first element of the second tuple,
and omitting the matching elements. For example, the join of
{(a, b), (b, d)} and {(b, c), (a, d), (d, a)} is {(a, c), (b, a)}.
The transitive closure (ˆ) of a relation is the smallest
enclosing relation that is transitive. The reflexive-transitive
closure (∗) of a relation is the smallest enclosing relation
that is both transitive and reflexive.

Alloy Analyzer is a software tool that can be used to
analyze models written in Alloy. The Alloy code is first
translated into a satisfiability problem. SAT solvers are
then invoked to exhaustively search for satisfying models
or counterexamples to assertions within a bounded scope.
The scope is determined jointly by the user and the Alloy
Analyzer. More specifically, the user can specify a numeric
bound for each type signature, and any type signature not
bounded by the user is given a bound computed by the Alloy
Analyzer. The bounds limit the number of elements in each
set represented by a type signature, hence making the search
finite.

B. Realization of Web Concepts

Many of the concepts in our general model have direct
realizations in our implementation. For example, we define
types representing Principals, NetworkEndpoints,
and NetworkEvents. A NetworkEvent represents a
type of network message that has a sender (i.e., it is
from a NetworkEndpoint) and a recipient (i.e., it
is to a NetworkEndpoint). It is a subsignature of
Event, hence it also inherits all fields of Event. A
NetworkEvent can be either an HTTPRequest or an
HTTPResponse, which include HTTP-specific information
such as a Method and a set of HTTPRequestHeaders
or HTTPResponseHeaders, respectively:

abstract sig NetworkEvent extends Event {
from: NetworkEndpoint,
to: NetworkEndpoint

}
abstract sig HTTPEvent extends NetworkEvent {

host: Origin
}
sig HTTPRequest extends HTTPEvent {

method: Method,
path: Path,
headers: set HTTPRequestHeader

}
sig HTTPResponse extends HTTPEvent {

statusCode: Status,
headers: set HTTPResponseHeader

}

Figure 1 depicts some of the types used in our expression
together with the relations between these types. For example,
HTTPRequest is a subtype of HTTPEvent, and contains
path and headers as some of its fields. This metamodel
provides a conceptual map of our model. In the remainder

of this section, we highlight parts of the model that lend
intuition into its construction.
Principals: A Principal is an entity that controls a set
of NetworkEndpoints and owns a set of DNSLabels,
which represent fully qualified host names:

abstract sig Principal {
servers: set NetworkEndpoint,
dnslabels: set DNS

}

The model contains a hierarchy of subtypes of Principal.
Each level of the hierarchy imposes more constraints on how
the principal can interact with the other objects in the model
by adding declarative invariants. For example, the servers
owned by principals who obey the network geometry (i.e.,
every kind of principal other than active network attackers)
must conform to the routing rules of HTTP:

abstract sig PassivePrincipal
extends Principal{} {
servers in HTTPConformist

}

Browsers: A Browser is an HTTPClient together with
a set of trusted CertificateAuthorites and a set of
ScriptContexts. (For technical convenience, we store
the Browser as a property of a ScriptContext, but the
effect is the same.)

abstract sig Browser
extends HTTPClient {
trustedCA: set CertificateAuthority

}
sig ScriptContext {

owner: Origin,
location: Browser,
transactions: set HTTPTransaction

}

The browser uses its set of trustedCAs to validate
HTTPS certificates used by NetworkEndpoints in re-
sponding to HTTPS requests.

In addition to being located in a particular Browser,
a ScriptContext also has an Origin and a set
of HTTPTransactions. The Origin is used by
various browser APIs to implement the so-called “same-
origin” policy. For example, the XMLHTTPRequest
object (a subtype of RequestAPI) prevents the
ScriptContext from initiating HTTPRequests
to a foreign origin. The transactions property of
ScriptContext is the set of HTTPTransactions
(HTTPRequest, HTTPResponse pairs) generated by the
ScriptContext.

C. Facts and Assertions

We find it convenient to model the browser’s cookie store
using fact statements about cookies, rather than declare a
new type signature for it. We require that HTTPRequests
from Browsers contain only appropriate cookies from
previous SetCookieHeaders. Selecting the appropriate
cookies uses a rule that has a number of cases reflecting the
complexity of cookie policies in practice, part of which is
shown below. More explicitly, a browser attaches a cookie to
an HTTPRequest only if the cookie was set in a previous
HTTPResponse and the servers of the HTTPRequest
and HTTPResponse have the same DNS label.

fact {
all areq:HTTPRequest | {
areq.from in Browser
hasCookie[areq]

} implies all acookie: reqCookies[areq]|
some aresp: getBrowserTrans[areq].resp | {

aresp.host.dnslabel = areq.host.dnslabel
acookie in respCookies[aresp]
happensBeforeOrdering[aresp,areq]

