
Limits on Efficient Computation in the Physical World

by

Scott Joel Aaronson

Bachelor of Science (Cornell University) 2000

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

GRADUATE DIVISION

of the

UNIVERSITY of CALIFORNIA, BERKELEY

Committee in charge:

Professor Umesh Vazirani, Chair
Professor Luca Trevisan

Professor K. Birgitta Whaley

Fall 2004

The dissertation of Scott Joel Aaronson is approved:

Chair Date

Date

Date

University of California, Berkeley

Fall 2004

Limits on Efficient Computation in the Physical World

Copyright 2004
by

Scott Joel Aaronson

1

Abstract

Limits on Efficient Computation in the Physical World

by

Scott Joel Aaronson
Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Umesh Vazirani, Chair

More than a speculative technology, quantum computing seems to challenge our most basic
intuitions about how the physical world should behave. In this thesis I show that, while
some intuitions from classical computer science must be jettisoned in the light of modern
physics, many others emerge nearly unscathed; and I use powerful tools from computational
complexity theory to help determine which are which.

In the first part of the thesis, I attack the common belief that quantum computing
resembles classical exponential parallelism, by showing that quantum computers would face
serious limitations on a wider range of problems than was previously known. In partic-
ular, any quantum algorithm that solves the collision problem—that of deciding whether
a sequence of n integers is one-to-one or two-to-one—must query the sequence Ω

(
n1/5

)

times. This resolves a question that was open for years; previously no lower bound better
than constant was known. A corollary is that there is no “black-box” quantum algorithm
to break cryptographic hash functions or solve the Graph Isomorphism problem in poly-
nomial time. I also show that relative to an oracle, quantum computers could not solve
NP-complete problems in polynomial time, even with the help of nonuniform “quantum
advice states”; and that any quantum algorithm needs Ω

(
2n/4/n

)
queries to find a local

minimum of a black-box function on the n-dimensional hypercube. Surprisingly, the latter
result also leads to new classical lower bounds for the local search problem. Finally, I give
new lower bounds on quantum one-way communication complexity, and on the quantum
query complexity of total Boolean functions and recursive Fourier sampling.

The second part of the thesis studies the relationship of the quantum computing
model to physical reality. I first examine the arguments of Leonid Levin, Stephen Wol-
fram, and others who believe quantum computing to be fundamentally impossible. I find
their arguments unconvincing without a “Sure/Shor separator”—a criterion that separates
the already-verified quantum states from those that appear in Shor’s factoring algorithm.
I argue that such a separator should be based on a complexity classification of quantum
states, and go on to create such a classification. Next I ask what happens to the quantum
computing model if we take into account that the speed of light is finite—and in particu-
lar, whether Grover’s algorithm still yields a quadratic speedup for searching a database.
Refuting a claim by Benioff, I show that the surprising answer is yes. Finally, I analyze
hypothetical models of computation that go even beyond quantum computing. I show that

2

many such models would be as powerful as the complexity class PP, and use this fact to
give a simple, quantum computing based proof that PP is closed under intersection. On
the other hand, I also present one model—wherein we could sample the entire history of
a hidden variable—that appears to be more powerful than standard quantum computing,
but only slightly so.

Professor Umesh Vazirani
Dissertation Committee Chair

iii

Contents

List of Figures vii

List of Tables viii

1 “Aren’t You Worried That Quantum Computing Won’t Pan Out?” 1

2 Overview 6
2.1 Limitations of Quantum Computers . 7

2.1.1 The Collision Problem . 8
2.1.2 Local Search . 9
2.1.3 Quantum Certificate Complexity . 10
2.1.4 The Need to Uncompute . 11
2.1.5 Limitations of Quantum Advice . 11

2.2 Models and Reality . 13
2.2.1 Skepticism of Quantum Computing 13
2.2.2 Complexity Theory of Quantum States 13
2.2.3 Quantum Search of Spatial Regions 14
2.2.4 Quantum Computing and Postselection 15
2.2.5 The Power of History . 16

3 Complexity Theory Cheat Sheet 18
3.1 The Complexity Zoo Junior . 19
3.2 Notation . 20
3.3 Oracles . 21

4 Quantum Computing Cheat Sheet 23
4.1 Quantum Computers: N Qubits . 24
4.2 Further Concepts . 27

I Limitations of Quantum Computers 29

5 Introduction 30
5.1 The Quantum Black-Box Model . 31
5.2 Oracle Separations . 32

iv

6 The Collision Problem 34
6.1 Motivation . 36

6.1.1 Oracle Hardness Results . 36
6.1.2 Information Erasure . 36

6.2 Preliminaries . 37
6.3 Reduction to Bivariate Polynomial . 38
6.4 Lower Bound . 41
6.5 Set Comparison . 43
6.6 Open Problems . 46

7 Local Search 47
7.1 Motivation . 49
7.2 Preliminaries . 51
7.3 Relational Adversary Method . 52
7.4 Snakes . 57
7.5 Specific Graphs . 60

7.5.1 Boolean Hypercube . 60
7.5.2 Constant-Dimensional Grid Graph 64

8 Quantum Certificate Complexity 67
8.1 Summary of Results . 68
8.2 Related Work . 70
8.3 Characterization of Quantum Certificate Complexity 70
8.4 Quantum Lower Bound for Total Functions 72
8.5 Asymptotic Gaps . 74

8.5.1 Local Separations . 76
8.5.2 Symmetric Partial Functions . 77

8.6 Open Problems . 78

9 The Need to Uncompute 79
9.1 Preliminaries . 81
9.2 Quantum Lower Bound . 82
9.3 Open Problems . 87

10 Limitations of Quantum Advice 88
10.1 Preliminaries . 91

10.1.1 Quantum Advice . 92
10.1.2 The Almost As Good As New Lemma 93

10.2 Simulating Quantum Messages . 93
10.2.1 Simulating Quantum Advice . 96

10.3 A Direct Product Theorem for Quantum Search 99
10.4 The Trace Distance Method . 103

10.4.1 Applications . 106
10.5 Open Problems . 110

v

11 Summary of Part I 112

II Models and Reality 114

12 Skepticism of Quantum Computing 116
12.1 Bell Inequalities and Long-Range Threads 119

13 Complexity Theory of Quantum States 126
13.1 Sure/Shor Separators . 127
13.2 Classifying Quantum States . 130
13.3 Basic Results . 135
13.4 Relations Among Quantum State Classes 138
13.5 Lower Bounds . 141

13.5.1 Subgroup States . 142
13.5.2 Shor States . 146
13.5.3 Tree Size and Persistence of Entanglement 148

13.6 Manifestly Orthogonal Tree Size . 149
13.7 Computing With Tree States . 154
13.8 The Experimental Situation . 157
13.9 Conclusion and Open Problems . 160

14 Quantum Search of Spatial Regions 162
14.1 Summary of Results . 162
14.2 Related Work . 164
14.3 The Physics of Databases . 165
14.4 The Model . 167

14.4.1 Locality Criteria . 168
14.5 General Bounds . 169
14.6 Search on Grids . 173

14.6.1 Amplitude Amplification . 174
14.6.2 Dimension At Least 3 . 175
14.6.3 Dimension 2 . 180
14.6.4 Multiple Marked Items . 181
14.6.5 Unknown Number of Marked Items 184

14.7 Search on Irregular Graphs . 185
14.7.1 Bits Scattered on a Graph . 189

14.8 Application to Disjointness . 190
14.9 Open Problems . 191

15 Quantum Computing and Postselection 192
15.1 The Class PostBQP . 193
15.2 Fantasy Quantum Mechanics . 196
15.3 Open Problems . 198

vi

16 The Power of History 199
16.1 The Complexity of Sampling Histories . 200
16.2 Outline of Chapter . 201
16.3 Hidden-Variable Theories . 203

16.3.1 Comparison with Previous Work . 205
16.3.2 Objections . 206

16.4 Axioms for Hidden-Variable Theories . 206
16.4.1 Comparing Theories . 207

16.5 Impossibility Results . 208
16.6 Specific Theories . 211

16.6.1 Flow Theory . 211
16.6.2 Schrödinger Theory . 215

16.7 The Computational Model . 218
16.7.1 Basic Results . 219

16.8 The Juggle Subroutine . 220
16.9 Simulating SZK . 221
16.10Search in N1/3 Queries . 224
16.11Conclusions and Open Problems . 226

17 Summary of Part II 228

Bibliography 229

vii

List of Figures

1.1 Conway’s Game of Life . 2

3.1 Known relations among 14 complexity classes 21

4.1 Quantum states of one qubit . 25

7.1 A snake of vertices flicks its tail . 58
7.2 The coordinate loop in 3 dimensions . 64

13.1 Sure/Shor separators . 128
13.2 Tree representing a quantum state . 129
13.3 Known relations among quantum state classes 131

14.1 Quantum robot searching a 2D grid . 163
14.2 The ‘starfish’ graph . 171
14.3 Disjointness in O (

√
n) communication . 191

15.1 Simulating PP using postselection . 195

16.1 Flow network corresponding to a unitary matrix 211

viii

List of Tables

8.1 Query complexity and certificate complexity measures 68

10.1 Expressions for px,ijkl . 109

12.1 Four objections to quantum computing . 116

14.1 Summary of bounds for spatial search . 163
14.2 Divide-and-conquer versus quantum walks 165

16.1 Four hidden-variable theories and the axioms they satisfy 208

ix

Acknowledgements

My adviser, Umesh Vazirani, once said that he admires the quantum adiabatic algorithm
because, like a great squash player, it achieves its goal while moving as little as it can get
away with. Throughout my four years at Berkeley, I saw Umesh inculcate by example his
“adiabatic” philosophy of life: a philosophy about which papers are worth reading, which
deadlines worth meeting, and which research problems worth a fight to the finish. Above all,
the concept of “beyond hope” does not exist in this philosophy, except possibly in regard
to computational problems. My debt to Umesh for his expert scientific guidance, wise
professional counsel, and generous support is obvious and beyond my ability to embellish.
My hope is that I graduate from Berkeley a more adiabatic person than when I came.

