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Improved Algorithms for Uniform Partitions of Points *
P. K. Agarwal? B. K. Bhattachary&,and S. Seh

Abstract. We consider the following one- and two-dimensional bucketing problems: Given Scfet
points inR! or R? and a positive intege, distribute the points 0§ into b equal-size buckets so that the
maximum number of points in a bucket is minimized. Suppose at (ngby + A points lie in each bucket in
an optimal solution. We present algorithms whose time complexities depemdrahA. No prior knowledge
of A is necessary for our algorithms.

For the one-dimensional problem, we give a deterministic algorithm that achieves a running time of
O(b*(A2 + logn) + n). For the two-dimensional problem, we present a Monte Carlo algorithm that runs in
subquadratic time for small valueslm&ndA. The previous algorithms, by Asano and Tokuyama [1], searched
the entire parameterized space and requitédf) time in the worst case even for constant valuels ahdA.

We also present a subquadratic algorithm for the special case of the two-dimensional problebn=wBen

Key Words. Bucketing, Hashing, Random Sampling, Arrangements.

1. Introduction. We consider geometric optimization problems that do not seem to
have any nice properties like convexity and have a large number of distinct global optimal
solutions. Consequently, itis hard to develop a search strategy that will avoid examining
all the optimum solutions (or more likely near-optimal solutions). However, if there

are few optimal solutions, we may be able to prune the search space. This may lead to
more efficient algorithms that are “output-sensitive” in the sense that the running time

of the algorithm depends on the number of optimal solutions. Since we do not know the
optimum solution to begin with, we can try to estimate the optima by some means, say,
random-sampling, and then use that to prune the search space. The success of such an
approach depends on how effectively we estimate the optima.

In this paper we consider the problem of partitioning a set of poinistior R? into
equal-size buckets, so that the maximum number of points in a bucket is minimized.
These problems were earlier studied in [1] and [4], and they arise in the construction of
optimal hash functions; see the aforementioned references for details.
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First we consider the following one-dimensional problem: Given aSset n real
numbers and an integerd b < n, partition S uniformly into b equal-size buckets, i.e.,
each bucket has the same width. The buckets are defined by real n@gnbets+i - w,
for 0 < i < b wherelL is the left endpoint of the leftmost bucket andis the width
(size) of the buckets. Thieh bucketB;, 1 < i < b, is defined by the intervaff, i 1)
andSnN B; is thecontentof theith bucket (for a fixed choice df andw). We wish to
minimize the maximum size of the contents in buckets. Two version of this problem are
studied: (i) thetight case in whichB; and By, are required to be nonempty, and (i) the
relaxedcase in which they are allowed to be empty.

Next, we consider the two-dimensional problem. Given asef n points inR?
and an integeb < n, we again wish to partitiors into b equal-sizébuckets so that
the maximum number of points in a bucket is minimized. We consider two types of
buckets. First, we consider the case in which the buckets are formed by equally spaced
b + 1 parallel lines o, . . ., £, With orientationg, for somed e S*. We requireS to
lie betweent¢y and ¢, and both¢g, £, to contain at least one point & The buckets
areb strips defined by consecutive linés ; and¢; (1 <i < b); see Figure 1(ii). This
bucketing problem is known as thiform-projectiorproblem. We next define buckets
to be the regions formed by two families of equally spagéaH- 1 lines. The extremal
lines in both families are required to contain at least one poirg; glee Figure 1(iii).

This problem is called thewvo-dimensional partitioproblem.

Asano and Tokuyama [1] descrili&n?) and O (b?n?)-time algorithms for the tight
and relaxed cases of the one-dimensional problem. We are able to ob@iv&m? +
log n)+n)-time deterministic algorithm for the tight case andi®(A2+logn)+bn)-
time algorithm for the relaxed case. The algorithm itself does not require the value of
A; the value is required only for the analysis. Our algorithm is faster than that of Asano
and Tokuyama for small values bfandA, e.g., wherb = o(n*/3) andA = O(/n/b),
which is the case when points are almost uniformly distributed.

Comer and O’Donnell [4] described an algorithm for the uniform-projection prob-
lem that runs inO(br? logn) time usingO(n? + bn) space. Asano and Tokuyama [1]
gave anO(n?logn)-time algorithm, which use©(n) space, by exploiting the dual
transformation of the problem. They also give alternative implementations that could
be better for smalleb, but the worst-case running time §3(n?) even for constant
values ofb. Bhattacharya [2] also gave an alternate approach for this problem, us-
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Fig. 1. (i) One-dimensional bucketing problem:; (ii) uniform-projection problem:; (iii) two-dimensional parti-
tioning problem.
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ing the angle-sweepnethod. We first describe a determinis@(n*?log®** n)-time
algorithm, for anye > 0, that computes an optimal uniform projection for the spe-
cial caseb = 2, thereby improving upon the quadratic upper-bound. For larger values
of b, we describe a Monte Carlo algorithm that computes an optimal solution in time
O(min{br’®log”® n+ (b?A)nlog® n, n?}), Again, our algorithm is faster for small val-
ues ofb andA. The dependence of running time anis borne out by the fact that the
number of possible optimal configurations (having the same value) depenxls on

Our overall approach for both one- and two-dimensional problems is similar. Namely,
we use a sample to “localize” the search for the global optimum. Although intuitively,
this is a good heuristic, analyzing the bound on the number of “potential” candidates
for the global optimum, from the optima of the sample, is rather technical. In the one-
dimensional problem, we can simply choose a “deterministic” sample because the ele-
ments are linearly ordered, but the two-dimensional algorithms rely on random sampling.
In both cases we formulate the problem as searching a small portion of aline arrangement.
In the one-dimensional case, we localize the search to a few cells of the arrangement
while in the two-dimensional case we localize it to a few levels.