}
}

Causality: Every HTTPTransaction has a cause,
which is either another HTTPTransaction (e.g., due to a
redirect) or a RequestAPI, such as XMLHttpRequest
or FormElement. Each RequestAPI imposes con-
straints on the kinds of HTTPRequests the API can gener-
ate. For example, this constraint limits the FormElement
to producing GET and POST requests:

fact {
all t:ScriptContext.transactions |
t.cause in FormElement implies

t.req.method in GET + POST
}

Session Integrity: Using the cause relation, we can con-
struct the set of principals involved in generating a given
HTTPTransaction. The predicate below is especially
useful in checking assertions of session integrity properties
because we can ask whether there exists an instantiation of
our model in which the attacker caused a network request
that induced an honest server to undertake some specific
action.

fun involvedServers[
t:HTTPTransaction
]:set NetworkEndpoint{

(t.*cause & HTTPTransaction).resp.from
+ getTransactionOwner[t].servers

}

se
rv

er
s

th
ec

oo
ki

e

h
os

t

h
os

t

p
ar

en
t

m
ad

eB
y

cn

ce
rt

p
at

h

d
n

sl
ab

el

n
am

e
va

lu
e

st
at

u
sC

od
e

ca
u

se

tr
an

sa
ct

io
n

s

lo
ca

ti
on

h
ea

d
er

s

d
om

ai
n

p
at

h

re
q

re
sp

qu
er

yS
tr

in
g

ta
rg

et
P

at
h

ta
rg

et
O

ri
gi

n
th

ec
oo

ki
e

ow
n

er

d
n

sl
ab

el
s

n
am

e
va

lu
e

h
ea

d
er

s

p
ar

en
t

fr
om

to

p
at

h

ca
u

se

b
od

y

th
eo

ri
gi

n

n
e

re
so

lv
es

T
o

h
ea

d
er

s

O
ri

gi
n

D
N

S
R

oo
t

X
M

L
H

T
T

P
R

eq
u

es
t

H
T

T
P

E
ve

nt

W
W

W
A

u
th

n
H

ea
d

er

H
T

T
P

R
es

p
on

se

H
T

T
P

C
lie

nt

P
U

B
L

IC

P
ri

n
ci

p
al

S
ec

re
t

U
se

rT
ok

en

H
T

T
P

H
ea

d
er

H
T

T
P

R
es

p
on

se
H

ea
d

er
c2

00
R

ed
ir

ec
ti

on
S

ta
tu

s

S
ta

tu
s

U
se

rP
as

sw
or

d
A

C
T

IV
E

A
T

T
A

C
K

E
R

H
T

T
P

T
ra

n
sa

ct
io

n

B
ro

w
se

r

F
ir

ef
ox

S
E

N
S

IT
IV

E

S
et

C
oo

ki
eH

ea
d

er

N
or

m
al

P
ri

n
ci

p
al

G
O

O
D

P
at

h

H
O

M
E

F
ir

ef
ox

3

F
or

m
E

le
m

en
t

P
as

si
ve

P
ri

n
ci

p
al

W
eb

P
ri

n
ci

p
al

H
T

T
P

R
eq

u
es

t

C
er

ti
fic

at
e

IN
D

E
X

T
ok

en

P
A

T
H

T
O

C
O

M
P

R
O

M
IS

E

L
O

G
IN

S
cr

ip
tC

on
te

xt

at
tr

ib
u

te
N

am
eV

al
u

eP
ai

r

S
tr

in
g1

In
te

rn
et

E
xp

lo
re

r7

W
E

B
A

T
T

A
C

K
E

R

S
ec

u
re

C
oo

ki
e

S
E

C
U

R
E

S
af

ar
i

R
E

D
IR

E
C

T

E
ve

nt

R
eq

u
es

tA
P

I

L
O

G
O

U
T

P
A

S
S

IV
E

A
T

T
A

C
K

E
R

O
R

IG
IN

A
W

A
R

E

N
et

w
or

kE
ve

nt

In
te

rn
et

E
xp

lo
re

r

lo
ca

ti
on

In
te

rn
et

E
xp

lo
re

r8

O
ri

gi
n

H
ea

d
er

H
T

T
P

R
eq

u
es

tH
ea

d
er

C
oo

ki
eH

ea
d

er

H
T

T
P

S
er

ve
r

D
N

S

C
oo

ki
e

H
T

T
P

C
on

fo
rm

is
t

N
et

w
or

kE
n

d
p

oi
nt

c3
02

c3
01

U
R

L

c4
01

c3
07

c3
06

c3
05

c3
04

c3
03

Fi
gu

re
1.

