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ABSTRACT

Since the remarkable work of Kocher [7], several papers con-
sidering different types of timing attacks have been pub-
lished. In 2003, Brumley and Boneh presented a timing
attack on unprotected OpenSSL implementations [2]. In
this paper, we improve the efficiency of their attack by a
factor of more than 10. We exploit the timing behavior
of Montgomery multiplications in the table initialization
phase, which allows us to increase the number of multi-
plications that provide useful information to reveal one of
the prime factors of RSA moduli. We also present other
improvements, which can be applied to the attack in [2].

Categories and Subject Descriptors

E.3 [Data Encryption]: [Public key cryptosystems, Code
breaking]

General Terms
Security
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1. INTRODUCTION

Several timing attacks have been developed against spe-
cific RSA implementations since the introduction of side
channel cryptanalysis in [7]. For example, [7] and [5] de-
scribe timing attacks on RSA implementations which do
not utilize Chinese Remainder Theorem (CRT). These at-
tacks were generalized and optimized by advanced stochastic
methods (cf. [9, 11, 12]). In particular, the efficiency of the
attack from [5] could be increased by a factor of 50. Since
these attacks cannot be applied to RSA implementations
that use CRT, it had been thought for years that RSA-CRT
was immune to timing attacks.
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However, in [10], a new and efficient attack on RSA im-
plementations that use CRT with Montgomery’s multiplica-
tion algorithm was introduced. Under optimal conditions, it
takes about 300 timing measurements to factorize 1024-bit
RSA moduli. We note that these attacks can be prevented
by blinding techniques (see [7], Sect. 10).

Typical targets of timing attacks are the security features
in smart cards. Despite of Bleichenbacher’s attack ([1]),
which (e.g.) exploited weak implementations of the SSL
handshake protocol, the vulnerability of RSA implementa-
tions running on servers was not known until Brumley and
Boneh performed a timing attack over a local network in
2003 (]2]). They mimicked the attack introduced in [10] to
show that RSA implementation of OpenSSL [14], which is
the most widely used open source crypto library, was not
immune to such attacks. Although blinding techniques for
smart cards had already been ‘folklore’ for years, various
crypto libraries that were used by SSL implementations did
not apply these countermeasures at that time ([2]).

In this paper, we propose a timing attack, which is an
improvement of [2] by a factor of more than 10. All of these
timing attacks ([7, 5, 9, 10, 2]) including the one presented
in this paper can be prevented by base blinding or expo-
nent blinding. However, it is always desirable to understand
the full risk potential of an attack in order to confirm the
trustworthiness of existing or, if necessary, to develop more
secure and efficient countermeasures and implementations.

Our attack exploits the peculiarity of the sliding win-
dows exponentiation algorithm and, independently, suggests
a general improvement of the decision strategy. Although it
is difficult to compare the efficiency of attacks performed
in different environments (cf. [2]), it is obvious that our
new attack improves the efficiency of Brumley and Boneh’s
attack by a factor of more than 10.

Our paper is organized as follows: §2 gives brief review
of Chinese Remainder Theorem and Montgomery multipli-
cation algorithm. Mathematical background of the previous
and the new attack is explained in §3, 4, and 5. In §6,
implementation details are addressed, and §7 compares the
experimental results with those from the attack in [2]. We
conclude our paper in §8.

2. BACKGROUND

In this section, we explain some algorithms that are com-
monly used in RSA-CRT implementations. Our attack, as
well as [2], exploits the timing characteristics of the algo-
rithms described here.



2.1 Chinese Remainder Theorem (CRT)

Most of the RSA implementations use Chinese Remainder
Theorem (CRT) to compute y%(modn). CRT reduces the
computation time by about 75%, compared to a straight-
forward exponentiation. We have n = pq and use the no-
tation dp = d(mod (p — 1)) and dq = d(mod (¢ — 1)). The
algorithm is described in Figure 1 with suitable constants
b1 and ba. We point out that Step 3 can be calculated more
efficiently by (24 — 2,)(p~ " (mod ¢))p + zp(mod n) (cf. [8])
which is yet not relevant for our purposes.