The paper is organized as follows. Section 2 describes our one-dimensional algo-
rithm, Section 3 describes the deterministic and Monte Carlo algorithms for the two-
dimensional uniform projection problem, and Section 4 describes the two-dimensional
partitioning problem in which the buckets are rectangles. We conclude in Section 5 by
mentioning a few open problems.

2. Optimal One-Dimensional Cuts. For a setS= {xq, ..., X} of real numbers and
an integer 1< b < n, a pairc = (w, L) is called acutif the set ofb + 1 real numbers
Bi=L+]j -w,0<j <Db, aresuchthgby < x; < xn < By. The interval Bj_1, B;)

is called thejth bucket and the set of elements3lfying (strictly) in this interval is the
contentsof the jth bucket. We denote thgth bucket byB; and the size of its contents
IBj N S| by |Bj°| for a cutc. Let

(9 = fnax | Byl

denote thecut valueof c. Let C be the set of all cuts. The optimalt value®(S) is
defined as

D(S = micnd>(c, S).

Any cut that achieves this cut value is@ptimal cut If we restrict the cuts to satisfy the
condition that B, |, |Bp| > 1, i.e., the first and the last buckets must not be empty, then
it is called atight cut. Anoptimal tight cutis defined analogously as above, restricted to
the set of tight cuts. We first describe an algorithm for finding an optimal tight cut.

DEFINITION 2.1.  Two cutsc; andc, arecombinatorially distinctf there is ani, 1 <
i <b, suchthatB®| # |B®|.

DEFINITION 2.2. Thearrangemendf a set( of lines in the plane, denoted(£), is
the planar subdivision induced by the linesffthat is, A(£) is a planar map whose
verticesare the intersection points of lines ify whoseedgesare maximal (relatively
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Fig. 2. (i) Set £ and the feasible regio; (ii) the shaded regions deno@>, C23, andC,4, and the dark
region denote€ (2, 4; 2), the set of cuts for whiclixz, X3, X4} lie in the second bucke;.

open) connected portions of the lines that do not contain a vertex, and fauesare
the connected componentsi®f — | £.

We parameterize the problem as follows. We represent eadh€liv, L) as a point
in the plane. Abusing the notation slightly, we use the term “cut” to denote a point in the
(w, L)-plane as well as the set of buckets induced by that cut. Let

L={X=L+jw|l<i=<n0=<j=<b}

be the set ofb + 1)n lines in the(w, L)-plane, which we refer to as tleentlines.

L consists ofb + 1 families of parallel lines (one for each fixgd, each family
containingn lines; see Figure 2(i). Hence, every face4l) contains at most® + 1)
edges. For all cuts = (w, L) lying in the same facé of A(L) the cut value remains
the same; we denote this value ®y f, S). Let ®;(f, S) = |BJ-C(S)| foranyc e f. The
nonempty condition of extreme buckets implies that we have to consider only those cuts
(w, L) that lie in the quadrilatera® defined by the intersection of the following four
constraints; see Figure 2:
Xn — X1 Xn — X1
<w<

(2.1) Q: X1>L>x1—w and b b1

The above constraint leads to the following lemma.

LEMMA 2.3. For every point x € S, there exists an integelr < j < b — 1, so that x
lies in one of the two buckets Br B;. 4 for any tight cut

PrROOF A pointx; € Slies in the buckeB; of a cutc = (w, L) if and only if

L+w-(j—-D=<x<L+w-j.
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Suppose there are two cuts= (w1, L1) andc, = (w,, L) and two integers k k; <
ki + 1 < kz < b such that; lies in the buckeB, of the cutc; and in the buckeBy, of
c;. Then we have the following two inequalities:

Xi—Xr <ki-wy and X — X1 > (ko —1) - wo > (kg + Dwo.
It follows thatk,w; > (k; + 1)w, and therefore

w2 kl 1
— < =1- .
w1 ki +1 ki +1
On the other hand, by (2.1),

(2.2)

wy Xn — X1 b-1 1
2.3 — — = .
( ) w1> b Xn — X1 b

Comparing (2.2) and (2.3), we obtdin > b — 1, which contradicts the assumption that
k < k) —1<b-— 2. Hence, the lemma is true. O

This lemma immediately implies that at mastines of £ intersectQ, and thatQ
intersectsO(n?) faces of A(£). The lines of£ that intersecQ can be determined in
O(bn) time. We can therefore search o@n A(£) in O(n?) time to find representatives
for all classes of combinatorially distinct optimal cuts.

LEMMA 2.4. For a set of n pointsall the combinatorially distinct optimal cuts can be
computed in @n?) time

For an integer > 1, letR C Sbe the subset af points obtained by choosing every
(n/r)th point of S. Using Lemma 2.4 for directly solving the problem, we can compute
the optimal solution foR in O(r?) time.