T
he

m
et

am
od

el
of

ou
r

fo
rm

al
iz

at
io

n
of

w
eb

se
cu

ri
ty

.R
ed

un
m

ar
ke

d
ed

ge
s

re
pr

es
en

t
th

e
‘e

xt
en

ds
’

re
la

tio
ns

hi
p.

pred webAttackerInCausalChain[
t:HTTPTransaction]{
some (WEBATTACKER.servers
& involvedServers[t])

}

IV. CASE STUDIES

In this section, we present a series of case studies of using
our model to analyze web security mechanisms. We study
five web security mechanisms. For the first two, the Origin
header and Cross-Origin Resource Sharing, we show that
our model is sufficiently expressive to rediscover known
vulnerabilities in the mechanism. For the other three, Referer
Validation, HTML5 forms, and WebAuth, we use our model
to discover previously unknown vulnerabilities.

A. Origin Header

In a previous paper [11] that did not involve formal
analysis, we proposed that browsers identify the origin of
HTTP requests by including an Origin header and that web
sites use that header to defend themselves against Cross-Site
Request Forgery (CSRF).
Modeling: To model the Origin header, we added an
OriginHeader subtype of HTTPRequestHeader to
the base model and required that browsers identify the origin
in the header:

fun getOrigin[r:HTTPRequest] {
(r.headers & OriginHeader).theorigin

}
fact BrowsersSendOrigin{

all t:HTTPTransaction,sc:ScriptContext | {
t in sc.transactions

} implies {
getOrigin[t.req] = sc.owner

}
}

To model the CSRF defense, we added a new type of honest
web server that follows the recommendations in the paper
(namely rejects “unsafe” methods that have an untrusted
Origin header):

pred checkTrust[r:HTTPRequest,p:Principal]{
getOrigin[r].dnslabel in p.dnslabels

}
fact {

all aResp: HTTPResponse | {
aResp.from in ORIGINAWARE.servers
and aResp.statusCode = c200

} implies {
let theTrans = getTransaction[aResp] |

theTrans.req.method in safeMethods or
checkTrust[theTrans.req,ORIGINAWARE]

}
}

Vulnerability: We then checked whether this mechanism
satisfies session integrity. Alloy produces a counter example:
if the honest server sends a POST request to the attacker’s
server, the attacker can redirect the request back to the
honest server. Because the Origin header comes from the
original ScriptContext, the honest server will accept
the redirected request, violating session integrity. Although
this vulnerability was known previously, the bug eluded both
the authors and the reviewers of the original paper.
Solution: One potential solution is to update the Origin
header after each redirect, but this approach fails to protect
web sites that contain open redirectors (which are remark-
ably common). Instead, we recommend naming all the
origins involved in the redirect chain in the Origin header.
The current Internet-Draft describing the Origin header [44]
includes this fix. We have verified that the fixed mechanism
enjoys session integrity in our model (for the finite sizes
used in our analysis runs).

B. Cross-Origin Resource Sharing

Cross-Origin Resource Sharing (CORS) lets web sites opt-
out of some of the browser’s security protections. In particu-
lar, by returning various HTTP headers, the site can instruct
the browser to share the contents of an HTTP response with
specific origins, or to let specific origins issue otherwise
forbidden requests. CORS is somewhat complex because it
distinguishes between two kinds of requests: simple requests
and complex requests. Simple requests are supposedly safe
to send cross-origin, whereas complex requests require a
pre-flight request that asks the server for permission before
sending the potentially dangerous request. CORS is a good
case study for our model for two reasons: (1) maintaining the
web security invariants is a key requirement in the design,
driving the distinction between simple and complex requests;
(2) complex requests can disrupt session integrity if the pre-
flight request is not handled properly.
Modeling: We model the PreflightRequest as a
subtype of HTTPRequest imbued with special seman-
tics by the browser. Even though the implementations of
CORS in browsers reuse the XMLHttpRequest JavaScript
API, we model CORS using a new RequestAPI, which
we call XMLHttpRequest2, making it easier to com-
pare the new and old behavior. CORS involves a num-
ber of HTTP headers, which we model as subtypes of
CORSResponseHeader. Finally, we model servers as
NetworkEndpoints that never include any CORS head-
ers in HTTP responses.

fact {
all p:PreFlightRequest | {
p.method = OPTIONS and
some p.headers & AccessControlRequestMethod
and some p.headers & OriginHeader and
some p.headers & AccessControlRequestHeaders

}

fact {
all t:HTTPTransaction,sc:ScriptContext |{
t in sc.transactions and
t.ˆcause in

(XMLHTTPRequest2+HTTPTransaction)
} implies {
isPreFlightRequestTransaction[t]
or isSimpleCORSTransaction[t]
or isComplexCORSTransaction[t]
or (not isCrossOriginRequest[t.req])

}
}

Vulnerability: Alloy produced a (previously known)
counter-example that breaks a key web security invariant
because a legacy server might redirect the pre-flight request
to the attacker’s server. According to the current W3C Work-
ing Draft [3], browsers follow these redirects transparently,
letting the attacker’s server return a CORS header that opts
the legacy server into receiving new kinds of requests (such
as DELETE requests). This attack is fairly practical because
many web sites contain open redirectors. Notice that we
did not need to model open redirectors explicitly. Instead, a
legacy server might redirect requests to arbitrary locations
because the model does not forbid these responses.
Solution: A simple solution is to ignore redirects for pre-
flight requests. The most recent Editor’s Draft [45] (which
is more up-to-date) has precisely this behavior. We verify
the security of the updated protocol (up to a finite size) in
our model by adding the following requirement:

fact {
all first:HTTPTransaction | {
first.req in PreFlightRequest and
first.resp.statusCode in RedirectionStatus