Admittedly, if the push to finish this thesis could be called adiabatic, then the
spectral gap was exponentially small. As I struggled to make the deadline, I relied on the
help of David Molnar, who generously agreed to file the thesis in Berkeley while I remained in
Princeton; and my committee—consisting of Umesh, Luca Trevisan, and Birgitta Whaley—
which met procrastination with flexibility.

Silly as it sounds, a principal reason I came to Berkeley was to breathe the same air
that led Andris Ambainis to write his epochal paper “Quantum lower bounds by quantum
arguments.” Whether or not the air in 587 Soda did me any good, Part I of the thesis is
essentially a 150-page tribute to Andris—a colleague whose unique combination of genius
and humility fills everyone who knows him with awe.

The direction of my research owes a great deal as well to Ronald de Wolf, who
periodically emerges from his hermit cave to challenge non-rigorous statements, eat dubbel
zout, or lament American ignorance. While I can see eye-to-eye with Ronald about (say)
the D (f) versus bs (f)2 problem, I still feel that Andrei Tarkovsky’s Solaris would benefit
immensely from a car chase.

For better or worse, my conception of what a thesis should be was influenced by
Dave Bacon, quantum computing’s elder clown, who entitled the first chapter of his own
451-page behemoth “Philosonomicon.” I’m also indebted to Chris Fuchs and his samizdat,
for the idea that a document about quantum mechanics more than 400 pages long can be
worth reading most of the way through.

I began working on the best-known result in this thesis, the quantum lower bound
for the collision problem, during an unforgettable summer at Caltech. Leonard Schul-
man and Ashwin Nayak listened patiently to one farfetched idea after another, while John
Preskill’s weekly group meetings helped to ensure that the mysteries of quantum mechanics,
which inspired me to tackle the problem in the first place, were never far from my mind.
Besides Leonard, Ashwin, and John, I’m grateful to Ann Harvey for putting up with the
growing mess in my office. For the record, I never once slept in the office; the bedsheet
was strictly for doing math on the floor.

I created the infamous Complexity Zoo web site during a summer at CWI in
Amsterdam, a visit enlivened by the presence of Harry Buhrman, Hein Röhrig, Volker
Nannen, Hartmut Klauck, and Troy Lee. That summer I also had memorable conversations
with David Deutsch and Stephen Wolfram. Chapters 7, 13, and 16 partly came into being
during a semester at the Hebrew University in Jerusalem, a city where “Aaron’s sons” were
already obsessing about cubits three thousand years ago. I thank Avi Wigderson, Dorit

x

Aharonov, Michael Ben-Or, Amnon Ta-Shma, and Michael Mallin for making that semester
a fruitful and enjoyable one. I also thank Avi for pointing me to the then-unpublished
results of Ran Raz on which Chapter 13 is based, and Ran for sharing those results.

A significant chunk of the thesis was written or revised over two summers at the
Perimeter Institute for Theoretical Physics in Waterloo. I thank Daniel Gottesman, Lee
Smolin, and Ray Laflamme for welcoming a physics doofus to their institute, someone who
thinks the string theory versus loop quantum gravity debate should be resolved by looping
over all possible strings. From Marie Ericsson, Rob Spekkens, and Anthony Valentini
I learned that theoretical physicists have a better social life than theoretical computer
scientists, while from Dan Christensen I learned that complexity and quantum gravity had
better wait before going steady.

Several ideas were hatched or incubated during the yearly QIP conferences; work-
shops in Toronto, Banff, and Leiden; and visits to MIT, Los Alamos, and IBM Almaden.
I’m grateful to Howard Barnum, Andrew Childs, Elham Kashefi, Barbara Terhal, John
Watrous, and many others for productive exchanges on those occasions.

Back in Berkeley, people who enriched my grad-school experience include Neha
Dave, Julia Kempe, Simone Severini, Lawrence Ip, Allison Coates, David Molnar, Kris Hil-
drum, Miriam Walker, and Shelly Rosenfeld. Alex Fabrikant and Boriska Toth are forgiven
for the cruel caricature that they attached to my dissertation talk announcement, provided
they don’t try anything like that ever again. The results on one-way communication in
Chapter 10 benefited greatly from conversations with Oded Regev and Iordanis Kerenidis,
while Andrej Bogdanov kindly supplied the explicit erasure code for Chapter 13. I wrote
Chapter 7 to answer a question of Christos Papadimitriou.

I did take some actual . . . courses at Berkeley, and I’m grateful to John Kubiatow-
icz, Stuart Russell, Guido Bacciagaluppi, Richard Karp, and Satish Rao for not failing me
in theirs. Ironically, the course that most directly influenced this thesis was Tom Farber’s
magnificent short fiction workshop. A story I wrote for that workshop dealt with the prob-
lem of transtemporal identity, which got me thinking about hidden-variable interpretations
of quantum mechanics, which led eventually to the collision lower bound. No one seems to
believe me, but it’s true.

The students who took my “Physics, Philosophy, Pizza” course remain one of my
greatest inspirations. Though they were mainly undergraduates with liberal arts back-
grounds, they took nothing I said about special relativity or Gödel’s Theorem on faith. If
I have any confidence today in my teaching abilities; if I think it possible for students to
show up to class, and to participate eagerly, without the usual carrot-and-stick of grades
and exams; or if I find certain questions, such as how a superposition over exponentially
many ‘could-have-beens’ can collapse to an ‘is,’ too vertiginous to be pondered only by
nerds like me, then those pizza-eating students are the reason.

Now comes the part devoted to the mist-enshrouded pre-Berkeley years. My
initiation into the wild world of quantum computing research took place over three summer
internships at Bell Labs: the first with Eric Grosse, the second with Lov Grover, and the
third with Rob Pike. I thank all three of them for encouraging me to pursue my interests,
even if the payoff was remote and, in Eric’s case, not even related to why I was hired.
Needless to say, I take no responsibility for the subsequent crash of Lucent’s stock.

xi

As an undergraduate at Cornell, I was younger than my classmates, invisible to
many of the researchers I admired, and profoundly unsure of whether I belonged there or
had any future in science. What made the difference was the unwavering support of one
professor, Bart Selman. Busy as he was, Bart listened to my harebrained ideas about
genetic algorithms for SAT or quantum chess-playing, invited me to give talks, guided me
to the right graduate programs, and generally treated me like a future colleague. As
a result, his conviction that I could succeed at research gradually became my conviction
too. Outside of research, Christine Chung, Fion Luo, and my Telluride roommate Jason
Stockmann helped to warm the Ithaca winters, Lydia Fakundiny taught me what an essay
is, and Jerry Abrams provided a much-needed boost.

Turning the clock back further, my earliest research foray was a paper on hypertext
organization, written when I was fifteen and spending the year at Clarkson University’s
unique Clarkson School program. Christopher Lynch generously agreed to advise the
project, and offered invaluable help as I clumsily learned how to write a C program, prove
a problem NP-hard, and conduct a user experiment (one skill I’ve never needed again!). I
was elated to be trading ideas with a wise and experienced researcher, only months after I’d
escaped from the prison-house of high school. Later, the same week the rejection letters
were arriving from colleges, I learned that my first paper had been accepted to SIGIR,
the main information retrieval conference. I was filled with boundless gratitude toward
the entire scientific community—for struggling, against the warp of human nature, to judge
ideas rather than the personal backgrounds of their authors. Eight years later, my gratitude
and amazement are undiminished.

Above all, I thank Alex Halderman for a friendship that’s spanned twelve years
and thousands of miles, remaining as strong today as it was amidst the Intellectualis minimi
of Newtown Junior High School; my brother David for believing in me, and for making me
prouder than he realizes by doing all the things I didn’t; and my parents for twenty-three
years of harping, kvelling, chicken noodle soup, and never doubting for a Planck time that
I’d live up to my potential—even when I couldn’t, and can’t, share their certainty.

1

Chapter 1

“Aren’t You Worried That
Quantum Computing Won’t Pan
Out?”

For a century now, physicists have been telling us strange things: about twins
who age at different rates, particles that look different when rotated 360◦, a force that is
transmitted by gravitons but is also the curvature of spacetime, a negative-energy electron
sea that pervades empty space, and strangest of all, “probability waves” that produce fringes
on a screen when you don’t look and don’t when you do. Yet ever since I learned to program,
I suspected that such things were all “implementation details” in the source code of Nature,
their study only marginally relevant to forming an accurate picture of reality. Physicists,
I thought, would eventually realize that the state of the universe can be represented by
a finite string of bits. These bits would be the “pixels” of space, creating the illusion of
continuity on a large scale much as a computer screen does. As time passed, the bits
would be updated according to simple rules. The specific form of these rules was of no
great consequence—since according to the Extended Church-Turing Thesis, any sufficiently
complicated rules could simulate any other rules with reasonable efficiency.1 So apart from
practical considerations, why worry about Maxwell’s equations, or Lorentz invariance, or
even mass and energy, if the most fundamental aspects of our universe already occur in
Conway’s Game of Life (see Figure 1.1)?