2.2 Montgomery Multiplication

Montgomery Multiplication (MM) is the most efficient al-
gorithm to compute modular multiplications during a modu-
lar exponentiation. It uses additions and divisions by powers
of 2, which can be accomplished by shifting the operand to
the right, to calculate the result. Since it eliminates time
consuming integer divisions, the efficiency of the algorithm
is very high.

Montgomery Multiplication is used to calculate

Z =abR™" (mod n),

where R is a constant power of 2, R > n, and R™" is the
inverse of R in modulo n. A conversion to and from n-
residue format is required to use this algorithm. Hence, it is
more attractive to use it for repeated multiplications on the
same residue, just like modular exponentiations. Figure 2
shows the steps of Montgomery Multiplication Algorithm.
The conditional subtraction s —n is called ‘extra reduction’.

Since the operand size of the arithmetic operations can
simply be assumed to be constant during RSA exponenti-
ation, the time required to perform integer operations in
MM can also be assumed to depend only on the constants n
and R but not on the operands a and b. This assumption is
very reasonable for smart cards whereas software implemen-
tations may process small operands (i.e., those with leading
zero-words) faster due to optimizations of the integer mul-
tiplication algorithm. In fact, this is the case for many SSL
implementations which complicates the attack described in
[2] and ours. (Both attacks are chosen-input attacks where
small operands occur.) Under the simplifying assumption
from above, we can conclude that Time(M M (a,b;n)) €
{¢, c+crr}, where Time(M M (a,b;n)) is the execution time
of the multiplication MM(a,b;n). The Montgomery opera-
tion requires a processing time of ¢ 4 cgr iff the extra re-
duction has to be carried out.

Figure 3 explains how Montgomery’s multiplication algo-
rithm can be combined with arbitrary modular exponentia-
tion algorithms to compute y%(mod n). Of course, in Phase

Step 1:  a) yp := y(mod p)
b) p := yj” (mod p)

Step 2:  a) yq := y(mod q)
b) 24 := gy (mod q)

Step 3:  Return (bizp + bazg)(mod n)

Figure 1: RSA with CRT

2a and 2b modular squarings and multiplications have to be
replaced by the respective Montgomery operations.

3. GENERALIDEAOFATIMING ATTACK
ON RSA-CRT

The different attacks [10] and [2] exploit the timing be-
havior of the Montgomery multiplications in Phase 2b of the
modular exponentiation (cf. Figure 3). We can interpret the
execution time of the i** Montgomery operation in Phase 2b
(squaring or a multiplication by a table value) as a realiza-
tion of the random variable ¢ + W; - cer where Wy, Wa, ...
denotes a sequence of {0, 1}-valued random variables. The
stochastic process Wi, Wa, ... has been studied in detail in
[9, 10, 12]. We merely mention that

for M M (temp, temp;n)

for MM (temp,yj;n). (™)

where g; and temp denote a particular table entry and an
intermediate result during the exponentiation, respectively.
‘E(-)’ denotes the expectation of a random variable. The
timing behavior of the Montgomery operations in Phase 2a)
can similarly be described by a process W1, W3, .. ..

When applying the CRT, (1) indicates that the probabil-
ity of an extra reduction during a Montgomery multiplica-
tion of the intermediate result temp with §1;, = yR ( mod p)
in Step 1 (resp. with g1, = yR (mod ¢) in Step 2) is linear
in g1,5/p (resp. linear in %i1.4/q). Note that the message
(u* R~1)(mod n) corresponds to the value v during the ex-
ponentiation, because the messages are multiplied by R to
convert them into Montgomery form. If the base of the
exponentiation is y := uwR™'(modn), then §1,, = yR =
u (mod p) and §1,4 = yR = u(mod q). The same equation
also implies that the same probability does not depend on
y during the squarings.

For 0 < w1 < u2 < n with us — u1 < p,q, three cases
are possible: The ‘interval set’ {u; + 1,...,u2} contains no
multiple of p or ¢ (Case A), contains a multiple of p or ¢
but not both (Case B), or contains multiples of both p and
q (Case C). The running time for input y := «R~" (mod n),
denoted by T'(u), is interpreted as a realization of a normally
distributed random variable X,,.