LEMMA 2.5. Let ny, o, be the maximum size of a bucket in an optimal solution for S
and R respectivelyThen

1

< —.
r

No Io

n r

PROOF Let c be an optimal cut folR. Each bucket ot contains at most, points.
SinceR is chosen by selecting evefy/r)th point of S, each bucket o€ contains at
most(r, + 1)n/r — 1 points ofS. Thereforen, < (ro + 1)n/r, or

N ro 1

n r r

Conversely, let’ be an optimal cut folS. Then each bucket af contains at most,
points ofS, which implies that each bucket contains at mogt+ (n/r) — 1)r /n points
of R. Hence,
|’0<<n0—i—n>L or r—o—&<}.
r/n r n r
This completes the proof of the lemma. O
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We now describe the algorithm for computing an optimal solutionSoassuming
that we have already computed the valug,of. et C;; denote the set of points= (w, L)
in the (w, L)-plane so that the poing € Slies in the bucke®; of the cutc. Then

Ci={w,L)|L+({-Dw=<x <L+iw}

is the cone with apex &0, x;); see Figure 2(ii). Given three integers<ll <r <nand
1 <i < b, the set of points in théw, L)-plane for which the subséx, X1, ..., X}
of Slies in theith bucketB; isC(,r;i) = ﬂ;zl Ci.Cd,r;i) is a cone formed by the
intersection of the halfplanes > L + (i — D)w andx, > L + iw.

By Lemma 2.5,

(2.4) (ro — 1)rE <Ng < (fro+ 1)?.

Setm = (r, + L)n/r > no,. We use this inequality to computg efficiently. Define
n, = (n/b) + A ands = m — (n/b). Using (2.4), we obtain thaét< A + 2n/r.

If b?6 > n, then we use th@®(n?)-time algorithm described earlier to compute an
optimal cut, so assume thbts < n. If each bucketB; in a cutc contains at mosin
points of S, then, for any 1< i < b, the firsti buckets inc contain at most; = mi
points, thereforgs; < x;,. Similarly, the lasb — i buckets inc contain at mosgb — i)m
points, thereforgs; > x,, wherel; = n —m(b —i). Hence8i € [x;, X,). Setrg = 1;
see Figure 3. Note that — I; = bs for 1 < i < b. This implies that the subset
S = {Xj | ricx < j < li} always lies in theth bucketB; (see Figure 3), for all
1 <i < b. Hence, if there is a cudt = (w, L) so that all buckets i§ contain at mosin
points, therg lies in the regiorP (m) = ﬂib:lC(ri,l, li —1;i), which s the intersection
of b cones and is thus a convex polygon with at mdsegges. For all cuts ¢ P(m),

@ (&, S) > m. It thus suffices to search for an optimal cut with#iim).

Let Hi € £ be asetof; —ri = bé lines defined as

H={=L+iw|l<]<r}

SetH = [J°_; Hi; |[H| = b2. The same argument as in Lemma 2.3 shows that no
line of H\ L intersects the interior of the polygdh(m). We construct the arrangement
A(H) within the polygonP(m) in O(b*s?) time. Actually, we can clipA(H) inside
P(m) N Q, whereQ is the quadrilateral defined in (2.1). Ldt (H) denote this clipped
arrangement. By the above discussidp,(H) is the same ad (L) clipped withinP (m).
Therefore, for any two points andé’ in afacef € Ap(H), the contents of all buckets

in the cutst and&’ are the same. Let

p(f) =(21(f, S),..., Du(f, 9)).

If f and f’” are two adjacent faces ofp(H) separated by a line + iw = x;, then the
only difference in the two cuts € f andé¢’ € f’is thatx; belongs toB;_; in one of

Si1 Y Si S Sivl N

! r i r r
il B il ; i L i+
! ! f:) i+l §+1

Fig. 3. The boundang; can lie in the shaded intervd] [r;).
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them and it belongs t&; in the other. Therefore(f’) and®(f’, S) can be computed
frome(f)and®(f, S) in O(1) time.

We compute, in timeD (b*5?), a tourIT = (fq, fq, ..., fu), whereu = O(b*?), of
the dual graph ofdp(H) that visits every face afdp(H) at least once. We compute
¢ (fp) and @ (fp, S) in O(n) time. We then visit the faces odp(H) alongIl, and for
eachi > 1, computep(fi) and®(fj, S) frome(fi_1) and®(fi_1, S)in O(1) time. We
can thus compute, = ®(S) = Mingc4,n) P(f, S) in O(b*? + n) time. The total
time spent in computing an optimal cut is

2
O<r2+b4<A+E> +n>.
r
Choosing = [b./n], we obtain the following.

LEMMA 2.6. An optimal tight cut for n points into b buckets can be found itA2 +
b?n) time, assuming that the points are sorted

Instead of using the quadratic algorithm for computipgwve can compute, recur-
sively. LetT (r, A”) denote the maximum running time of the algorithm for computing
an optimal cut for a subs® C Sof sizer chosen by selecting eve(g/r)th point of S,
wherer /b + A’ is the optimal cut value oR. Then we have the following recurrence:

T A) = T(r,A) 4+ O (b*A+n/r)?2+n) if b%(A42n/r) <n,
T lomd otherwise
Choosing = [n/2] and using the fact that < nor/n + 1, we obtain that
rA , A
r055+5+1, ie., A§§+1.

Hence, we can show that

T(n, A) = O(b*(AZ% + logn) + n).

THEOREM2.7. Given a set S of n points iR, sorted in increasing orderand an
integerl < b < n, an optimal tight cut for S with b buckets can be computed in
O(b*(A? + logn) + n) time

REMARK 2.8. If we are interested only in computing arapproximate solution, for
0 < ¢ < 1, i.e. computing a cut such thatd(S,c) < (1 + &)®(S), then we can
obtain a faster algorithm by choosing a samplef sizer = [2b/e] as described
earlier and computindgR. Using (2.4) and the fact tha(S) > n/b, we obtain that
O (R)N/r < (14¢)P(S). The running time of the algorithm B8 (n+ (b/¢)?), assuming
that the points irS are sorted. Otherwise, the running timedsgn log(b/e) + (b/e)?).