Then I heard about Shor’s algorithm [221] for factoring integers in polynomial time
on a quantum computer. Then as now, many people saw quantum computing as at best a
speculative diversion from the “real work” of computer science. Why devote one’s research
career to a type of computer that might never see application within one’s lifetime, that
faces daunting practical obstacles such as decoherence, and whose most publicized success
to date has been the confirmation that, with high probability, 15 = 3× 5 [234]? Ironically,
I might have agreed with this view, had I not taken the Extended Church-Turing Thesis
so seriously as a claim about reality. For Shor’s algorithm forces us to accept that, under

1Here “extended” refers to the efficiency requirement, which was not mentioned in the original Church-
Turing Thesis. Also, I am simply using the standard terminology, sidestepping the issue of whether Church
and Turing themselves intended to make a claim about physical reality.

2

Figure 1.1: In Conway’s Game of Life, each cell of a 2D square grid becomes ‘dead’ or
‘alive’ based on how many of its eight neighbors were alive in the previous time step. A
simple rule applied iteratively leads to complex, unpredictable behavior. In what ways is
our physical world similar to Conway’s, and in what ways is it different?

widely-believed assumptions, that Thesis conflicts with the experimentally-tested rules of
quantum mechanics as we currently understand them. Either the Extended Church-Turing
Thesis is false, or quantum mechanics must be modified, or the factoring problem is solvable
in classical polynomial time. All three possibilities seem like wild, crackpot speculations—
but at least one of them is true!

The above conundrum is what underlies my interest in quantum computing, far
more than any possible application. Part of the reason is that I am neither greedy, nefarious,
nor number-theoretically curious enough ever to have hungered for the factors of a 600-digit
integer. I do think that quantum computers would have benign uses, the most important
one being the simulation of quantum physics and chemistry.2 Also, as transistors approach
the atomic scale, ideas from quantum computing are likely to become pertinent even for
classical computer design. But none of this quickens my pulse.

For me, quantum computing matters because it combines two of the great myster-
ies bequeathed to us by the twentieth century: the nature of quantum mechanics, and the
ultimate limits of computation. It would be astonishing if such an elemental connection
between these mysteries shed no new light on either of them. And indeed, there is already
a growing list of examples [9, 22, 153]—we will see several of them in this thesis—in which
ideas from quantum computing have led to new results about classical computation. This
should not be surprising: after all, many celebrated results in computer science involve
only deterministic computation, yet it is hard to imagine how anyone could have proved
them had computer scientists not long ago “taken randomness aboard.”3 Likewise, taking
quantum mechanics aboard could lead to a new, more general perspective from which to
revisit the central questions of computational complexity theory.

The other direction, though, is the one that intrigues me even more. In my view,

2Followed closely by Recursive Fourier Sampling, parity in n/2 queries, and efficiently deciding whether
a graph is a scorpion.

3A few examples are primality testing in P [17], undirected connectivity in L [204], and inapproximability
of 3-SAT unless P = NP [226].

3

quantum computing has brought us slightly closer to the elusive Beast that devours Bohmi-
ans for breakfast, Copenhagenists for lunch, and a linear combination of many-worlders
and consistent historians for dinner—the Beast that tramples popularizers, brushes off
arXiv preprints like fleas, and snorts at the word “decoherence”—the Beast so fearsome
that physicists since Bohr and Heisenberg have tried to argue it away, as if semantics could
banish its unitary jaws and complex-valued tusks. But no, the Beast is there whenever you
aren’t paying attention, following all possible paths in superposition. Look, and suddenly
the Beast is gone. But what does it even mean to look? If you’re governed by the same
physical laws as everything else, then why don’t you evolve in superposition too, perhaps
until someone else looks at you and thereby ‘collapses’ you? But then who collapses whom
first? Or if you never collapse, then what determines what you-you, rather than the su-
perposition of you’s, experience? Such is the riddle of the Beast,4 and it has filled many
with terror and awe.

The contribution of quantum computing, I think, has been to show that the real
nature of the Beast lies in its exponentiality. It is not just two, three, or a thousand states
held in ghostly superposition that quantum mechanics is talking about, but an astronomical
multitude, and these states could in principle reveal their presence to us by factoring a five-
thousand-digit number. Much more than even Schrödinger’s cat or the Bell inequalities,
this particular discovery ups the ante—forcing us either to swallow the full quantum brew,
or to stop saying that we believe in it. Of course, this is part of the reason why Richard
Feynman [110] and David Deutsch [92] introduced quantum computing in the first place,
and why Deutsch, in his defense of the many-worlds interpretation, issues a famous challenge
to skeptics [94, p. 217]: if parallel universes are not physically real, then explain how Shor’s
algorithm works.

Unlike Deutsch, here I will not use quantum computing to defend the many-worlds
interpretation, or any of its competitors for that matter. Roughly speaking, I agree with
every interpretation of quantum mechanics to the extent that it acknowledges the Beast’s
existence, and disagree to the extent that it claims to have caged the Beast. I would adopt
the same attitude in computer science, if instead of freely admitting (for example) that
P versus NP is an open problem, researchers had split into “equalist,” “unequalist,” and
“undecidabilist” schools of interpretation, with others arguing that the whole problem is
meaningless and should therefore be abandoned.

Instead, in this thesis I will show how adopting a computer science perspective
can lead us to ask better questions—nontrivial but answerable questions, which put old
mysteries in a new light even when they fall short of solving them. Let me give an
example. One of the most contentious questions about quantum mechanics is whether the
individual components of a wavefunction should be thought of as “really there” or as “mere
potentialities.” When we don our computer scientist goggles, this question morphs into a
different one: what resources are needed to make a particular component of the wavefunction
manifest? Arguably the two questions are related, since something “real” ought to take less
work to manifest than something “potential.” For example, this thesis gradually became

4Philosophers call the riddle of the Beast the “measurement problem,” which sounds less like something
that should cause insomnia and delirious raving in all who have understood it. Basically, the problem is to
reconcile a picture of the world in which “everything happens simultaneously” with the fact that you (or at
least I!) have a sequence of definite experiences.

4

more real as less of it remained to be written.
Concretely, suppose our wavefunction has 2n components, all with equal ampli-

tude. Suppose also that we have a procedure to recognize a particular component x (i.e.,
a function f such that f (x) = 1 and f (y) = 0 for all y 6= x). Then how often must we
apply this procedure before we make x manifest; that is, observable with probability close
to 1? Bennett, Bernstein, Brassard, and Vazirani [51] showed that ∼ 2n/2 applications are
necessary, even if f can be applied to all 2n components in superposition. Later Grover
[141] showed that ∼ 2n/2 applications are also sufficient. So if we imagine a spectrum
with “really there” (1 application) on one end, and “mere potentiality” (∼ 2n applications)
on the other, then we have landed somewhere in between: closer to the “real” end on an
absolute scale, but closer to the “potential” end on the polynomial versus exponential scale
that is more natural for computer science.

Of course, we should be wary of drawing grand conclusions from a single data
point. So in this thesis, I will imagine a hypothetical resident of Conway’s Game of Life,
who arrives in our physical universe on a computational complexity safari—wanting to
know exactly which intuitions to keep and which to discard regarding the limits of efficient
computation. Many popular science writers would tell our visitor to throw all classical
intuitions out the window, while quantum computing skeptics would urge retaining them
all. These positions are actually two sides of the same coin, since the belief that a quantum
computer would necessitate the first is what generally leads to the second. I will show,
however, that neither position is justified. Based on what we know today, there really is a
Beast, but it usually conceals its exponential underbelly.

I’ll provide only one example from the thesis here; the rest are summarized in
Chapter 2. Suppose we are given a procedure that computes a two-to-one function f ,
and want to find distinct inputs x and y such that f (x) = f (y). In this case, by simply
preparing a uniform superposition over all inputs to f , applying the procedure, and then
measuring its result, we can produce a state of the form (|x〉 + |y〉) /

√
2, for some x and y

such that f (x) = f (y). The only problem is that if we measure this state, then we see
either x or y, but not both. The task, in other words, is no longer to find a needle in
a haystack, but just to find two needles in an otherwise empty barn! Nevertheless, the
collision lower bound in Chapter 6 will show that, if there are 2n inputs to f , then any
quantum algorithm for this problem must apply the procedure for f at least ∼ 2n/5 times.
Omitting technical details, this lower bound can be interpreted in at least seven ways:

(1) Quantum computers need exponential time even to compute certain global properties
of a function, not just local properties such as whether there is an x with f (x) = 1.

(2) Simon’s algorithm [222], and the period-finding core of Shor’s algorithm [221], cannot
be generalized to functions with no periodicity or other special structure.

(3) Any “brute-force” quantum algorithm needs exponential time, not just for NP-complete
problems, but for many structured problems such as Graph Isomorphism, approxi-
mating the shortest vector in a lattice, and finding collisions in cryptographic hash
functions.

5

(4) It is unlikely that all problems having “statistical zero-knowledge proofs” can be
efficiently solved on a quantum computer.

(5) Within the setting of a collision algorithm, the components |x〉 and |y〉 in the state
(|x〉 + |y〉) /

√
2 should be thought of as more “potentially” than “actually” there, it

being impossible to extract information about both of them in a reasonable amount
of time.

(6) The ability to map |x〉 to |f (x)〉, “uncomputing” x in the process, can be exponentially
more powerful than the ability to map |x〉 to |x〉 |f (x)〉.

(7) In hidden-variable interpretations of quantum mechanics, the ability to sample the en-
tire history of a hidden variable would yield even more power than standard quantum
computing.