} implies no second:HTTPTransaction |
second.cause = first

}

C. Referer Validation
A recent paper [16] proposes that web sites should defend

against CSRF and Cross-Site Scripting (XSS) by validating
the Referer header. The authors claim that these attacks
occur “when a user requests a page from a target website
s by following a link from another website s′ with some
input.” To defend against these attacks, the web site should
reject HTTP requests unless (1) the Referer header is from
the site’s origin or (2) the request is directed at a “gateway”
page, that is carefully vetted for CSRF and XSS vulnerabil-
ities; see Figure 2. What makes this security mechanism a
particularly interesting case study is that the authors model-
check their mechanism using Alloy. However, their model
omits essential details like HTTP Redirects and cross-origin
hyperlinks. As a result, it is unable to uncover a vulnerability
in their mechanism.
Modeling: Because the Referer header is already part of
the model, we only needed to add a new class of principal:

RefererProtected that exhibits the required behavior.
We then added a constraint that HTTP requests with external
Referers are allowed only on the “LOGIN” page:

fact {
all aReq:HTTPRequest | {
(getTransaction[aReq].resp.from

in RefererProtected.servers)
and isCrossOrigin[aReq]
} implies aReq.path = LOGIN

}

Vulnerability: Alloy produces a counterexample for the
session integrity condition because the attacker can mount
a CSRF attack against a RefererProtected server if
the server sends a request to the attacker’s server first (see
the dashed lines in Figure 2). For example, if the attacker
can inject a hyperlink into the honest site, the user might
follow that hyperlink, generating an HTTP request to the
attacker’s server with the honest site’s URL in the Referer
header. The attacker can then redirect that request back to
the honest server. This previously unknown vulnerability in
Referer validation is remarkably similar to the vulnerability
in the Origin header CSRF defense described above.

Figure 2. Vulnerability in Referer Validation. This figure is adapted
from [16], with the attack (dashed line) added.

Solution: This vulnerability is difficult to correct on the
current web because the Referer header is already widely de-
ployed (and therefore, for all practical purposes, immutable).
One possible solution is for the web site to suppress all out-
going Referer headers using, for example, the noreferrer
relation attribute on hyperlinks.

D. HTML5 Forms

HTML5, the next iteration of the HyperText Markup
Language, adds functionality to the FormElement API to
generate HTTP requests with PUT and DELETE methods.
To avoid introducing security vulnerabilities into existing

web sites, the specification restricts these new methods to
requests that are sent to a server in the same origin as the
document containing the form.
Modeling: Modeling this extension to the web platform
was trivial: we added PUT and DELETE to the whitelist
of methods for FormElement and added a requirement
that these requests be sent to the same origin:

t.req.method in PUT+DELETE implies
not isCrossOriginRequest[t.req]

Vulnerability: Alloy produces a counterexample that breaks
a web security invariant. An attacker can generate a PUT
request to attacker.com and then redirect that request to
an honest server, causing the server to receive an unexpected
PUT request. Figure 3 depicts part of the counterexample
produced by Alloy. Although apparently simple, this vulner-
ability had not been previously detected in HTML5 despite
extensive review by hundreds of experts. (To be fair, HTML5
is enormous and difficult to review in its entirety.)
Solution: The easiest solution is to refuse to follow redirects
of PUT or DELETE requests generated from HTML forms.
We have verified this fix (up to a finite size) using our model.
We have contributed our findings and recommendation to the
working group [46] and the working group has adopted our
solution.

E. WebAuth

In our most extensive case study, we analyze Web-
Auth [47], a web-based authentication protocol based on
Kerberos. WebAuth is deployed at a number of universities,
including Stanford University. WebAuth is similar to Central
Authentication Service (CAS) [48], which was originally
developed at Yale University and has been deployed at over
eighty universities [49], including UC Berkeley. Although
we analyze WebAuth specifically, we have verified that the
same vulnerability exists in CAS.
Protocol: Of all our case studies, WebAuth most resembles
a traditional network protocol. However, new security is-
sues arise when embedding the protocol in web primitives
because the web attacker can interact with the protocol in
different ways than a traditional network protocol attacker
can interact with, say, Kerberos. The WebAuth protocol
involves three roles:

1) User-Agent (UA), the user’s browser,
2) WebAuth-enabled Application Server (WAS), a web

server that is integrated with WebAuth, and
3) WebKDC, the web login server.