We can use a similar analysis for finding optimal cuts when relaxed cuts are also
allowed. We simply replaca by bn as there arén event lines. Another way to view
this is that the optimal cut can be determined by trying out all nonredundant cuts for
buckets for 2< < b and selecting the best one.
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COROLLARY 2.9. An optimal(relaxed cut for a set of n points ifR with b buckets can
be found in Qb%(A? + logn) + bn) time

3. The Uniform-Projection Problem. In this section we describe the algorithms for
the uniform projection problem. L& = {ps, ..., p.} be a set oh points inR? and let
1 < b < n be an integer. We want to fiw+ 1 equally spaced parallel lines so that alll
points of Slie between the extreme lines, the extreme lines contain at least one point of
S, and the maximum number of points in a bucket is minimized; see Figure 1(ii). If the
lines have slopé, we refer to these buckets as theut of S. For eacl®, there is unique
6-cut of S. We first describe a subquadratic algorithmios 2. Next, we show how the
running time of the algorithm by Asano and Tokuyama can be improved, and then we
describe a Monte Carlo algorithm that compudesS), the optimum value, with high
probability, in subquadratic time for small valuestodnd A.

It will be convenient to work in the dual plane. The duality transform maps a point
p = (a,b) to the linep* : y = —ax+ b and aline¢: y = ax + g to the point
¢* = (a, B) [5]; see Figure 4. Let; denote the line dual to the poipt € S, and let
L =1{¢ | 1<i < n}. The dual of a stripr bounded by two parallel line&, and¢; is
the vertical segment* = £;¢3%; a pointp lies ino if and only if the line p* intersects
the segment*.

Let A(L) be the arrangement af as defined in Section 2. We define tleeel of
a pointp e R? with respect tal, denoted by.(p, £), to be the number of lines id
that lie belowp (i.e., the vertical line througlp intersectsC below p). The level of all
points within an edge or a face of(£) is the same. For an integer® k < n, we
define thek-level of A(L), denoted byAx (L), to be the closure of the set of edges of
A(L) whose level isk. The level A¢(£) is an x-monotone polygonal chain with at
mostO(n(k + 1)/3) edges [6]. Théower andupperenvelopes ofA(£) are the levels
Ao(L) and An_1(L), respectively. The total number of vertices on the upper and lower
envelopes ofA(L£) is n because every such vertex is the dual of the line supporting an
edge of the convex hull d&.

Since we require the extreme bucket boundaries to contain a po#ttbé points
dual to the extreme lines lie on the upper and lower envelopes. &for a fixedx-
coordinate, lets(9) denote the vertical segment connecting the points on the lower and

primal dual

Fig. 4. The duality transform in two dimensions. Vertical segmehis the dual of the strip.
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Upper envelope

Lower envelope
Fo

Fig. 5. The uniform-projection problem and the bucket lines in the dual setting.

upper envelopes af with the x-coordinate?. We can partitiors(9) into b equal-length
subsegments (6), ..., $(0). Let Bo(0), ..., Bp(0) be the endpoints of these segments.
These endpoints are dual to the bucket boundaries d@f-the, ands (6) is the dual of
the jth bucket in thed-cut. The linel; intersectss (6), i < b, if and only if the point

p; lies in the buckeB; corresponding to the-cut. Lets; denote the path traced by the
endpoints; (6) as we vang from —oo to +o0. If we vary@, g (9),forO < i < b, traces
along a line segment, as long as the endpoins®f do not pass through a vertex of
upper or lower envelopes. Therefore e@¢lis anx-monotone polygonal chain with at
mostn vertices; see Figure 5 for an illustration. Since we will be looking at the problem
in the dual plane from now, we call th&'s bucket linesLet B = {fo, ..., Bp}. The
intersection of a bucket ling with a line; is aneventat which the pointp; switches
from B;_; to B; or vice versa.

For anx-coordinated and a subsef C L, let ui (A, 0) denote the number of lines
of A that intersect the vertical segmest9); wi (A, ) denotes the set of points dual
to A that lie in theith bucket of thed-cut. Let ®(A,0) = maxi<i<p ui (A, 0). Set
No = ®(S) = ®(L) = miny (L, 9).

3.1. Partitioning into Two Buckets We first describe a deterministic scheme that finds
in subquadratic time an optimal solution for partitioniBgnto two buckets. By our
convention By, B2 denote the upper and lower envelopeg pfespectively. To determine
No, we search for ar-coordinated,, whereg (6,) is closest to thén/2]-level of A(L).
First, we compute\ = A2 in O(n*2log™ n) time [3], for anye > 0, and check
whetherg; intersectsA. If a point 81(6,) lies on A, then we return thé,-cut. If g;

lies belowA, we compute the highest level in the interval [b/2] — 1] of A(L) that

B intersects, and sét, to this level. This can be accomplished @n*3log?* n)

by performing a binary search on the levels. Similarlysiflies aboveA, we find in
O(n*3log?** n) time the smallest level in the intervdl{/2]+1, n—1] thatp, intersects
and set,, to this level. If81(6,) is an intersection point g#, and.A;, (L), then we return
the 6,-cut. Chan’s algorithm computes the edges of a level incrementally from left to
right, so we can actually detect whethfigrintersects the level while computing the level
itself in O(n*2log*** n) time usingO(n) space. Hence, we obtain the following.
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LEMMA 3.1. The optimal uniform projection of n points R? into two buckets can be
computed in @n*/3log®™ n) stepsfor anye > 0, using Q(n) space

3.2. A Deterministic Algorithm In this section we present a deterministic algorithm
for the uniform-projection problem that h@xbnlogn+ K logn) running time and uses
O(n) storage, wher& denotesthe number of event points, i.e., the number of intersection
points betweer and. This improves the running times @(n? + bn+ K logn) for
generab and O(b%61%n16% 4 K |ogn) for b < \/nin [1].