Interpretations (5), (6), and (7) are examples of what I mean by putting old
mysteries in a new light. We are not brought face-to-face with the Beast, but at least we
have fresh footprints and droppings.

Well then. Am I worried that quantum computing won’t pan out? My usual
answer is that I’d be thrilled to know it will never pan out, since this would entail the
discovery of a lifetime, that quantum mechanics is false. But this is not what the questioner
has in mind. What if quantum mechanics holds up, but building a useful quantum computer
turns out to be so difficult and expensive that the world ends before anyone succeeds? The
questioner is usually a classical theoretical computer scientist, someone who is not known to
worry excessively that the world will end before log logn exceeds 10. Still, it would be nice
to see nontrivial quantum computers in my lifetime, and while I’m cautiously optimistic,
I’ll admit to being slightly worried that I won’t. But when faced with the evidence that
one was born into a universe profoundly unlike Conway’s—indeed, that one is living one’s
life on the back of a mysterious, exponential Beast comprising everything that ever could
have happened—what is one to do? “Move right along. . . nothing to see here. . . ”

6

Chapter 2

Overview

“Let a computer smear—with the right kind of quantum randomness—and
you create, in effect, a ‘parallel’ machine with an astronomical number of pro-
cessors . . . All you have to do is be sure that when you collapse the system,
you choose the version that happened to find the needle in the mathematical
haystack.”

—From Quarantine [105], a 1992 science-fiction novel by Greg Egan

Many of the deepest discoveries of science are limitations: for example, no su-
perluminal signalling, no perpetual-motion machines, and no complete axiomatization for
arithmetic. This thesis is broadly concerned with limitations on what can efficiently be
computed in the physical world. The word “quantum” is absent from the title, in order
to emphasize that the focus on quantum computing is not an arbitrary choice, but rather
an inevitable result of taking our current physical theories seriously. The technical con-
tributions of the thesis are divided into two parts, according to whether they accept the
quantum computing model as given and study its fundamental limitations; or question,
defend, or go beyond that model in some way. Before launching into a detailed overview
of the contributions, let me make some preliminary remarks.

Since the early twentieth century, two communities—physicists1 and computer
scientists—have been asking some of the deepest questions ever asked in almost total in-
tellectual isolation from each other. The great joy of quantum computing research is that
it brings these communities together. The trouble was initially that, although each com-
munity would nod politely during the other’s talks, eventually it would come out that the
physicists thought NP stood for “Non Polynomial,” and the computer scientists had no
idea what a Hamiltonian was. Thankfully, the situation has improved a lot—but my hope
is that it improves further still, to the point where computer scientists have internalized
the problems faced by physics and vice versa. For this reason, I have worked hard to
make the thesis as accessible as possible to both communities. Thus, Chapter 3 provides
a “complexity theory cheat sheet” that defines NP, P/poly, AM, and other computational
complexity classes that appear in the thesis; and that explains oracles and other important

1As in Saul Steinberg’s famous New Yorker world map, in which 9th Avenue and the Hudson River take
up more space than Japan and China, from my perspective chemists, engineers, and even mathematicians
who know what a gauge field is are all “physicists.”

7

concepts. Then Chapter 4 presents the quantum model of computation with no reference
to the underlying physics, before moving on to fancier notions such as density matrices,
trace distance, and separability. Neither chapter is a rigorous introduction to its subject;
for that there are fine textbooks—such as Papadimitriou’s Computational Complexity [190]
and Nielsen and Chuang’s Quantum Computation and Quantum Information [184]—as well
as course lecture notes available on the web. Depending on your background, you might
want to skip to Chapters 3 or 4 before continuing any further, or you might want to skip
past these chapters entirely.

Even the most irredeemably classical reader should take heart: of the 103 proofs
in the thesis, 66 do not contain a single ket symbol.2 Many of the proofs can be understood
by simply accepting certain facts about quantum computing on faith, such as Ambainis’s3

adversary theorem [27] or Beals et al.’s polynomial lemma [45]. On the other hand, one does
run the risk that after one understands the proofs, ket symbols will seem less frightening
than before.

The results in the thesis have all previously appeared in published papers or
preprints [1, 2, 4, 5, 7, 8, 9, 10, 11, 13], with the exception of the quantum computing
based proof that PP is closed under intersection in Chapter 15. I thank Andris Ambainis
for allowing me to include our joint results from [13] on quantum search of spatial regions.
Results of mine that do not appear in the thesis include those on Boolean function query
properties [3], stabilizer circuits [14] (joint work with Daniel Gottesman), and agreement
complexity [6].

In writing the thesis, one of the toughest choices I faced was whether to refer to
myself as ‘I’ or ‘we.’ Sometimes a personal voice seemed more appropriate, and sometimes
the Voice of Scientific Truth, but I wanted to be consistent. Readers can decide whether I
chose humbly or arrogantly.

2.1 Limitations of Quantum Computers

Part I studies the fundamental limitations of quantum computers within the usual model
for them. With the exception of Chapter 10 on quantum advice, the contributions of Part
I all deal with black-box or query complexity, meaning that one counts only the number of
queries to an “oracle,” not the number of computational steps. Of course, the queries can
be made in quantum superposition. In Chapter 5, I explain the quantum black-box model,
then offer a detailed justification for its relevance to understanding the limits of quantum
computers. Some computer scientists say that black-box results should not be taken too
seriously; but I argue that, within quantum computing, they are not taken seriously enough.

What follows is a (relatively) nontechnical overview of Chapters 6 to 10, which
contain the results of Part I. Afterwards, Chapter 11 summarizes the conceptual lessons
that I believe can be drawn from those results.

2To be honest, a few of those do contain density matrices—or the theorem contains ket symbols, but not
the proof.

3Style manuals disagree about whether Ambainis’ or Ambainis’s is preferable, but one referee asked me to
follow the latter rule with the following deadpan remark: “Exceptions to the rule generally involve religiously
significant individuals, e.g., ‘Jesus’ lower-bound method.’ ”

8

2.1.1 The Collision Problem

Chapter 6 presents my lower bound on the quantum query complexity of the collision
problem. Given a function X from {1, . . . , n} to {1, . . . , n} (where n is even), the collision
problem is to decide whether X is one-to-one or two-to-one, promised that one of these is
the case. Here the only way to learn about X is to call a procedure that computes X (i)
given i. Clearly, any deterministic classical algorithm needs to call the procedure n/2 + 1
times to solve the problem. On the other hand, a randomized algorithm can exploit the
“birthday paradox”: only 23 people have to enter a room before there’s a 50% chance that
two of them share the same birthday, since what matters is the number of pairs of people.
Similarly, if X is two-to-one, and an algorithm queries X at

√
n uniform random locations,

then with constant probability it will find two locations i 6= j such that X (i) = X (j),
thereby establishing that X is two-to-one. This bound is easily seen to be tight, meaning
that the bounded-error randomized query complexity of the collision problem is Θ (

√
n).

What about the quantum complexity? In 1997, Brassard, Høyer, and Tapp [68]
gave a quantum algorithm that uses only O

(
n1/3

)
queries. The algorithm is simple to

describe: in the first phase, query X classically at n1/3 randomly chosen locations. In the
second phase, choose n2/3 random locations, and run Grover’s algorithm on those locations,
considering each location i as “marked” if X (i) = X (j) for some j that was queried in the

first phase. Notice that both phases use order n1/3 =
√
n2/3 queries, and that the total

number of comparisons is n2/3n1/3 = n. So, like its randomized counterpart, the quantum
algorithm finds a collision with constant probability if X is two-to-one.

What I show in Chapter 6 is that any quantum algorithm for the collision problem
needs Ω

(
n1/5

)
queries. Previously, no lower bound better than the trivial Ω (1) was known.

I also show a lower bound of Ω
(
n1/7

)
for the following set comparison problem: given oracle

access to injective functions X : {1, . . . , n} → {1, . . . , 2n} and Y : {1, . . . , n} → {1, . . . , 2n},
decide whether

{X (1) , . . . ,X (n) , Y (1) , . . . , Y (n)}
has at least 1.1n elements or exactly n elements, promised that one of these is the case. The
set comparison problem is similar to the collision problem, except that it lacks permutation
symmetry, making it harder to prove a lower bound. My results for these problems have
been improved, simplified, and generalized by Shi [220], Kutin [163], Ambainis [27], and
Midrijanis [178].

The implications of these results were already discussed in Chapter 1: for ex-
ample, they demonstrate that a “brute-force” approach will never yield efficient quantum
algorithms for the Graph Isomorphism, Approximate Shortest Vector, or Nonabelian Hid-
den Subgroup problems; suggest that there could be cryptographic hash functions secure
against quantum attack; and imply that there exists an oracle relative to which SZK 6⊂ BQP,
where SZK is the class of problems having statistical zero-knowledge proof protocols, and
BQP is quantum polynomial time.

Both the original lower bounds and the subsequent improvements are based on
the polynomial method, which was introduced by Nisan and Szegedy [186], and first used to
prove quantum lower bounds by Beals, Buhrman, Cleve, Mosca, and de Wolf [45]. In that
method, given a quantum algorithm that makes T queries to an oracle X, we first represent

9

the algorithm’s acceptance probability by a multilinear polynomial p (X) of degree at most
2T . We then use results from a well-developed area of mathematics called approximation
theory to show a lower bound on the degree of p. This in turn implies a lower bound on T .