If the square and multiply exponentiation algorithm is ap-
plied, the computation of z, requires about log,(n)/4 mul-
tiplications with %1,», and hence (1) implies

0 for Case A

E(Xy, — Xy, )= —EE % log,(n) for Case B
— <R % log,(n) for Case C

This property allows us to devise a timing attack that fac-
torizes the modulus n by exposing one of the prime factors,

s=axb

s=(s—(s*n 'modR)*n)/R
if s>nthen s=s5—n
return s (= MM(a,b;n) )

Figure 2: Montgomery Multiplication Algorithm



L) 41 := MM(y,R*n) (= yR (mod n))
2.) Modular Exponentiation Algorithm

a) table initialization (if necessary)

b) exponentiation phase
3.) Return MM(temp,1;n) ( =y%(mod n) )

Figure 3: Modular Exponentiation with Mont-
gomery’s Algorithm

e.g. g, bit by bit. We use the fact that if the interval (u1,
ug], i.e., the integers in {u1 + 1, u1 + 2, ..., u2}, contains
a multiple of ¢, i.e., in case of Case B or C, then T(u1) -
T(uz2) will be smaller than cgr log,(n)y/n/16R. Let say the
attacker already knows that ¢ is in (u1, u2] (after checking
several intervals; = Phase 1 of the attack) and trying to
reduce the search space. In Phase 2 the decision strategy
becomes:

1. Split the interval into two equal parts: (u1, us] and
(us, uz2], where us = |[(u1 + u2)/2]. As usual, |z]
denotes the largest integer that is < z.

2. If T'(u3) — T'(u2) < cerlog,y(n)y/n/16R decide that g
is in (us, ug], otherwise in (u1, us).

3. Repeat the first steps until the final interval becomes
small enough to factorize n using the Euclidean algo-
rithm

At any time within Phase 2 the attacker can check whether
her previous decisions have been correct. To confirm that
an interval really contains ¢ the attacker applies the decision
rule to similar but different intervals, e.g., (u1 + 1, uz — 1],
and confirms the interval if they yield the same decision.

In fact, it is sufficient to recover only the upper half of the
bit representation of either p or ¢ to factorize n by applying
a lattice-based algorithm [4].

Under ideal conditions (no measurement errors) this at-
tack requires about 300 time measurements to factorize a
1024-bit RSA modulus n ~ 0.7 - 21924 if square and multi-
ply algorithm is used. In Phase 2 of the attack, each decision
essentially recovers one further bit of the binary represen-
tation of one prime factor. The details and analysis of this
attack can be found in [10].

4. OVERVIEW OFBRUMLEY AND BONEH
ATTACK

We explain the attack of [2], which will be refered as BB-
attack from here on, and ours in the following two sections
along with a discussion of the advantages of our attack over
the other.

RSA implementation of OpenSSL employs Montgomery
Multiplication, CRT, and Sliding Window Exponentiation
(SWE) with a window size, denoted by wsize, of 5. SWE
algorithm processes the exponent d by splitting it into odd
windows of at most wsize consecutive bits (i.e. in substrings
of length < wsize having odd binary representation), where
the windows are not necessarily consecutive and may be
separated by zero bits. It requires a preprocessing phase,
i.e., table initialization, to compute odd powers of the base

y so that many multiplications can be combined during the
exponentiation phase.

The modulus n is 1024-bit number, which is the product of
two 512-bit primes p and q. Considering one of these primes,
say g, the computation of yqu (mod q) requires 511 Mont-
gomery operations of type M M (temp, temp; q) (‘squarings’)
and approximately (511 - 31)/(5 - 32) ~ 99 multiplications
with the table entries during the exponentiation phase of
SWE (cf. Table 14.16 in [8]). Consequently, in average
~ 6.2 multiplications are carried out with the table entry
Y1q-