Although WebAuth supports multiple authentication
schemes, its use of tokens and keys closely resembles
Kerberos. The WebKDC shares a private key with each
WAS, authenticates the user, and passes the user’s identity
to the WAS via an encrypted token (i.e., ticket). WebAuth
uses so-called “Secure” cookies to store its state and

1. request webkdc-service token

WebKDC

2. return webkdc-service token and session key

UA WAS

3. request resource

4. redirect to WebKDC w/ request token

5. redirect to WebKDC w/ request token

6. return login form w/ request token in a hidden form field

7. post login form w/ user credentials

8. set cookie w/ webkdc-proxy token; return a URL w/ id token pointing to WAS

9. access the URL link w/ id token

10. set cookie w/ app token; return requested resource

Figure 4. The WebAuth protocol

HTTPS to transmit its messages, ostensibly protecting the
protocol from network attackers.

The main steps of the protocol are depicted in Figure 4.
We describe the steps below:
• WAS Initialization (Steps 1–2). At startup, the WAS

authenticates itself to the WebKDC using its private
Kerberos key, and receives a webkdc-service token and
a session key.

• Login (Steps 3–10). When the user wishes to authenti-
cate to the WAS, the WAS creates a request token and
redirects the UA to the WebKDC, passing the token in
the URL. The WebKDC authenticates the user (e.g., via
a user name and password), stores a cookie in the UA
(to authenticate the user during subsequent interactions
without requiring the user to type his or her password
again), and redirects the user back to the WAS, passing
an id token identifying the user in the URL. The WAS
then verifies various cryptographic properties of the
token to authenticate the user. Finally, the WAS stores
a cookie in the UA to authenticate the user for the
remainder of the session.

Modeling: To model WebAuth, we added a number
of type signatures for the WebAuth tokens, and
predicates for HTTP message validation. For example,
the WAPossessTokenViaLogin predicate tests whether
the WAS has received a proper id token:

Figure 3. Counterexample generated by Alloy for the HTML5 form vulnerability.

pred WAPossessTokenViaLogin[httpClient:
HTTPClient, token:WAIdToken, usageEvent:Event]
{ some t1:HTTPTransaction|{

happensBeforeOrdering[t1.req, usageEvent]
and t1.req.path = LOGIN and
t1.req.to in WAWebKDC and
t1.req.from in httpClient and
t1.resp.statusCode in RedirectionStatus and
WAContainsIdToken[t1.resp, token] and
token.creationTime = t1.resp.post and
token.username in httpClient.owner

}
}

The confidentiality of tokens is key to modeling the security
properties of the WebAuth protocol. As with cookies, we
require an HTTPClient to have received a token in a previous
HTTP request before including the token in another HTTP
request:

fact {
all httpClient:HTTPClient,req:HTTPRequest,
token:WAIdToken | {
req.from in httpClient and
WAContainsIdToken [req, token]

} implies
WAPossessToken[httpClient, token, req]

}

Notice that we permit the attacker to be registered as a user
at the WebKDC and to send and receive HTTP requests and
responses to the WAS and the WebKDC both directly and
via the browser.
Vulnerability: Alloy produces a counterexample showing
that the WebAuth protocol does not enjoy session integrity
because the attacker can force the user’s browser to com-
plete the login procedure. Worse, the attacker can actually
force the user’s browser to complete the login procedure
with the attacker’s credentials. This previously unknown

vulnerability is a variation of login CSRF [11], a vulner-
ability in which the attacker can confuse a web site into
authenticating the honest user as the attacker. We confirmed
this attack on the Stanford WebAuth implementation by
embedding a link containing an id token of the attacker
in an email, and verifying that a user who clicks on the
link is logged in as the attacker to the system. The same
attack works against the CAS deployment at U.C. Berkeley.
Login CSRF vulnerabilities have a number of subtle security
consequences [11]. One reason that Stanford or Berkeley
might be concerned about these vulnerabilities is that if
some information (such as a download) is available only
to registered students, a registered student could log in and
then export a link that allows others to access protected
information, without revealing the password they used to
authenticate.

The vulnerability arises because the WAS lacks sufficient
context when deciding whether to send message 10. In
particular, the WAS does not determine whether it receives
message 3 and message 9 from the same UA. An attacker
can run the first eight steps of the protocol with the WAS and
WebKDC directly, but splice in the UA by forwarding the
URL from message 8 to the user’s browser. In a traditional
network protocol, this attack might not succeed because the
UA would not accept message 10 without previously sending
message 3, but the attack succeeds in the web setting because
(1) the UA is largely stateless, and (2) the attacker can induce
the UA to send message 9 by showing the user a hyperlink
on attacker.com.