In order to apply the polynomial method to the collision problem, first I extend the
collision problem’s domain from one-to-one and two-to-one functions to g-to-one functions
for larger values of g. Next I replace the multivariate polynomial p (X) by a related
univariate polynomial q (g) whose degree is easier to lower-bound. The latter step is the
real “magic” of the proof; I still have no good intuitive explanation for why it works.

The polynomial method is one of two principal methods that we have for proving
lower bounds on quantum query complexity. The other is Ambainis’s quantum adversary
method [27], which can be seen as a far-reaching generalization of the “hybrid argument”
that Bennett, Bernstein, Brassard, and Vazirani [51] introduced in 1994 to show that a
quantum computer needs Ω (

√
n) queries to search an unordered database of size n for a

marked item. In the adversary method, we consider a bipartite quantum state, in which
one part consists of a superposition over possible inputs, and the other part consists of
a quantum algorithm’s work space. We then upper-bound how much the entanglement
between the two parts can increase as the result of a single query. This in turn implies a
lower bound on the number of queries, since the two parts must be highly entangled by the
end. The adversary method is more intrinsically “quantum” than the polynomial method;
and as Ambainis [27] showed, it is also applicable to a wider range of problems, including
those (such as game-tree search) that lack permutation symmetry. Ambainis even gave
problems for which the adversary method provably yields a better lower bound than the
polynomial method [28]. It is ironic, then, that Ambainis’s original goal in developing the
adversary method was to prove a lower bound for the collision problem; and in this one
instance, the polynomial method succeeded while the adversary method failed.

2.1.2 Local Search

In Chapters 7, 8, and 9, however, the adversary method gets its revenge. Chapter 7 deals
with the local search problem: given an undirected graph G = (V,E) and a black-box
function f : V → Z, find a local minimum of f—that is, a vertex v such that f (v) ≤ f (w)
for all neighbors w of v. The graphG is known in advance, so the complexity measure is just
the number of queries to f . This problem is central for understanding the performance of
the quantum adiabatic algorithm, as well as classical algorithms such as simulated annealing.
If G is the Boolean hypercube {0, 1}n, then previously Llewellyn, Tovey, and Trick [171] had
shown that any deterministic algorithm needs Ω (2n/

√
n) queries to find a local minimum;

and Aldous [24] had shown that any randomized algorithm needs 2n/2−o(n) queries. What
I show is that any quantum algorithm needs Ω

(
2n/4/n

)
queries. This is the first nontrivial

quantum lower bound for any local search problem; and it implies that the complexity class
PLS (or “Polynomial Local Search”), defined by Johnson, Papadimitriou, and Yannakakis
[151], is not in quantum polynomial time relative to an oracle.

What will be more surprising to classical computer scientists is that my proof
technique, based on the quantum adversary method, also yields new classical lower bounds
for local search. In particular, I prove a classical analogue of Ambainis’s quantum adversary
theorem, and show that it implies randomized lower bounds up to quadratically better

10

than the corresponding quantum lower bounds. I then apply my theorem to show that
any randomized algorithm needs Ω

(
2n/2/n2

)
queries to find a local minimum of a function

f : {0, 1}n → Z. Not only does this improve on Aldous’s 2n/2−o(n) lower bound, bringing us
closer to the known upper bound of O

(
2n/2

√
n
)
; but it does so in a simpler way that does

not depend on random walk analysis. In addition, I show the first randomized or quantum
lower bounds for finding a local minimum on a cube of constant dimension 3 or greater.
Along with recent work by Bar-Yossef, Jayram, and Kerenidis [43] and by Aharonov and
Regev [22], these results provide one of the earliest examples of how quantum ideas can help
to resolve classical open problems. As I will discuss in Chapter 7, my results on local search
have subsequently been improved by Santha and Szegedy [213] and by Ambainis [25].

2.1.3 Quantum Certificate Complexity

Chapters 8 and 9 continue to explore the power of Ambainis’s lower bound method and the
limitations of quantum computers. Chapter 8 is inspired by the following theorem of Beals

et al. [45]: if f : {0, 1}n → {0, 1} is a total Boolean function, then D (f) = O
(
Q2 (f)6

)
,

where D (f) is the deterministic classical query complexity of f , and Q2 (f) is the bounded-
error quantum query complexity.4 This theorem is noteworthy for two reasons: first,
because it gives a case where quantum computers provide only a polynomial speedup, in
contrast to the exponential speedup of Shor’s algorithm; and second, because the exponent
of 6 seems so arbitrary. The largest separation we know of is quadratic, and is achieved
by the OR function on n bits: D (OR) = n, but Q2 (OR) = O (

√
n) because of Grover’s

search algorithm. It is a longstanding open question whether this separation is optimal.
In Chapter 8, I make the best progress so far toward showing that it is. In particular I
prove that

R2 (f) = O
(
Q2 (f)2 Q0 (f) log n

)

for all total Boolean functions f : {0, 1}n → {0, 1}. Here R2 (f) is the bounded-error
randomized query complexity of f , and Q0 (f) is the zero-error quantum query complexity.
To prove this result, I introduce two new query complexity measures of independent interest:
the randomized certificate complexity RC (f) and the quantum certificate complexity QC (f).
Using Ambainis’s adversary method together with the minimax theorem, I relate these

measures exactly to one another, showing that RC (f) = Θ
(
QC (f)2

)
. Then, using the

polynomial method, I show that R2 (f) = O (RC (f)Q0 (f) log n) for all total Boolean f ,
which implies the above result since QC (f) ≤ Q2 (f). Chapter 8 contains several other
results of interest to researchers studying query complexity, such as a superquadratic gap
between QC (f) and the “ordinary” certificate complexity C (f). But the main message
is the unexpected versatility of our quantum lower bound methods: we see the first use
of the adversary method to prove something about all total functions, not just a specific
function; the first use of both the adversary and the polynomial methods at different points
in a proof; and the first combination of the adversary method with a linear programming
duality argument.

4The subscript ‘2’ means that the error is two-sided.

11

2.1.4 The Need to Uncompute

Next, Chapter 9 illustrates how “the need to uncompute” imposes a fundamental limit on
efficient quantum computation. Like a classical algorithm, a quantum algorithm can solve
a problem recursively by calling itself as a subroutine. When this is done, though, the
quantum algorithm typically needs to call itself twice for each subproblem to be solved.
The second call’s purpose is to “uncompute” garbage left over by the first call, and thereby
enable interference between different branches of the computation. In a seminal paper,
Bennett [52] argued5 that uncomputation increases an algorithm’s running time by only a
factor of 2. Yet in the recursive setting, the increase is by a factor of 2d, where d is the
depth of recursion. Is there any way to avoid this exponential blowup?

To make the question more concrete, Chapter 9 focuses on the recursive Fourier
sampling problem of Bernstein and Vazirani [55]. This is a problem that involves d levels
of recursion, and that takes a Boolean function g as a parameter. What Bernstein and
Vazirani showed is that for some choices of g, any classical randomized algorithm needs
nΩ(d) queries to solve the problem. By contrast, 2d queries always suffice for a quantum
algorithm. The question I ask is whether a quantum algorithm could get by with fewer
than 2Ω(d) queries, even while the classical complexity remains large. I show that the
answer is no: for every g, either Ambainis’s adversary method yields a 2Ω(d) lower bound
on the quantum query complexity, or else the classical and quantum query complexities are
both 1. The lower bound proof introduces a new parameter of Boolean functions called
the “nonparity coefficient,” which might be of independent interest.

2.1.5 Limitations of Quantum Advice

Chapter 10 broadens the scope of Part I, to include the limitations of quantum computers
equipped with “quantum advice states.” Ordinarily, we assume that a quantum computer
starts out in the standard “all-0” state, |0 · · · 0〉. But it is perfectly sensible to drop that
assumption, and consider the effects of other initial states. Most of the work doing so has
concentrated on whether universal quantum computing is still possible with highly mixed
initial states (see [34, 216] for example). But an equally interesting question is whether
there are states that could take exponential time to prepare, but that would carry us far
beyond the complexity-theoretic confines of BQP were they given to us by a wizard. For
even if quantum mechanics is universally valid, we do not really know whether such states
exist in Nature!

Let BQP/qpoly be the class of problems solvable in quantum polynomial time, with
the help of a polynomial-size “quantum advice state” |ψn〉 that depends only on the input
length n but that can otherwise be arbitrary. Then the question is whether BQP/poly =
BQP/qpoly, where BQP/poly is the class of the problems solvable in quantum polynomial
time using a polynomial-size classical advice string.6 As usual, we could try to prove an
oracle separation. But why can’t we show that quantum advice is more powerful than

5Bennett’s paper dealt with classical reversible computation, but this comment applies equally well to
quantum computation.

6For clearly BQP/poly and BQP/qpoly both contain uncomputable problems not in BQP, such as whether
the nth Turing machine halts.

12

classical advice, with no oracle? Also, could quantum advice be used (for example) to
solve NP-complete problems in polynomial time?

The results in Chapter 10 place strong limitations on the power of quantum advice.
First, I show that BQP/qpoly is contained in a classical complexity class called PP/poly.
This means (roughly) that quantum advice can always be replaced by classical advice,
provided we’re willing to use exponentially more computation time. It also means that we
could not prove BQP/poly 6= BQP/qpoly without showing that PP does not have polynomial-
size circuits, which is believed to be an extraordinarily hard problem. To prove this result,
I imagine that the advice state |ψn〉 is sent to the BQP/qpoly machine by a benevolent
“advisor,” through a one-way quantum communication channel. I then give a novel protocol
for simulating that quantum channel using a classical channel. Besides showing that
BQP/qpoly ⊆ PP/poly, the simulation protocol also implies that for all Boolean functions
f : {0, 1}n × {0, 1}m → {0, 1} (partial or total), we have D1 (f) = O

(
mQ1

2 (f) log Q1
2 (f)

)
,

where D1 (f) is the deterministic one-way communication complexity of f , and Q1
2 (f) is

the bounded-error quantum one-way communication complexity. This can be considered
a generalization of the “dense quantum coding” lower bound due to Ambainis, Nayak,
Ta-Shma, and Vazirani [32].