BB-Attack exploits the multiplications M M (temp, §1;q; q)
that are carried out in the exponentiation phase of SWE. Let
assume that the attacker tries to recover ¢ = (qo, ..., g511)
and already obtained first, i.e. most significant, k bits. To
guess g, the attacker generates g and gp;, where g =
(g0, -y q—1,0,0,...,0) and gn; = (go,...,qk—1,1,0,0,...,0).
Note that there are two possibilities for ¢: g < q¢ < gni
(when gr = 0) or g < gni < ¢ (when gx = 1). She determines
the decryption time t; = T(g) = Time(uf mod n) and t» =
T(gni) = Time(uy,, mod n), where ug = g * R™"(modn)
and ug,, = gn; * R™"(mod n). If gx is 0, then |t; — ta] must
be “large”. Otherwise |t1 — t2| must be close to zero, which
implies that gr is 1. The message ug (ug,,; resp.) corre-
sponds to the value g (gn; resp.) during the exponentia-
tions, because of the conversion into Montgomery form. BB-
attack does not only compare the timings for gR~*(mod n)
and ghinl(modn) but uses the whole neighborhoods of
g and gpi, i.e., N(g;N) = {g,9+1,...,9 + N — 1} and
N(gri; N) = {gni,gni + 1,...,9n: + N — 1}, respectively.
The parameter N is called the neighborhood size. For de-
tails, the reader is referred to [2].

5. DETAILS OF OUR APPROACH

Only about 6 from ca. 1254 many Montgomery operations
performed in RSA exponentiation provide useful informa-
tion for BB-attack. On the other hand, the table initial-
ization phase of the exponentiation in modulo q requires 15
Montgomery multiplications with g2. Therefore, we exploit
these operations in our attack. In fact, let R05 = 2%°% =
V'R, the square root of R over the integers. Clearly, for in-
put y = u(R05) "' (mod n) (inverse in the ring Z,) we have

G2g = MM(g1,71;9) = u(R05) 'w(R05) 'R
u?(mod gq). (2)

Instead of A'(g, N) and N (gn:, N) we consequently consider
the neighborhoods N'(h; N) = {h,h+1,...,h+ N — 1} and
N(hpni; N) = {hni,hni +1,...,hpi + N — 1}, resp., where

h = |vg| and hps = |\/Gni]- (3)

To be precise, we consider input values y = u(R05) ™" ( mod
n) with w € N(h; N) or u € N(hni; N). Even if we just
copied the other steps of BB-attack this would increase the
efficiency by a factor of ~ (15.0/6.2)% ~ 5.8.

Under the assumption from Section 2.2, specifically

Time(MM(a,b;q)) € {c,c+ cer}

for any a,b € Z,, we can simply replace the threshold value
log,(n) cer v1/16R from Sect. 3 (square & multiply expo-
nentiation algorithm) by 60 cgr v/n/16R. Clearly, the ab-
solute value of this new threshold is much smaller, which



makes the attack less efficient in terms of the number of
necessary measurements.

The situation in an actual attack is more complicated as
pointed out in [2]. First of all, there are two different inte-
ger multiplication algorithms used to compute M M (a, b; q):
Karatsuba’s algorithm (if @ and b consist of the same num-
ber of words (nwords)) and the ‘normal’ multiplication al-
gorithm (if @ and b consist of different numbers of words
(nwords, mwords)). Karatsuba’s algorithm has a complex-
ity of O(nwords**®), whereas the normal multiplication al-
gorithm requires O(nwords-mwords) operations. Normally,
the length of each input of Montgomery multiplication is 512
bits, therefore Karatsuba’s algorithm is supposed to be ap-
plied during RSA exponentiation. However, BB-attack and
ours are chosen-input attacks and some operands may be
very small, e.g., 41,4 in BB-attack and 2,4, in our attack.
Beginning with an index (denoting the actual exponent bit
under attack) near the word size 32, the value of §1,4, resp.
Y2;q, has leading zero words so that the program applies
normal multiplication.

Unfortunately, the effects of having almost no extra re-
duction for small table values but using less efficient integer
multiplications counteract each other. Moreover, the exe-
cution time of integer multiplications becomes less and less
during the course of the attack (normal multiplication algo-
rithm!). It is worked out in [2] that the time differences of
integer multiplications depend on the concrete environment,
i.e., compiler options etc. Neither in [2] nor in this paper, we
assume that the attacker knows all of these details. Instead,
robust attack strategies that work for various settings are
used in both cases.