Solution: We suggest repairing this vulnerability by binding
messages 3 and 9 to the same UA via a cookie. Essentially,
the WAS should store a nonce in a cookie at the UA with
message 4 and should include this nonce in the request token.
In message 8, the WebKDC includes this nonce in the id
token, which the UA forwards to the WAS. The WAS, then,
should complete the protocol only if the cookie received

Case Lines of No. of CNF gen. CNF solve
Study new code clauses time (sec) time (sec)

Origin Header 25 977,829 26.45 19.47
CORS 80 584,158 24.07 82.76

Referer Validation 35 974,924 30.75 9.06
HTML5 Forms 20 976,174 27.67 73.54

WebAuth 214 355,093 602.4 35.44

Table I
VARIOUS STATISTICS FOR EACH CASE STUDY

along with message 9 matches the nonce in the id token.
We have verified that the fixed mechanism enjoys session
integrity in our model (up to a finite size).

The security of this scheme is somewhat subtle and relies
on a number of security properties of cookies. In particular,
this solution is not able to protect against active network
attackers because cookies do not provide integrity: an active
network attacker can overwrite the WAS cookie with his
or her own nonce (even if the cookie is marked “Secure”).
However, active network attackers can mount these sorts
of attacks against virtually all web applications because an
active network attacker can just overwrite the final session
cookie used by the application, regardless of the WebAuth
protocol. Nonetheless, our proposed solution improves the
security of the protocol against web attackers.

V. MEASUREMENT

We implemented the model in the Alloy Analyzer 4.1.10.
We wrote our security invariants as assertions and asked
Alloy to search for a counterexample that violates these
assertions, bounding the search to a finite size for each top-
level signature. This bound is also called the scope of the
search, and for our experiments was set at 8. Alloy also
allows us to specify finer-grained bounds on each type, but
we do not use this feature in our experiments.

For each case study, we counted the number of lines of
new Alloy code we had to add to the base model (some
2,000 lines of Alloy code) to discover a vulnerability and
measured the time taken by the analyzer to generate the
conjunctive normal form (CNF) as well as the time taken
by the SAT solver (minisat) to find a solution (see Table I).
All tests were performed on an Intel Core 2 Duo CPU
3.16Ghz with 3.2GB of memory. As is common in other
SAT solving applications, we observe no clear correlation
between the number of lines of new code, the number
of clauses generated, and the CNF generation and solving
times.

The SAT solver is able to find a counterexample (if one
exists) in a few minutes. In the absence of a counterexample,
the time taken by the SAT solver increases exponentially
as the scope is increased. To quantify this behavior, we
measured the time taken to analyze the HTML5 form
vulnerability before and after we implemented the fix in the

Figure 5. Log-scale graph of analysis time for increasing scopes. The
SAT solver ran out of memory for scopes greater than eight after the fix.

model (see Figure 5). Recall that, after the fix, Alloy is not
able to find a counterexample.

VI. CONCLUSION

In this paper, we present several steps toward a formal
foundation for web security. The model described in this pa-
per comprises key web security concepts, such as browsers,
HTTP, cookies, and script contexts, as well as the security
properties of these concepts. We have a clearly defined threat
model, together with a spectrum of threats ranging from
web attackers to network attackers to gadget attackers. In
this model, we have also included two high-level security
properties that appear to be commonly required of web
security mechanisms.

We have implemented core portions of our model in Alloy,
which lets us execute the model and check whether various
web security mechanisms actually have the security proper-
ties their designers desire. We have used this implementation
to study five examples, ranging in complexity from a small
tweak to the behavior of the HTML form element in HTML5
to a full-blown web single sign-on protocol based on Ker-
beros. In each case, we found vulnerabilities, two previously
known, three previously unknown. These vulnerabilities
arise because of the complex interaction between different
components of the web platform.

As the web platform continues to grow, automated tools
for reasoning about the security of the platform will increase
in importance. Already web security is sufficiently complex
that a working group of experts miss “simple” vulnerabilities
in web platform features. These vulnerabilities appear simple
in retrospect because only a tiny subset of the platform
is required to demonstrate the insecurity of a mechanism,
whereas knowledge of the entire platform is required to
demonstrate its security. Of course, our model (and our
implementation) does not capture the entire web platform.

However, we believe our model is an important first step
towards creating a formal foundation for web security.

VII. ACKNOWLEDGMENTS

We thank David Wagner, Adrian Mettler, Matthew Finifter
and William Robertson for helpful feedback on the paper
and suggestions for improvements. This work is partially
supported by the Air Force Office of Scientific Research
under MURI Grant No. 22178970-4170, the National Sci-
ence Foundation under Grant No. 0448452, the Office of
Naval Research through contract N000140910681, and the
National Science Foundation TRUST Center under Grant
No. CCF-0424422. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the
sponsors.