As in Asano and Tokuyama’s algorithm, we will sweep a vertical line thraagh),
but unlike their approach we will not stop at every intersection poinCcaind 5.

We first compute the lower and upper envelopeLpfvhich are the bucket linegy
and By, respectively. We can then compute the rest of the bucket Baes ., Bp-1

in anotherO(bn) time. We preprocess eagh for answering ray-shooting queries in
O(nlogn) time so that a query can be answere®iglog n) time [9]. The total space used
is O(bn).

We sweep a vertical line from = —oo to X = +o00, stopping at the intersection
points of £ and the bucket lines. At eackcoordinated, for 1 < i < b, we maintain
wi (), and, for 1< j < n, the index of the buckey, that contains the ling; in thed-cut.
These quantities remain the same fonaltoordinates between two consecutive event
points. We also maintain an event quépi¢hat stores some of the event points that lie to
the right of the sweep line, but it is guaranteed to contain the next event point. Suppose
we are at an event poii (6) = g N ¢; andy; lies aboves; to the right of; (6). Then
£; moves fromB; to Bi1 atd. We therefore decreagg (9) by 1, increase;1(6) by
1, and sev; toi. The next intersection point éfandB, if it exists, lies on eithep; or
Bi+1. We compute irD(logn) time the intersection points éfwith g; andg; . that lie
immediately aftegs; (6), using the ray-shooting data structure and add the@.to

On the other hand, if;j lies belowg; to the right of 8 (9), £; moves fromB;_;
to B at 6. We decrease:i1(f) by 1, increaseu;(#) by 1, compute the next in-
tersection points of; with g; and gi_1, and add the two intersection points (if they
exist) to Q.

We spendO(logn) time at each event point. Therefore the total running time of
the algorithm isO((bn+ K) logn). The event queu® usesO(K) space and the ray-
shooting data structures u€gbn) space. The size d can be reduced t®(n) using
the standard technique, namely, for each linestore only one intersection point &f
with the bucket lines [7]. In particular, suppose we want to insert a poiat¢; to Q.

We check whetheQ already contains a poirt’ on ¢;. If x(o) > x(¢’), we do not
inserto into Q. Otherwise, we insett into Q and delete’ from it. The total time spent
at each event point is stilD(logn), but the size ofQ is now O(n). However, the ray-
shooting data structure still requir€bn) space. In order to reduce the overall storage
to O(n), we partition the plane inta < 2b vertical stripsWhi, ..., W, so that eacW
contains at mosh vertices of the bucket lines. Note that egghcontains at most/b
vertices insidaA,. We now run the above sweep-line algorithm in esghseparately.
While sweeping a vertical line throughy;, we have to preprocess onfy N W for ray
shooting, for each & i < b. Since eaclg; has at mosh/b vertices insida\, the total
space used by the ray-shooting data structur€xiy. The asymptotic running time is
still O((bn+ K)logn). Hence, we obtain the following.
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THEOREM3.2. An optimum partitioning in the tight case can be determined {tb@+
K) logn) time using Gn) storage where K is the number of event points

3.3. A Monte Carlo Algorithm We now present a Monte Carlo algorithm that runs
in subquadratic time, with high probability, for small valuesbofind A, wheren, =

(n/b) + A. The overall idea is quite straightforward and similar to Section 2. From the
given setC of n lines, we choose a random subgetf sizer > 20logn (a value that

we will specify more precisely in the analysis). L@k be thex-coordinates of all the
intersection points oR and B, the set of bucket lines with respect fo We compute

ro = Migeo, (R, 6). Note that we are not computiry(R) since we are considering
buckets lines with respect 1. B can be computed i®(nlogn + bn) time, andr, can

be computed in addition®(r (b + n)) = O(rn) time. We use, to estimate the overall
optimumn, with high likelihood. In the next phase we use this estimate and the ideas
used in the one-dimensional algorithm to sweep only those regid@hat “potentially”
contain the optimal solution. In our analysis, we will show that the number of such event
points iso(n?) if bandA are small. This approach is similar to the randomized selection
algorithm of Floyd and Rivest.

We choose two parametersand Var= Var(r) whose values will be specified in
the analysis below. Arvent pointwith respect tol (resp.R) is a vertex of53 or an
intersection point of a line of (resp.R) with a chain inB. The event points with respect
to R partition the chains o8 into disjoint segments, which we refer to eanonical
intervals Before describing the algorithm we state a few lemmas, which are crucial for
our algorithm.

Random sampling In the following we assume th& is a random subset df of size
r > 20logn. Our first lemma establishes a relation between the event poinds ©Of
and those ofA(R).

LEMMA 3.3. Leta > Obe aconstantand let < i < b be an integelWith probability
at leastl — 1/n%, at most Q(n/r)logn) event points ofA(£) lie on any canonical
interval of 5;.