BB-attack evaluates the absolute values

N-1
App = Z Time ((g—i—j)R*l(modn))—
7=0
N-1
. Time ((gni + )R~ " (mod n))|.  (4)

App becomes ‘small’ when di, = 1, whereas a ‘large’ value
indicates that dr = 0 [2]. Our pendant is
N-1
A = > Time((h+j)(R05) " (modn)) —
i=0
1

Z <

Time ((hn + 7)(R05) ™" (mod n)), (5)

(=}

Jj=

where we omit the absolute value.

Since (u + 2)* — v* ~ 2x,/q for u € N(h,N) or u €
N (hpi, N), the value A can only be used to retrieve the bits
1 < 256 — 1 — log,(N). In fact, it is recommended to stop
even at least two or three bits earlier. The remaining bits
upto 256" bit of ¢ can be determined by either using the
former equation or searching exhaustively.

Network traffic and other delays affect timing measure-
ments, because we can only measure response times rather
than mere encryption times. For that reason, identical in-
put values are queried S many times, where S is one of the
parameters in BB-attack, to decrease the effect of outliers in
[2]. We drop this parameter in our attack, because increas-
ing the number of different queries serves the same purpose
as well.

If Agp or |A| are ‘large’ (in relation to their neighborhood
size N), that is, if Agpg > N - thep;i, resp. |A| > N - th;
for suitable threshold values thpp;; and th; (both depending
on the index ) the attacker guesses ¢; = 0, otherwise she
decides for ¢; = 1.

On the other hand, sequential sampling exploits the fact
that already a fraction of both neighborhood values usually
yields the correct decision with high probability. We can
apply a particular decision rule not to sums of timings (i.e.,
to A) but successively to individual timing differences

A; = Time((h+j)(R05) " (modn)) —
Time ((hni + j) (R05)™ " (mod n)) (6)

for j =0,1,..., Nmasz. The attacker proceeds until the dif-
ference

#J|Gisj =0} = #{5 | §yi = 1} € {m1,m2},  (7)

or a given maximum neighborhood size Njy,q. is reached.
The term g;;; denotes 4" individual decision for g;, and the
numbers m; < 0 and mo > 0 are chosen with regard to the
concrete decision rule. If the process ends at mq (resp. at
mg) the attacker assumes that ¢; = 1 (resp. that ¢; = 0)
is true. If the process terminates because the maximum
neighborhood size has been exceeded the attacker’s decision
depends on the difference at that time and on the concrete
individual decision rule (cf. [6], Chap. XIV, and [10], Sect.
7).

The fact that the distribution of the differences varies in
the course of the attack causes another difficulty. As pointed
out earlier we do not assume that the attacker has full knowl-
edge on the implementation details and hence not full con-
trol on the changes of the distribution. A possible individual
decision rule could be, for instance, whether the absolute
value of an individual time difference exceeds a particular
bound th; (— decision g;;; = 0). The attacker updates this
threshold value whenever he assumes that a current bit g;
equals 1. The new threshold value depends on the old one
and the actual normalized value |A|/N. where N, denotes
the number of exploited individual timing differences.

In Section 4 we use an alternative decision strategy that
is closely related to this approach. For k € {0,1} we define

fise = Prob(A; > 0| ¢ = k), (8)
and similarly
fir<st = Prob(A; < 0| gi = k). (©)

We want to mention that the following equation surely holds
due to the reasons given above.

max{ fi,>.0, fi<;0} > max{fi> 1, fi<1}. (10)

The right-hand maximum should be close to 0.5. We sub-
tract the number of negative timing differences from the
number of non-negative ones. The process terminates when
this difference equals m1 = —D or ma = +D > 0, or until
a particular maximum neighborhood size Np,q. is reached.
For Njar = 00, the process will always terminate at either
—D or D. However, the average number of steps should
be smaller when ¢; = 0, because of the fact highlighted in
equation (10). Consequently, if D and Nmqr are chosen
properly, a termination at D or —D is a strong indicator for
q¢i = 0, whereas reaching N,,q, without termination points
that ¢; = 1. We use this strategy in our implementation and