The second result in Chapter 10 is that there exists an oracle relative to which
NP 6⊂ BQP/qpoly. This extends the result of Bennett et al. [51] that there exists an
oracle relative to which NP 6⊂ BQP, to handle quantum advice. Intuitively, even though
the quantum state |ψn〉 could in some sense encode the solutions to exponentially many
NP search problems, only a miniscule fraction of that information could be extracted by
measuring the advice, at least in the black-box setting that we understand today.

The proof of the oracle separation relies on another result of independent interest:
a direct product theorem for quantum search. This theorem says that given an unordered
database with n items, k of which are marked, any quantum algorithm that makes o (

√
n)

queries7 has probability at most 2−Ω(k) of finding all k of the marked items. In other
words, there are no “magical” correlations by which success in finding one marked item
leads to success in finding the others. This might seem intuitively obvious, but it does not
follow from the

√
n lower bound for Grover search, or any other previous quantum lower

bound for that matter. Previously, Klauck [157] had given an incorrect proof of a direct
product theorem, based on Bennett et al.’s hybrid method. I give the first correct proof by
using the polynomial method, together with an inequality dealing with higher derivatives
of polynomials due to V. A. Markov, the younger brother of A. A. Markov.

The third result in Chapter 10 is a new trace distance method for proving lower
bounds on quantum one-way communication complexity. Using this method, I obtain
optimal quantum lower bounds for two problems of Ambainis, for which no nontrivial lower
bounds were previously known even for classical randomized protocols.

7Subsequently Klauck, Špalek, and de Wolf [158] improved this to o
(√

nk
)

queries, which is tight.

13

2.2 Models and Reality

This thesis is concerned with the limits of efficient computation in Nature. It is not
obvious that these coincide with the limits of the quantum computing model. Thus, Part
II studies the relationship of the quantum computing model to physical reality. Of course,
this is too grand a topic for any thesis, even a thesis as long as this one. I therefore
focus on three questions that particularly interest me. First, how should we understand
the arguments of “extreme” skeptics, that quantum computing is impossible not only in
practice but also in principle? Second, what are the implications for quantum computing
if we recognize that the speed of light is finite, and that according to widely-accepted
principles, a bounded region of space can store only a finite amount of information? And
third, are there reasonable changes to the quantum computing model that make it even
more powerful, and if so, how much more powerful do they make it? Chapters 12 to 16
address these questions from various angles; then Chapter 17 summarizes.

2.2.1 Skepticism of Quantum Computing

Chapter 12 examines the arguments of skeptics who think that large-scale quantum comput-
ing is impossible for a fundamental physical reason. I first briefly consider the arguments of
Leonid Levin and other computer scientists, that quantum computing is analogous to “ex-
travagant” models of computation such as unit-cost arithmetic, and should be rejected on
essentially the same grounds. My response emphasizes the need to grapple with the actual
evidence for quantum mechanics, and to propose an alternative picture of the world that is
compatible with that evidence but in which quantum computing is impossible. The bulk
of the chapter, though, deals with Stephen Wolfram’s A New Kind of Science [246], and
in particular with one of that book’s most surprising claims: that a deterministic cellular-
automaton picture of the world is compatible with the so-called Bell inequality violations
demonstrating the effects of quantum entanglement. To achieve compatibility, Wolfram
posits “long-range threads” between spacelike-separated points. I explain in detail why
this thread proposal violates Wolfram’s own desiderata of relativistic and causal invariance.
Nothing in Chapter 12 is very original technically, but it seems worthwhile to spell out what
a scientific argument against quantum computing would have to accomplish, and why the
existing arguments fail.

2.2.2 Complexity Theory of Quantum States

Chapter 13 continues the train of thought begun in Chapter 12, except that now the focus is
more technical. I search for a natural Sure/Shor separator : a set of quantum states that can
account for all experiments performed to date, but that does not contain the states arising
in Shor’s factoring algorithm. In my view, quantum computing skeptics would strengthen
their case by proposing specific examples of Sure/Shor separators, since they could then
offer testable hypotheses about where the assumptions of the quantum computing model
break down (if not how they break down). So why am I doing the skeptics’ work for them?
Several people have wrongly inferred from this that I too am a skeptic! My goal, rather,
is to illustrate what a scientific debate about the possibility of quantum computing might

14

look like.
Most of Chapter 13 deals with a candidate Sure/Shor separator that I call tree

states. Any n-qubit pure state |ψn〉 can be represented by a tree, in which each leaf is
labeled by |0〉 or |1〉, and each non-leaf vertex is labeled by either a linear combination or
a tensor product of its subtrees. Then the tree size of |ψn〉 is just the minimum number
of vertices in such a tree, and a “tree state” is an infinite family of states whose tree size is
bounded by a polynomial in n. The idea is to keep a central axiom of quantum mechanics—
that if |ψ〉 and |ϕ〉 are possible states, so are |ψ〉⊗|ϕ〉 and α |ψ〉+β |ϕ〉—but to limit oneself
to polynomially many applications of the axiom.

The main results are superpolynomial lower bounds on tree size for explicit families
of quantum states. Using a recent lower bound on multilinear formula size due to Raz
[197, 198], I show that many states arising in quantum error correction (for example, states
based on binary linear erasure codes) have tree size nΩ(logn). I show the same for the states
arising in Shor’s algorithm, assuming a number-theoretic conjecture. Therefore, I argue,
by demonstrating such states in the lab on a large number of qubits, experimentalists could
weaken8 the hypothesis that all states in Nature are tree states.

Unfortunately, while I conjecture that the actual tree sizes are exponential, Raz’s
method is currently only able to show lower bounds of the form nΩ(logn). On the other hand,
I do show exponential lower bounds under a restriction, called “manifest orthogonality,” on
the allowed linear combinations of states.

More broadly, Chapter 13 develops a complexity classification of quantum states,
and—treating that classification as a subject in its own right—proves many basic results
about it. To give a few examples: if a quantum computer is restricted to being in a tree
state at every time step, then it can be simulated in the third level of polynomial hierarchy
PH. A random state cannot even be approximated by a state with subexponential tree
size. Any “orthogonal tree state” can be prepared by a polynomial-size quantum circuit.
Collapses of quantum state classes would imply collapses of ordinary complexity classes,
and vice versa. Many of these results involve unexpected connections between quantum
computing and classical circuit complexity. For this reason, I think that the “complexity
theory of quantum states” has an intrinsic computer-science motivation, besides its possible
role in making debates about quantum mechanics’ range of validity less philosophical and
more scientific.

2.2.3 Quantum Search of Spatial Regions

A basic result in classical computer science says that Turing machines are polynomially
equivalent to random-access machines. In other words, we can ignore the fact that the
speed of light is finite for complexity purposes, so long as we only care about polynomial
equivalence. It is easy to see that the same is true for quantum computing. Yet one of the
two main quantum algorithms, Grover’s algorithm, provides only a polynomial speedup.9

So, does this speedup disappear if we consider relativity as well as quantum mechanics?

8Since tree size is an asymptotic notion (and for other reasons discussed in Chapter 13), strictly speaking
experimentalists could never refute the hypothesis—just push it beyond all bounds of plausibility.

9If Grover’s algorithm is applied to a combinatorial search space of size 2n, then the speedup is by a
factor of 2n/2—but in this case the speedup is only conjectured, not proven.

15

More concretely, suppose a “quantum robot” is searching a 2-D grid of size
√
n×√

n
for a single marked item. The robot can enter a superposition of grid locations, but moving
from one location to an adjacent one takes one time step. How many steps are needed to
find the marked item? If Grover’s algorithm is implemented näıvely, the answer is order
n—since each of the

√
n Grover iterations takes

√
n steps, just to move the robot across

the grid and back. This yields no improvement over classical search. Benioff [50] noticed
this defect of Grover’s algorithm as applied to a physical database, but failed to raise the
question of whether or not a faster algorithm exists.

Sadly, I was unable to prove a lower bound showing that the näıve algorithm is
optimal. But in joint work with Andris Ambainis, we did the next best thing: we proved
the impossibility of proving a lower bound, or to put it crudely, gave an algorithm. In
particular, Chapter 14 shows how to search a

√
n×√

n grid for a unique marked vertex in

only O
(√

n log3/2 n
)

steps, by using a carefully-optimized recursive Grover search. It also

shows how to search a d-dimensional hypercube in O (
√
n) steps for d ≥ 3. The latter result

has an unexpected implication: namely, that the quantum communication complexity of
the disjointness function is O (

√
n). This matches a lower bound of Razborov [201], and

improves previous upper bounds due to Buhrman, Cleve, and Wigderson [76] and Høyer
and de Wolf [148].

Chapter 14 also generalizes our search algorithm to handle multiple marked items,
as well as graphs that are not hypercubes but have sufficiently good expansion properties.
More broadly, the chapter develops a new model of quantum query complexity on graphs,
and proves basic facts about that model, such as lower bounds for search on “starfish”
graphs. Of particular interest to physicists will be Section 14.3, which relates our results
to fundamental limits on information processing imposed by the holographic principle. For
example, we can give an approximate answer to the following question: assuming a positive
cosmological constant Λ > 0, and assuming the only constraints (besides quantum mechan-
ics) are the speed of light and the holographic principle, how large a database could ever be
searched for a specific entry, before most of the database receded past one’s cosmological
horizon?