PrRoOOE The proof follows along the lines of a standard random-sampling argument.
Consider any event point of(£). The probability that more thaai(n/r) logn lines of £
are notchosen before the firstline is chosen to its right is no morgtham /n)"°9"" <
n~¢. The probability that this holds fanyevent point ofA(£) (and hence foA(R)) is
less tharK - n~¢. SinceK = O(n?), by choosing: = « + 2, the lemma follows. [

Using a classical result by Vapnik and Chervonenkis-@pproximations (see, e.g.,
Chapter 16 of [12]), which can also be proved using Chernoff’'s bound, we can establish
a relationship between the number of line€aind ofR intersecting a vertical segment.

LEMMA 3.4. Let e be a vertical segment and It C £ be the subset ofsines that
intersect e There is a constant ¢ such that with probability exceeding1/n?,

n

Ne [LeN R|‘ “c logn
r - r




532 P. K. Agarwal, B. K. Bhattacharya, and S. Sen
An immediate corollary of the above lemma is the following.
COROLLARY 3.5. There is a constant ¢ so thatith probability exceeding — 1/n,

n r
o 0 <c

n r

logn

r

PROOF Suppose thé-cut is an optimal cut foR. Apply Lemma 3.4 to the segments
s1(0), ..., (). Sinceb < n and each segmest(9) intersects less thamlines of £,
the claim follows. O

COROLLARY 3.6. Leté& be af-cut so that every bucket 6fcontains at most m points
of SForl<i<b-1,let

li=r— (b—i)m% —cyrlogn and 1= im% +c¢y/r logn,

where c is an appropriate constarithen with probability exceeding— 1/n,
3.1 li <ABi(§). R =ri.

PrOOF If each bucket o contains at mosin points, then the first buckets ofgé
contain at mosini points ofSand the lastb — i) buckets of contain at mostb —i)m
points of S. The lemma now follows by an application of Lemma 3.4 to the segments

Bo(&)Bi(§) andpi (§)Bu(£). u
We also need the following result by Mat®K on simplex range searching.

LEMMA 3.7 [10]. Given a set P of n points iR? and a parameter ;mn < m < n?,
one can preprocess P for triangle range searching in timendgn), to build a data-
structure of @m) space and then report queries in(®log?n)//m + K) time, for
output size Kwhere K is number of points in the query triangle

REMARK. If m = Q(r?log®n) andK > (n/r)logn, then the output size dominates
the query time, so the query time becon@&K) in this case.

First phase We now describe the algorithm in detail. We first comput®im logn +

bn) time the upper and lower envelopes®and the bucket linefy, . . ., Bp. Next, we
choose a random sampkeof sizer, wherer > 20logn is a parameter to be fixed later,
and compute, = miny ® (R, 6), whered varies over the-coordinates of all the event
points of 5 with respect toR. As mentioned earlier, we are not computing an optimal
solution for R, since the bucket lines are defined ByWe can compute, in O(rn)

time as described in [1]. This completes the first phase of the algorithm. The total time
required by this phase is

(3.2) O(nlogn + bn) 4+ O(rn) = O((r + b)n).
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Second phase In the following we assume that the setsatisfies Lemmas 3.3 and
3.4 and Corollaries 3.5 and 3.6. This holds with probability exceedirg1ln. By
Corollary 3.5,

Set

n logn n
m. = max{ro— —cnj/ ——, — ¢ .
r r b

By testing fori = 0, 1, ... in increasing order, we first find the smallest0i <
[logn] such tham_ + 2' < n, < m_ + 2+1. We then perform a binary search in the
interval [m_ 4+2', m__ + 2'+1] to compute the optimal valug,. We thus need a procedure
that, given an integem € [m_ + 2', m_ 4+ 2'*1], can determine whether, < m or
N, > M. Suppose&, = (n/b)+ A ands = m—n/b. Sincem_ > n/bandm_ +2 < n,,
we haveA > 2'. Therefore

- SN
(3.3) mme+2'+1§no+2'<E+2A.

We run the decision algorithi®(log n) times.
We now describe the decision algorithm. If each bucket @&fcut contains at most
m points of S, then, by Corollary 3.6; < A(8i(0), R) <r;. Foreach I<i < b, let

Xi=1{0 |l =ABi©®), R <r;}.

Let X = ﬂib;ll Xi, and let| X| be the number of connected componentXinFor any
0 ¢ X, at least one of thg; does not satisfy (3.1), s®(L,6) > m for any such
0-cut. We therefore restrict our search to theuts for whichd € X and compute
My = Mingex ® (L, 0). If myg < m, thenn, < m. Otherwise, we conclude thag > m.
Hence, it suffices to describe an algorithm for computing

Foreach O<i < b, letZ; be the set of canonical intervals gf whosex-projections
intersectX (see Figure 6), and let

®; = {6 € X | Bi(9) is an event point with respect b}.
SetZ = UinOIi, v = |Z], and® = Uib:O ®;. Since every event point whose
coordinate isif®; lies on acanonicalinterval i), by Lemma 3.3,@| = O(v(n/r) logn).