Operating System: RedHat workstation 3
CPU: dual 3.06Ghz Xeon
Compiler: gce version 3.2.3
Cryptographic Library: | OpenSSL 0.9.7e

Table 1: The configuration used in the experiments

the results are presented in §7. We interpret our decision
procedure as a classical gambler’s ruin problem. Formula
(11) below facilitates the selection of suitable parameters D
and Npaz. If fi;>x # 0.5 formula (3.4) in [6] (Chap. XIV
Sect. 3 with z = D, a = 2D, p = fi;>x and ¢ = 1 — p)
yields the average number of steps (i.e., number of time dif-
ferences to evaluate) until the process terminates at —D or
D assuming Npqe. = 00. In fact,

D 2D 1— (=)

E(Steps) = — Gk
(Steps) fis<iw — fizie  fucik — fizn 1 — (—?‘<:k )P

i >3k

(11)
Similarly, formula (3.5) in [6] yields

E(Steps) = D* if fi>.x = 0.5. (12)

These formulae can be used to choose the parameter D and
Nmaz (cf. Sect. 7). A deeper analysis of the gambler’s ruin
problem can be found in [6], Sect. XIV.

The probabilities fi;>;x vary with ¢ and this fact makes
the situation more complicated. On the other hand, if D
and Npqe are chosen appropriately, the decision procedure
should be robust against small changes of these probabilities.

6. IMPLEMENTATION DETAILS

We performed our attack against OpenSSL version 0.9.7e
with disabled blinding, which would prevent the attack [14].
We implemented a simple TCP server and a client pro-
gram, which exchange ASCII strings during the attack. The
server reads the strings sent by the client, converts them to
OpenSSL’s internal representation, and sends a response af-
ter decrypting them. The attack is actually performed by
the client, which calculates the values to be decrypted, pre-
pares and sends the messages, and makes guesses based on
the time spent between sending a message and receiving the
response.

We used GNU Multi Precision arithmetic library, shortly
GMP, to compute the square roots, i.e., |\/g] and |\/gn:]
[13]. The source code was compiled using the gcc compiler
with default optimizations. All of the experiments were run
under the configuration shown in Table 1. We used random
keys generated by OpenSSL’s key generation routine. We
measured the time in terms of clock cycles using the Pen-
tium cycle counter, which gives a resolution of 3.06 billion
cycles per second. We used the “rdtsc” instruction avail-
able in Pentium processors to read the cycle counter and
the “cpuid” instruction to serialize the processor. Serial-
ization of the processor was employed for the prevention of
out-of-order execution in order to obtain more reliable tim-
ings. Serialization was also used by Brumley and Boneh in
their experiments [2].

There are 2 parameters that determine the total number
of queries required to expose a single bit of q.

e Neighborhood size Npqz: We measure the decryption
time in the neighborhoods of N'(h; Nimaz) = {h, h+1,

cey h + Nmam — 1} and N(hhz, N77La:c) = {hhi7 hhi + 17
<« vy hhi+ Nimae — 1} for each bit of q we want to expose.

e Target difference D: The difference between the num-
ber of time differences that are less than zero and the
number of time differences that are larger then zero.
If we reach this difference among N4> many timings,
we guess the value of the bit as 0. Otherwise, our guess
becomes as ¢; = 1.

The total number of queries and the probability of an error
for a single guess depend on these parameters. The sample
size used by [2] is no longer a parameter in our attack. In the
following section, we present the results of the experiments
that explore the optimal values for these parameters.

In our attack, we try to expose all of the bits of q between
5" and 245" bits. The first few bits are assumed to be able
to determined by the same way as in [2]. The remaining 11
bits after 245" bit can be easily found by using either an
exhaustive search or BB-attack itself.

7. EXPERIMENTAL RESULTS

In this section we present the results of our experiments
in four subsections. First, we compare our attack to BB-
attack. Then, we give the details of our attack including
error probability, parameters and the success rate in the
following subsections. We also show the distribution of the
time differences, which is the base point of our decision strat-
egy.