REFERENCES

[1] E. Hammer-Lahav, “Oauth core 1.0 revision a,” 2009.
[Online]. Available: http://oauth.net/core/1.0a

[2] J. Hodges, C. Jackson, and A. Barth, “Strict
transport security,” 2009. [Online]. Available:
http://lists.w3.org/Archives/Public/www-archive/2009Sep/
att-0051/draft-hodges-strict-transport-sec-05.plain.html

[3] A. van Kesteren, “Cross-origin resource sharing,” 2009.
[Online]. Available: http://www.w3.org/TR/cors/

[4] S. Stamm, “Content security policy,” 2009. [Online].
Available: https://wiki.mozilla.org/Security/CSP/Spec

[5] Microsoft Inc., “Xdomainrequest object,” 2009. [On-
line]. Available: http://msdn.microsoft.com/en-us/library/
cc288060%28VS.85%29.aspx

[6] A. Inc., “Cross-domain policy file specification,” 2008.
[Online]. Available: http://www.adobe.com/devnet/articles/
crossdomain policy file spec.html

[7] E. Hammer-Lahav, “Acknowledgement of the oauth security
issue,” 2009. [Online]. Available: http://blog.oauth.net/2009/
04/22/acknowledgement-of-the-oauth-security-issue/

[8] T. Klose, “Confused deputy attack on cors,”
2009. [Online]. Available: http://lists.w3.org/Archives/Public/
public-webapps/2009AprJun/1324.html

[9] E. Nava and D. Lindsay, “Abusing internet explorer 8’s
XSS filters,” in BlackHat Europe, 2010. [Online]. Available:
http://p42.us/ie8xss/Abusing IE8s XSS Filters.pdf

[10] Daniel Jackson, Software Abstractions: Logic, Language, and
Analysis. The MIT Press, 2006.

[11] A. Barth, C. Jackson, and J. C. Mitchell, “Robust defenses for
cross-site request forgery,” in In Proc. of the 15th ACM Conf.
on Computer and Communications Security (CCS 2008).
ACM, 2008, pp. 75–88.

[12] A. Barth, C. Jackson, and J. Mitchell, “Securing frame
communication in browsers,” Commun. ACM, vol. 52, no. 6,
pp. 83–91, 2009.

[13] C. Jackson, A. Barth, A. Bortz, W. Shao, and D. Boneh, “Pro-
tecting browsers from dns rebinding attacks,” ACM Trans.
Web, vol. 3, no. 1, pp. 1–26, 2009.

[14] C. Jackson and A. Barth, “Forcehttps: protecting high-security
web sites from network attacks,” in WWW ’08: Proceeding of
the 17th international conference on World Wide Web. New
York, NY, USA: ACM, 2008, pp. 525–534.

[15] D. Jackson, “Alloy: a lightweight object modelling notation,”
ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 11, no. 2, pp. 256–290, 2002.

[16] F. Kerschbaum, “Simple cross-site attack prevention,” in
Proceedings of the Third international workshop on Security
and Privacy in Communication networks, 2007.

[17] J. Mitchell, M. Mitchell, and U. Stern, “Automated analysis
of cryptographic protocols using Murϕ,” in Proc. IEEE Symp.
Security and Privacy, 1997, pp. 141–151.

[18] J. C. Mitchell, V. Shmatikov, and U. Stern, “Finite-state
analysis of ssl 3.0,” in Proceedings of the Seventh USENIX
Security Symposium, 1998, pp. 201–216.

[19] A. W. Roscoe, “Modelling and verifying key-exchange pro-
tocols using CSP and FDR,” in 8th IEEE Computer Security
Foundations Workshop. IEEE Computer Soc Press, 1995,
pp. 98–107.

[20] D. X. Song, “Athena: a new efficient automatic checker for
security protocol analysis,” in Proceedings of the Twelfth
IEEE Computer Security Foundations Workshop, June 1999,
pp. 192–202.

[21] J. Millen and V. Shmatikov, “Constraint solving for bounded-
process cryptographic protocol analysis,” in CCS ’01: Pro-
ceedings of the 8th ACM conference on Computer and Com-
munications Security. New York, NY, USA: ACM, 2001,
pp. 166–175.

[22] M. Burrows, M. Abadi, and R. Needham, “A logic of authen-
tication,” ACM Transactions on Computer Systems, vol. 8,
no. 1, pp. 18–36, 1990.

[23] G. Bella and L. C. Paulson, “Kerberos version IV: Inductive
analysis of the secrecy goals,” in Proceedings of the 5th
European Symposium on Research in Computer Security, J.-
J. Quisquater, Ed. Louvain-la-Neuve, Belgium: Springer-
Verlag LNCS 1485, 1998, pp. 361–375.

[24] A. Datta, A. Derek, J. C. Mitchell, and A. Roy, “Protocol
Composition Logic (PCL),” Electronic Notes in Theoretical
Computer Science, vol. 172, pp. 311–358, 2007.

[25] A. Datta, A. Derek, J. C. Mitchell, V. Shmatikov, and M. Tu-
ruani, “Probabilistic polynomial-time semantics for a protocol
security logic.” in Proceedings of the 32nd International Col-
loquium on Automata, Languages and Programming (ICALP
’05), ser. Lecture Notes in Computer Science. Springer-
Verlag, 2005, pp. 16–29.