Since the contents of buckets change only at the event points,

My = min®(L,0) = min®d(L, 9).
6eX 0e®

It thus suffices to computé (L, 0) for all & € ®. We describe later how to compuxe
andZ, but we first describe how to compugeand an optimal cut fronX andZ.
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X

Fig. 6. X, B1, andB,. Solid lines belong tdR and dashed lines belong 1\ R. Shaded regions denote the
segments; (0) for 6 € X. Large (small) bullets are the intersection pointsCofvith the bucket lines that lie
(resp. do not lie) insidX x R. Arrowed segments represent the canonical intervalg.in

Computing®. We preprocess in O(r2log?n) time into a data structure of size
O(r?logn) for answering triangle range queries using Lemma 3.7. For each canonical
intervall € Z;, we compute the subsét C £ of lines that intersedtin O((n/r) logn)

time using the range-searching data structure, because, in the primalptarmesponds

to a double-wedge and it contains a poinppfe Sif and only if | intersectg;. We then
compute the intersection pointsloand, —these are the event points with respedf to

that lie onl . We repeat this step for all intervalsin The total time spent in computing
these intersection points B(r2log®n + v(n/r)logn). We discard those event points
whosex-projections do not lie irK. Let ® denote the set of the remaining event points.
We sort® in increasing order. The total time spent in computing and sofling)

(3.4) O(?log?n+v(n/r)logn) + O(|®|logn) = O(r?log?n + v(n/r) log?n).

We sweep a vertical line ovet from left to right, stopping at the-values in®. For
6 € X, we maintain

n(®) = (ua(L,0), ..., un(L, 0)).

The vectoru(0) remains the same for attvalues inX lying between two consecutive
valuesin®. Suppose we are at a potht ©, which belongst®;. Let| be the connected
component ofX that containg. If 6 is the leftmost event point ih, we compute the
number of lines inC intersecting the vertical segmexito) (i.e., the points ofS lying

in theith bucket of the9-cut), for 1 < i < b, using the range-searching data structure
in time O((n/r) logn), and sefu; (£, ) to this value. We can therefore computé)
for such an event point i© (b(n/r)logn) time. If 6 is not the first event point in,
then we update.(9) as follows. Supposg; (6) = 6 N ¢; and(; lies abovep; after
Bi (). Then the pointp; moves from the buckeB; to B, atd. We decreasg; (L, 6)
by 1 and increasg;1(£, ) by 1. Similarly, if ¢; lies belowp; to the right of§; (6),
we increaseu; (L, #) by 1 and decreasgj,1(L, 6) by 1. The total time spent by the
sweep-line algorithm is

(3.5) O(?Iogn)-|X|+O(|®|)=O((b|X|+v)rEIogn).
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Computing X and | Finally, we describe how to compuk¥andZ;. Set

L =r —(b—i)mrﬁ —cy/rlogn and

N = im% +cy/rlogn,

and define

r
o =ri—l =bmﬁ—r+2c,/rlogn

br /n
< o (B +2A) —r +2cy/rlogn
(by (3.3))

r
ZbAE + 2c,/r logn.

A

Recall thatX; is thex-projection of the portion oB; that lies betwee4, (R) and
A (R). We compute4,, (R) and A, (R) and clip the portion of3; between these two
levels; see Figure 74, (R) andA,, (R) haveO(r #/3) vertices. Sincg; hasn vertices X;
consists of0(n +r#/3) connected components and can be computed within this bound.
We setX = ,bz‘ll Xi; IX] = O(b(n + r%3)). Next, we compute the leveld;(R),
li < j <ri.LetM; be the resulting planar subdivision induced by the edges and vertices
of A, (R), ..., A, (R). By aresult of Dey [6],

|M|| — O(r4/3(ri _ Ii)2/3) — O(r4/30'2/3).

Clearly,M; can be computed in tim@(r logr +|M;|) = O(r%3¢%3) [8]. Sincep; is an
X-monotone polygonal chain anM; consists ot edge-disjoin-monotone polygonal
chains, the number of intersection points betwgesmdM; is O(no +|M;|) = O(ho +
r4342/3), and they can be computed within that time bound. We can thus compute the
setZ] of all canonical intervals of; whosex-projections intersecX; in time O(no +
r4342/3), We discard those canonical intervalgpivhosex-projections do not intersect

X. The remaining intervals df gives the sef;. Therefore

v < Y || = O(b(no + r*3623)).
i

Fig. 7. The bucket lings; and the planar subdivisioM; . The shaded region denotik.
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Repeating this procedure for all bucket lines, the total time in compuXh@ndZ is
(3.6) O(b(no + r¥32/3)).

Summing up (3.2), (3.4), (3.5), and (3.6); substituting the valuesasfd X; and using

the fact that we run the decision algorith@(logn) times, the total time in computing
No is thus

T

O((r + b)n) + O(r?log®n) + b(no + r“/302/3)rD log®n
+0 (bz(n +r43). rE log?n + b(no + r4/302/3)) . rE log?n
+ O(b(no +r*3s2/3) logn
= O(m) + O(b(no + r“/?’az/?’))rE log>n+ O (bz(n +r43. rE log? n) )
Substituting the value af, we obtain

T(n) = O(rn)

2/3
+0 (br—rF (bA%Jm/r Iogn) log® n+br*3nlog®n (A%er/r '09n> )

2
+0 <b2 (nr_ + nr1/3) -log? n)

= O((b’A)nlog®n) + O (rn + % log”/?n + br?*nlogt?? n)

2
+0 <b2 (nr_ + nr1/3> -log? n) .

Settingr = [b%3n%3log’/® n1, we obtain the following.

THEOREM3.8. There is a Monte Carlo algorithm to compute the optimal uniform
projection of a set of n points iR? onto b equal-size buckets in time

o(min{br”3log”®n + (b®A)nlog®n, n?}),

with probability at leastl — 1/n, where the optimal value i&1/b) + A. In particular,
our algorithm can detect in @nin{br®’3log’/® n, n?}) time whetheA = 0.