The characteristics of the decryption time may vary dur-
ing the course of the attack, especially around the multiples
of the machine word size. Therefore, we separated the bits
of q into different groups, which we call intervals. The in-
terval [i,j] represents all the bits between i*" and j'* bit,
inclusively. In our experiments, we used intervals of 32 bits:
[32,63], [64, 95], ...etc.

All of the results we present in this paper were obtained by
running our attack as an inter-process attack. It is stated in
[2] that it is sufficient to increase the sample size to convert
an inter-process attack into an inter-network attack. In our
case, either a sample size can be used as a third parameter
or the neighborhood size and the target difference can be
adjusted to tolerate the network noise.

7.1 Comparison of our attack and BB-attack

In [2], Brumley and Boneh calculated the time differences,
denoted by Agg, for each bit to use as an indicator for the
value of the bit. The gap between App when ¢; is 0 and
when it is 1 is called the zero-one gap in [2]. Therefore, we
want to compare both attacks in terms of zero-one gap. We
run both attacks on 10 different randomly chosen keys and
collected the time differences for each bit in [5, 245] using a
neighborhood size of 5000 and a sample size of 1. Table 2
shows the average statistics of the collected values. The
zero-one gap is 114% larger in our attack, which means a
smaller number of queries are required to deduce a key in
ours.

7.2 The details of our attack

Our decision strategy for each single bit consists of:

e Step 1: Sending the query for a particular neighbor
and measuring the time difference Aj;.



new attack BB-Attack
|Al/N App/N

interval | bits = 0 | bits =1 | 0-1 gap | bits =0 | bits =1 | 0-1 gap
[5, 31] 5871 3744 2127 3423 2593 830
[32, 63] 42778 4003 38775 15146 3455 11691
[64, 95] 40572 4310 36263 15899 3272 12627
[96,127] 41307 3995 37313 18886 3580 15306
[128, 159] 45168 2736 42431 20877 2933 17945
[160, 191] 44736 3082 41654 24513 2479 22034
[192, 223] 37141 1755 35385 21550 1977 19573
[224, 245] 21936 2565 19371 27702 4728 22974

Table 2: Average A and Agp values and 0-1 gaps. The values are given in terms of clock cycles.

e Step 2: Comparing A; with zero and updating differ-
ence between the number of A; values that are less
than zero and the number of A; values that are larger
than zero.

e Step 3: Repeating first 2 steps until we reach the target
difference, D, or a maximum of Ny, times.

e Step 4: Making the guess ¢; = 0, if the target difference
is reached. Otherwise the guess turns out to be ¢; = 1.

Note that we normally send only one query in Step 1, al-
though we use a difference of two timings in our decision.
This is because one of the timings we use to compute the dif-
ference has to be the one used for the decision of the previous
bit. Since we halve the interval, which ¢ is in, in each deci-
sion step, only one of the bounds, either the upper or lower
one, will change. The timings for the bound that does not
change can be reused during the decision process of the next
bit. Therefore sending one query for a particular neighbor
becomes sufficient by storing the data of the previous itera-
tion. Of course, there are some cases that we have to send
both queries, specifically when we exceed the total number
of neighbors used in the previous decision step. However,
just removing the redundant queries, which can also simply
be applied to BB-attack, almost doubles the performance.

7.2.1 Thedistribution of time differences

We use the distribution of the time differences for our
decision purposes. Whenever ¢; = 1, the number of time
differences lay above and below zero is very close to each
other. However, when ¢; = 0, the difference between these
numbers becomes larger(see Figure 4).

7.2.2  Error probabilities and the parameters

When ¢; = 1, approximately half of the time differences
become positive and the other half become negative. If
g; is 0, the majority of the time differences becomes ei-
ther positive or negative. We determined the percentage
of that majority in order to calculate the error probability
for a single time difference. Table 3 shows estimators for
max{ fi;>:0, fi;<;o} and max{fi> 1, fi;<,1}. These statistics
were obtained using 10 different keys and a neighborhood
size of 50000 for [5,31] and 5000 for other intervals.