[26] Adam Barth and Collin Jackson and John Mitchell, “Securing
frame communication in browsers,” in SS’08: Proceedings of
the 17th conference on Security symposium. Berkeley, CA,
USA: USENIX Association, 2008, pp. 17–30.

[27] K. Bhargavan, C. Fournet, and A. Gordon, “Verified reference
implementations of ws-security protocols,” Lecture Notes in
Computer Science, vol. 4184, p. 88, 2006.

[28] A. Gordon and R. Pucella, “Validating a web service security
abstraction by typing,” Formal Aspects of Computing, vol. 17,
no. 3, pp. 277–318, 2005.

[29] J. Howell, C. Jackson, H. J. Wang, and X. Fan, “Mashupos:
operating system abstractions for client mashups,” in HO-
TOS’07: Proceedings of the 11th USENIX workshop on Hot
topics in operating systems. Berkeley, CA, USA: USENIX
Association, 2007, pp. 1–7.

[30] J. Magazinius, A. Askarov, and A. Sabelfeld, “A lattice-based
approach to mashup security,” in In Proc. of the 5th ACM
Symposium on Information, Computer and Communications
Security (ASIACCS 2010). ACM, 2010.

[31] C. Grier, S. Tang, and S. T. King, “Secure web browsing with
the op web browser,” in SP ’08: Proceedings of the 2008 IEEE
Symposium on Security and Privacy. Washington, DC, USA:
IEEE Computer Society, 2008, pp. 402–416.

[32] J. Meseguer, R. Sasse, H. J. Wang, and Y.-M. Wang, “A
systematic approach to uncover security flaws in gui logic,” in
SP ’07: Proceedings of the 2007 IEEE Symposium on Security
and Privacy. Washington, DC, USA: IEEE Computer
Society, 2007, pp. 71–85.

[33] GWT Team, “Security for gwt applications,”
2008. [Online]. Available: http://groups.google.com/group/
Google-Web-Toolkit/web/security-for-gwt-applications

[34] A. Barth, J. Caballero, and D. Song, “Secure content sniffing
for web browsers, or how to stop papers from reviewing
themselves,” in SP ’09: Proceedings of the 2009 30th IEEE
Symposium on Security and Privacy. Washington, DC, USA:
IEEE Computer Society, 2009, pp. 360–371.

[35] A. Barth and C. Jackson, “Beware of finer-grained origins,”
in Proc. of Web 2.0 Security and Privacy 2008 (W2SP 2008).
IEEE Computer Society, 2008.

[36] M. Zawelski, “Browser security handbook,” 2009. [Online].
Available: http://code.google.com/p/browsersec/wiki/Main

[37] Apple Inc., “Remote scripting with IFRAME,” 2010.
[Online]. Available: http://developer.apple.com/internet/
webcontent/iframe.html

[38] E. Felten, D. Balfanz, D. Dean, and D. Wallach, “Web
spoofing: An internet con game,” Software World, vol. 28,
no. 2, pp. 6–8, 1997.

[39] R. Dhamija, J. Tygar, and M. Hearst, “Why phishing works,”
in Proceedings of the SIGCHI conference on Human Factors
in computing systems. ACM, 2006, p. 590.

[40] D. Akhawe, A. Barth, P. E. Lam, J. C. Mitchell, and
D. Song, “Web security model implementation,” 2010.
[Online]. Available: http://code.google.com/p/websecmodel

[41] L. Momtahan, “A simple small model theorem for Alloy,”
Oxford University Computing Laboratory, Tech. Rep. RR-
04-11, June 2004.

[42] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and
S. Malik, “Chaff: engineering an efficient sat solver,” in
DAC ’01: Proceedings of the 38th annual Design Automation
Conference. New York, NY, USA: ACM, 2001, pp. 530–535.

[43] Software Design Group, MIT, “Alloy analyzer 4,” 2010.
[Online]. Available: http://alloy.mit.edu/alloy4/

[44] A. Barth, C. Jackson, and I. Hickson, “The http origin
header,” 2009. [Online]. Available: http://tools.ietf.org/html/
draft-abarth-origin

[45] A. van Kesteren, “Cross-origin resource sharing (editors
draft),” 2009. [Online]. Available: http://dev.w3.org/2006/
waf/access-control

[46] A. Barth, “<form method=”delete”> and 307 redirects,”
2009. [Online]. Available: http://www.mail-archive.com/
whatwg@lists.whatwg.org/msg19379.html

[47] R. Schemers and R. Allbery, “Webauth v3 technical
specification,” 2009. [Online]. Available: http://webauth.
stanford.edu/protocol.html

[48] D. Mazurek, “CAS protocol,” 2005. [Online]. Available:
http://www.jasig.org/cas/protocol

[49] JASIG, “CAS deployment,” 2010. [Online]. Available:
http://www.jasig.org/cas/deployments