REMARK 3.9. As in Remark 2.8, we can obtain a fastpproximation algorithm. We
choose a random subsBtof sizer = « [b/e]%logn, wherea is a sufficiently large
constant, and computg = min, ®(R, 6). Corollary 3.5 and the fact thai, > n/b
implies thatron/r < (1 + &)®(S). From (3.2), the running time of the algorithm is
O((r + b) - n) whichisO((b- (1 + ¢)/¢)?nlogn) for the above choice of.
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4. Two-Dimensional Partitioning. In this section we consider the problem of par-
titioning a setS of n points inR? into “rectangular” buckets. More precisely, givén
and an integeb > 1, we want to compute two families of equally spacgd+ 1 lines
L={to,....LptandLl = {¢, ..., E:/B}’ so that the following conditions hold:

() If the orientation of the lines i is 6 € [0, r/2), then the orientation of the lines
inL'isw/24 0.
(i) Slies betweertp and¢ s as well as betweety, andz’\/ﬁ.

(iii) Each of the extreme lineéy, £, £ 5, E/JB contains at least one point &f

(iv) The buckets are rectangl&; defined by¢i_1, ¢i, ¢_,, ¢j, for any pair 1< i, j <
vb. The maximum number of points in a bucket is minimum.

See Figure 1(iii) for an example. If the slope of linesdris 6 (and of lines inL' is
—1/6), we refer to the resulting buckets as #eut. Let (L, 6) be the number of
points in the buckeB;; of thed-cut.

In the dual setting, the strip formed by the linkgs; and¢; of thed-cut is the vertical
segmens (0) as defined in the previous section. Similarly, the dual of the strip formed
by E;fl and ej is the segmens; (—1/6). Hence, a pointy belongs to the buckes;
of the 6-cut if £y intersects botls (0) ands;j(—1/0). Let B = {fo, ..., B} be the
set of bucket lines as defined in Section 3.2 (a vertical segsiéntvhose endpoints
lie on the lower and vertical envelopes.4f£) is partitioned intov/b equal segments
$1(0). ..., Syp(®).

As noted by Asano and Tokuyama, we can still compute an optimal solution by a
sweep-line algorithm. We sweep two vertical linksand L’. The lineL sweeps the
plane fromx = 0 tox = +oo0. WhenL is atx = 0, L' is atx = —1/6. We stop when
eitherL or L’ crosses an intersection point®fandB. At eachd, we maintain, for every
1<i,j< /b, the number of points db that lie in the buckeB;; of the-cut, and for
each linety € £, the pair(i, j) if pc € Bj. If L passes through an event point lying
on B;, then a line moves from a buckBj; to B 1); ato, or vice versa. Similarly, it.’
passes through an event point lying 8n then a line moves from a buckgj; to the
bucketB; j+1) até, or vice versa. As in Section 3.2, we can update the invariant and the
event queue at each event poinrilogn) time. Hence, we conclude the following:

THEOREM4.1. An optimum two-dimensional partitioning in the tight case can be de-
termined in Q(bn+ K) logn) time using @n) storagewhere K is the number of event
points

We can also extend the Monte Carlo algorithm to this probler (5, 0) < m, then
the strips defined by two consecutive linesCdor £') contain at most/bmpoints. If we
choose a random sampieas in Section 3.3 and defing = miny max j (R, ) and
compute it using the deterministic algorithm, then Lemmas 3.3 and 3.4 and Corollary 3.5
still hold. Corollary 3.6 can now be restated as follows.

COROLLARY 4.2. Leté be af-cut so that every bucket éfcontains at most m points
of SForl<i <+b—1,let

L =r —(\/B—i)\/Em% —cy/rlogn and ¥ =ix/5m%+c‘/rlogn,
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where c is an appropriate constafithen with probability exceedin— 1/n,
(4.1) li <A(Bi(§), R, AM(Bi(=1/8), R) <.

We can now proceed along the same lines as in Section 3.3. In order to determine
whethem, < m for a given integem, we first define the set

X=1{011i <A(B©®), R, 1B (=1/6),R) <ri, V1 <i < /B

We sweep two vertical lines througk as in the deterministic algorithm, but using the
ideas from Section 3.3 to compute event points, to move directly from one connected
component o to another, and to compuk¢andZ. Since there ar¢/b+ 1 bucket lines

in this case, we have = Zi‘/fo IZi| = O(Vb(no +r*352/3)), whereo =r; —|; <
2bA(r/n) + 2c/r logn. Carrying out the analysis of Section 3.3 with the new value of
v, we can conclude the following.

THEOREM4.3. Given a setof n points iR? and an integer bthere exists a Monte Carlo
algorithm to find an optimal two-dimensional partition in imgm@in{b2n%>3 log”/® n+
(b¥2A)nlog®n, n?}), with probability at leastl — 1/n, where the optimal value is
(n/b) + A.

5. Conclusions. We presented bucketing algorithms in one and two dimensions whose
running times depend on how “nonuniform” the optimal partition is. Intuitively, the
algorithm searches in a small neighborhood of an optimal solution, and the size of this
neighborhood depends on the maximum size of a bucket in an optimal partition. We
conclude by mentioning a few interesting open problems:

e Can the dependence brandA in the running time of the one-dimensional algorithm
be improved?

e Can then®31og®°® n term in the running time of the uniform projection algorithm be
removed?

e We assume in Sections 3 and 4 that the extremal lines contain at least one of the
input points. Can this assumption be relaxed without affecting the running time of the
algorithms?
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