The empirical parameters that yield the intended error
probabilities are shown in Table 4. We present three differ-
ent sets of parameters for each accuracy of 95%, 97.5%, and
99%. We used these parameters to perform our attack on

interval | max{ fi;>.0, fi;<;0} | max{fi> 1, fi;<.1}
[5,31] 0.5315 0.5040
[32, 63] 0.6980 0.5097
[64, 95] 0.7123 0.5085
96, 127] 0.7079 0.5079
[128, 159] 0.7300 0.5080
[160, 191] 0.7349 0.5090
[192, 223] 0.6961 0.5077
[224, 245] 0.6431 0.5194

Table 3: The percentage of the majority of time
differences that are either positive or negative (em-
pirical values)

several different keys. Note that inserting the values of Ta-
ble 3 into formula (11) yields the expected values E(Steps)
for ¢ = 0 and ¢; = 1, resp. The probabilities for correct
guesses (95%, 97.5%, 99%) were gained empirically.

We employed the concept of ‘confirmed intervals’ (refer to
Section 3) to detect the errors occured during the attack. We
could recover such errors using the same concept and could
expose each bit of q in the interval [5,245] of any key we
attacked. Brumley and Boneh used 1.4 million queries in [2]
(interprocess attacks) and they indicated that their attack
required nearly 359000 queries in the more favourable case
when the optimizations were turned off by the flag (-g). We
could perform our attack with as low as 47674 queries for a
particular key. The performance of these timing attacks are
highly environment dependent, therefore it is not reliable to
compare the figures of two different attacks on two different
systems. Despite this fact, it is obvious by the arguments
explained above (improving the signal-to-noise ratio (cf. also
Table 2), reusing previous queries, sequential sampling) that
our attack is significantly better than the previous one.

We performed interprocess attacks. Clearly, in network
attacks the noise (caused by network delay times) may be
much larger, and hence an attack may become impractical
even if it is feasible for an interprocess attack under the
same environmental conditions. However, this aspect is not
specific for our improved variant but a general feature that
affects BB-attack as well.

8. CONCLUSION

We have presented a new timing attack against unpro-
tected SSL implementations of RSA-CRT. Our attack ex-
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Figure 4: The distribution of A; in terms of clock cycles for 0 < j < 5000, sorted in descending order, for the
sample bit gs1. The graph on the left shows this distribution when ¢s1 = 1. The distribution on the right is
observed when ¢s1 = 0.

Accuracy = 95% Accuracy = 97.5% Accuracy = 99%

parameters | E(Steps) for | parameters | E(Steps) for parameters E(Steps) for
interval | D | Npaz | =0 ¢ =1| D | Npmaz | =0] g =1 D | Nmaz | =0 qg =1
[5,31] | 63 1850 998 3667 | 68 1975 1077 4220 | 230 | 6720 3646 | 27480
[32,63] | 25 131 63 579 | 29 163 73 761 34 240 85 1012
[64,95] | 17 67 40 281 | 36 192 84 1154 46 450 108 1767
[96,127] | 18 70 43 315 | 26 130 62 640 44 250 105 1674
[128,159] | 16 50 34 250 | 31 271 67 889 41 299 89 1477
[160,191] | 21 107 44 421 | 25 127 53 585 29 169 61 771
[192,223] | 24 126 61 551 | 36 264 91 1179 49 333 124 2033
[224,245] | 30 230 104 636 | 31 259 108 667 43 365 150 1032

Table 4: Columns 2 and 3 show the parameters that can be used to yield the intended accuracy. The last
columns give the expected number of steps for N,,,. = 0o, calculated using Formula (11), to reach the target
difference D.



ploits the timing behavior of Montgomery multiplications
performed during table initialization phase of the sliding
window exponentiation algorithm. It is an improvement
of Brumley and Boneh attack, which exploits Montgomery
multiplication in the exponentiation phase of the same al-
gorithm. Changing the target phase of the attack yields an
increase on the number of multiplications that provide use-
ful information to expose one of the prime factors of RSA
moduli. Only this change alone gives an improvement by a
factor of more than 5 over BB-attack.

We have also presented other possible improvements, in-
cluding employing sequential analysis for the decision pur-
poses and removing the redundant queries that can also be
applied to BB-attack. If we use only the idea of remov-
ing redundant queries from BB-attack, this will double the
performance by itself. Our attack brings an overall improve-
ment by a factor of more than 10.
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