2.2.4 Quantum Computing and Postselection

There is at least one foolproof way to solve NP-complete problems in polynomial time: guess
a random solution, then kill yourself if the solution is incorrect. Conditioned on looking at
anything at all, you will be looking at a correct solution! It’s a wonder that this approach
is not tried more often.

The general idea, of throwing out all runs of a computation except those that
yield a particular result, is called postselection. Chapter 15 explores the general power of
postselection when combined with quantum computing. I define a new complexity class
called PostBQP: the class of problems solvable in polynomial time on a quantum computer,
given the ability to measure a qubit and assume the outcome will be |1〉 (or equivalently,
discard all runs in which the outcome is |0〉). I then show that PostBQP coincides with the
classical complexity class PP.

Surprisingly, this new characterization of PP yields an extremely simple, quantum

16

computing based proof that PP is closed under intersection. This had been an open
problem for two decades, and the previous proof, due to Beigel, Reingold, and Spielman
[47], used highly nontrivial ideas about rational approximations of the sign function. I
also reestablish an extension of the Beigel-Reingold-Spielman result due to Fortnow and
Reingold [117], that PP is closed under polynomial-time truth-table reductions. Indeed, I
show that PP is closed under BQP truth-table reductions, which seems to be a new result.

The rest of Chapter 15 studies the computational effects of simple changes to the
axioms of quantum mechanics. In particular, what if we allow linear but nonunitary trans-
formations, or change the measurement probabilities from |α|2 to |α|p (suitably normalized)
for some p 6= 2? I show that the first change would yield exactly the power of PostBQP,
and therefore of PP; while the second change would yield PP if p ∈ {4, 6, 8, . . .}, and some
class between PP and PSPACE otherwise.

My results complement those of Abrams and Lloyd [15], who showed that nonlinear
quantum mechanics would let us solve NP- and even #P-complete problems in polynomial
time; and Brun [72] and Bacon [40], who showed the same for quantum computers involving
closed timelike curves. Taken together, these results lend credence to an observation of
Weinberg [241]: that quantum mechanics is a “brittle” theory, in the sense that even a tiny
change to it would have dramatic consequences.

2.2.5 The Power of History

Contrary to widespread belief, what makes quantum mechanics so hard to swallow is not
indeterminism about the future trajectory of a particle. That is no more bizarre than a
coin flip in a randomized algorithm. The difficulty is that quantum mechanics also seems
to require indeterminism about a particle’s past trajectory. Or rather, the very notion
of a “trajectory” is undefined—for until the particle is measured, there is just an evolving
wavefunction.

In spite of this, Schrödinger [215], Bohm [59], Bell [49], and others proposed hidden-
variable theories, in which a quantum state is supplemented by “actual” values of certain
observables. These actual values evolve in time by a dynamical rule, in such a way that
the predictions of quantum mechanics are recovered at any individual time. On the other
hand, it now makes sense to ask questions like the following: “Given that a particle was
at location x1 at time t1 (even though it was not measured at t1), what is the probability
of it being at location x2 at time t2?” The answers to such questions yield a probability
distribution over possible trajectories.

Chapter 16 initiates the study of hidden variables from the discrete, abstract per-
spective of quantum computing. For me, a hidden-variable theory is simply a way to
convert a unitary matrix that maps one quantum state to another, into a stochastic matrix
that maps the initial probability distribution to the final one in some fixed basis. I list
five axioms that we might want such a theory to satisfy, and investigate previous hidden-
variable theories of Dieks [99] and Schrödinger [215] in terms of these axioms. I also propose
a new hidden-variable theory based on network flows, which are classic objects of study in
computer science, and prove that this theory satisfies two axioms called “indifference” and
“robustness.” A priori, it was not at all obvious that these two key axioms could be satisfied
simultaneously.

17

Next I turn to a new question: the computational complexity of simulating hidden-
variable theories. I show that, if we could examine the entire history of a hidden variable,
then we could efficiently solve problems that are believed to be intractable even for quan-
tum computers. In particular, under any hidden-variable theory satisfying the indifference
axiom, we could solve the Graph Isomorphism and Approximate Shortest Vector prob-
lems in polynomial time, and indeed could simulate the entire class SZK (Statistical Zero
Knowledge). Combining this result with the collision lower bound of Chapter 6, we get an
oracle relative to which BQP is strictly contained in DQP, where DQP (Dynamical Quantum
Polynomial-Time) is the class of problems efficiently solvable by sampling histories.

Using the histories model, I also show that one could search an N -item database

using O
(
N1/3

)
queries, as opposed to O

(√
N
)

with Grover’s algorithm. On the other

hand, the N1/3 bound is tight, meaning that one could probably not solve NP-complete
problems in polynomial time. We thus obtain the first good example of a model of com-
putation that appears slightly more powerful than the quantum computing model.

In summary, Chapter 16 ties together many of the themes of this thesis: the
black-box limitations of quantum computers; the application of nontrivial computer science
techniques; the obsession with the computational resources needed to simulate our universe;
and finally, the use of quantum computing to shine light on the mysteries of quantum
mechanics itself.

18

Chapter 3

Complexity Theory Cheat Sheet

“If pigs can whistle, then donkeys can fly.”

(Summary of complexity theory, attributed to Richard Karp)

To most people who are not theoretical computer scientists, the theory of compu-
tational complexity—one of the great intellectual achievements of the twentieth century—is
simply a meaningless jumble of capital letters. The goal of this chapter is to turn it into a
meaningful jumble.

In computer science, a problem is ordinarily an infinite set of yes-or-no questions:
for example, “Given a graph, is it connected?” Each particular graph is an instance of the
general problem. An algorithm for the problem is polynomial-time if, given any instance as
input, it outputs the correct answer after at most knc steps, where k and c are constants,
and n is the length of the instance, or the number of bits needed to specify it. For example,
in the case of a directed graph, n is just the number of vertices squared. Then P is the class
of all problems for which there exists a deterministic classical polynomial-time algorithm.
Examples of problems in P include graph connectivity, and (as was discovered two years
ago [17]) deciding whether a positive integer written in binary is prime or composite.

Now, NP (Nondeterministic Polynomial-Time) is the class of problems for which, if
the answer to a given instance is ‘yes’, then an omniscient wizard could provide a polynomial-
size proof of that fact, which would enable us to verify it in deterministic polynomial time.
As an example, consider the Satisfiability problem: “given a formula involving the Boolean
variables x1, . . . , xn and the logical connectives ∧,∨, q (and, or, not), is there an assignment
to the variables that makes the formula true?” If there is such an assignment, then a
short, easily-verified proof is just the assignment itself. On the other hand, it might be
extremely difficult to find a satisfying assignment without the wizard’s help—or for that
matter, to verify the absence of a satisfying assignment, even given a purported proof of
its absence from the wizard. The question of whether there exist polynomial-size proofs
of unsatisfiability that can be verified in polynomial time is called the NP versus coNP

question. Here coNP is the class containing the complement of every NP problem—for
example, “given a Boolean formula, is it not satisfiable?”

The Satisfiability problem turns out to be NP-complete, which means it is among
the “hardest” problems in NP: any instance of any NP problem can be efficiently converted

19

into an instance of Satisfiability. The central question, of course, is whether NP-complete
problems are solvable in polynomial time, or equivalently whether P = NP (it being clear
that P ⊆ NP). By definition, if any NP-complete problem is solvable in polynomial time,
then all of them are. One thing we know is that if P 6= NP, as is almost universally assumed,
then there are problems in NP that are neither in P nor NP-complete [164]. Candidates for
such “intermediate” problems include deciding whether or not two graphs are isomorphic,
and integer factoring (e.g. given integers N,M written in binary, doesN have a prime factor
greater than M?). The NP-intermediate problems have been a major focus of quantum
algorithms research.

3.1 The Complexity Zoo Junior

I now present a glossary of 12 complexity classes besides P and NP that appear in this
thesis; non-complexity-theorist readers might wish to refer back to it as needed. The
known relationships among these classes are diagrammed in Figure 3.1. These classes
represent a tiny sample of the more than 400 classes described on my Complexity Zoo web
page (www.complexityzoo.com).

PSPACE (Polynomial Space) is the class of problems solvable by a deterministic
classical algorithm that uses a polynomially-bounded amount of memory. Thus NP ⊆
PSPACE, since a PSPACE machine can loop through all possible proofs.

EXP (Exponential-Time) is the class of problems solvable by a deterministic
classical algorithm that uses at most 2q(n) time steps, for some polynomial q. Thus
PSPACE ⊆ EXP.

BPP (Bounded-Error Probabilistic Polynomial-Time) is the class of prob-
lems solvable by a probabilistic classical polynomial-time algorithm, which given any in-
stance, must output the correct answer for that instance with probability at least 2/3.
Thus P ⊆ BPP ⊆ PSPACE. It is widely conjectured that BPP = P [149], but not even
known that BPP ⊆ NP.

PP (Probabilistic Polynomial-Time) is the class of problems solvable by a
probabilistic classical polynomial-time algorithm, which given any instance, need only out-
put the correct answer for that instance with probability greater than 1/2. The following
problem is PP-complete: given a Boolean formula ϕ, decide whether at least half of the
possible truth assignments satisfy ϕ. We have NP ⊆ PP ⊆ PSPACE and also BPP ⊆ PP.

P#P (pronounced “P to the sharp-P”) is the class of problems solvable by
a P machine that can access a “counting oracle.” Given a Boolean formula ϕ, this oracle
returns the number of truth assignments that satisfy ϕ. We have PP ⊆ P#P ⊆ PSPACE.

BQP (Bounded-Error Quantum Polynomial-Time) is the class of problems
solvable by a quantum polynomial-time algorithm, which given any instance, must output
the correct answer for that instance with probability at least 2/3. More information is in
Chapter 4. We have BPP ⊆ BQP ⊆ PP [55, 16].

EQP (Exact Quantum Polynomial-Time) is similar to BQP, except that the
probability of correctness must be 1 instead of 2/3. This class is extremely artificial; it
is not even clear how to define it independently of the choice of gate set. But for any
reasonable choice, P ⊆ EQP ⊆ BQP.

20

P/poly (P with polynomial-size advice) is the class of problems solvable by a
P algorithm that, along with a problem instance of length n, is also given an “advice string”
zn of length bounded by a polynomial in n. The only constraint is that zn can depend
only on n, and not on any other information about the instance. Otherwise the zn’s can be
chosen arbitrarily to help the algorithm. It is not hard to show that BPP ⊆ P/poly. Since
the zn’s can encode noncomputable problems (for example, does the nth Turing machine
halt?), P/poly is not contained in any uniform complexity class, where “uniform” means
that the same information is available to an algorithm regardless of n. We can also add
polynomial-size advice to other complexity classes, obtaining EXP/poly, PP/poly, and so
on.

PH (Polynomial-Time Hierarchy) is the union of NP, NPNP, NPNPNP

, etc.
Equivalently, PH is the class of problems that are polynomial-time reducible to the follow-
ing form: for all truth assignments x, does there exist an assignment y such that for all
assignments z, . . . , ϕ (x, y, z, . . .) is satisfied, where ϕ is a Boolean formula? Here the num-
ber of alternations between “for all” and “there exists” quantifiers is a constant independent
of n. Sipser [224] and Lautemann [165] showed that BPP ⊆ PH, while Toda [230] showed
that PH ⊆ P#P.

MA (Merlin Arthur) is the class of problems for which, if the answer to a given
instance is ‘yes,’ then an omniscient wizard could provide a polynomial-size proof of that
fact, which would enable us to verify it in BPP (classical probabilistic polynomial-time, with
probability at most 1/3 of accepting an invalid proof or rejecting a valid one). We have
NP ⊆ MA ⊆ PP.

AM (Arthur Merlin) is the class of problems for which, if the answer to a given
instance is ‘yes,’ then a BPP algorithm could become convinced of that fact after a constant
number of rounds of interaction with an omniscient wizard. We have MA ⊆ AM ⊆ PH.
There is evidence that AM = MA = NP [159].

SZK (Statistical Zero Knowledge) is the class of problems that possess “sta-
tistical zero-knowledge proof protocols.” We have BPP ⊆ SZK ⊆ AM. Although SZK

contains nontrivial problems such as graph isomorphism [132], there are strong indications
that it does not contain all of NP [63].

Other complexity classes, such as PLS, TFNP, BQP/qpoly, and BPPpath, will be
introduced throughout the thesis as they are needed.

3.2 Notation

In computer science, the following symbols are used to describe asymptotic growth rates:

• F (n) = O (G (n)) means that F (n) is at most order G (n); that is, F (n) ≤ a+bG (n)
for all n ≥ 0 and some nonnegative constants a, b.

• F (n) = Ω (G (n)) means that F (n) is at least order G (n); that is, G (n) = O (F (n)).

• F (n) = Θ (G (n)) means that F (n) is exactly order G (n); that is, F (n) = O (G (n))
and F (n) = Ω (G (n)).

21

P

NP

MA

AM

PH

P#P

PSPACE

EXP

EQP

BQP

PP

BPP

SZKP/poly

Figure 3.1: Known relations among 14 complexity classes.

• F (n) = o (G (n)) means that F (n) is less than order G (n); that is, F (n) = O (G (n))
but not F (n) = Ω (G (n)).

The set of all n-bit strings is denoted {0, 1}n. The set of all binary strings,⋃
n≥0 {0, 1}n, is denoted {0, 1}∗.

3.3 Oracles

One complexity-theoretic concept that will be needed again and again in this thesis is that
of an oracle. An oracle is a subroutine available to an algorithm, that is guaranteed to
compute some function even if we have no idea how. Oracles are denoted using superscripts.
For example, PNP is the class of problems solvable by a P algorithm that, given any instance
of an NP-complete problem such as Satisfiability, can instantly find the solution for that
instance by calling the NP oracle. The algorithm can make multiple calls to the oracle, and
these calls can be adaptive (that is, can depend on the outcomes of previous calls). If a
quantum algorithm makes oracle calls, then unless otherwise specified we assume that the
calls can be made in superposition. Further details about the quantum oracle model are
provided in Chapter 5.

We identify an oracle with the function that it computes, usually a Boolean func-
tion f : {0, 1}∗ → {0, 1}. Often we think of f as defining a problem instance, or rather
an infinite sequence of problem instances, one for each positive integer n. For example,
“does there exist an x ∈ {0, 1}n such that f (x) = 1?” In these cases the oracle string,
which consists of f (x) for every x ∈ {0, 1}n, can be thought of as an input that is 2n bits

22

long instead of n bits. Of course, a classical algorithm running in polynomial time could
examine only a tiny fraction of such an input, but maybe a quantum algorithm could do
better. When discussing such questions, we need to be careful to distinguish between two
functions: f itself, and the function of the oracle string that an algorithm is trying is to
compute.

23

Chapter 4

Quantum Computing Cheat Sheet

“Somebody says . . . ‘You know those quantum mechanical amplitudes you told
me about, they’re so complicated and absurd, what makes you think those are
right? Maybe they aren’t right.’ Such remarks are obvious and are perfectly
clear to anybody who is working on this problem. It does not do any good to
point this out.”

—Richard Feynman, The Character of Physical Law [111]

Non-physicists often have the mistaken idea that quantum mechanics is hard.
Unfortunately, many physicists have done nothing to correct that idea. But in newer
textbooks, courses, and survey articles [18, 116, 177, 184, 235], the truth is starting to come
out: if you wish to understand the central ‘paradoxes’ of quantum mechanics, together with
almost the entire body of research on quantum information and computing, then you do
not need to know anything about wave-particle duality, ultraviolet catastrophes, Planck’s
constant, atomic spectra, boson-fermion statistics, or even Schrödinger’s equation. All you
need to know is how to manipulate vectors whose entries are complex numbers. If that is
too difficult, then positive and negative real numbers turn out to suffice for most purposes
as well. After you have mastered these vectors, you will then have some context if you wish
to learn more about the underlying physics. But the historical order in which the ideas
were discovered is almost the reverse of the logical order in which they are easiest to learn!

What quantum mechanics says is that, if an object can be in either of two per-
fectly distinguishable states, which we denote |0〉 and |1〉, then it can also be in a linear
“superposition” of those states, denoted α |0〉 + β |1〉. Here α and β are complex numbers
called “amplitudes,” which satisfy |α|2 + |β|2 = 1. The asymmetric brackets | 〉 are called
“Dirac ket notation”; one gets used to them with time.

If we measure the state α |0〉+β |1〉 in a standard way, then we see the “basis state”
|0〉 with probability |α|2, and |1〉 with probability |β|2. Also, the state changes to whichever
outcome we see—so if we see |0〉 and then measure again, nothing having happened in the
interim, we will still see |0〉. The two probabilities |α|2 and |β|2 sum to 1, as they ought
to. So far, we might as well have described the object using classical probabilities—for
example, “this cat is alive with probability 1/2 and dead with probability 1/2; we simply
don’t know which.”

24

The difference between classical probabilities and quantum amplitudes arises in
how the object’s state changes when we perform an operation on it. Classically, we can
multiply a vector of probabilities by a stochastic matrix, which is a matrix of nonnegative
real numbers each of whose columns sums to 1. Quantum-mechanically, we multiply the
vector of amplitudes by a unitary matrix, which is a matrix of complex numbers that maps
any unit vector to another unit vector. (Equivalently, U is unitary if and only if its inverse
U−1 equals its conjugate transpose U∗.) As an example, suppose we start with the state
|0〉, which corresponds to the vector of amplitudes

[
1
0

]
.

We then left-multiply this vector by the unitary matrix

U =

[
1√
2

− 1√
2

1√
2

1√
2

]
,

which maps the vector to [
1√
2

1√
2

]
,

and therefore the state |0〉 to

U |0〉 =
1√
2
|0〉 +

1√
2
|1〉 .

If we now measured, we would see |0〉 with probability 1/2 and |1〉 with probability 1/2.
The interesting part is what happens if we apply the same operation U a second time,
without measuring. We get

[
1√
2

− 1√
2

1√
2

1√
2

] [
1√
2

1√
2

]
=

[
0
1

]

which is |1〉 with certainty (see Figure 4.1). Applying a “randomizing” operation to a
“random” state produces a deterministic outcome! The reason is that, whereas probabilities
are always nonnegative, amplitudes can be positive, negative, or even complex, and can
therefore cancel each other out. This interference of amplitudes can be considered the
source of all “quantum weirdness.”

4.1 Quantum Computers: N Qubits

The above description applied to “qubits,” or objects with only two distinguishable states.
But it generalizes to objects with a larger number of distinguishable states. Indeed, in
quantum computing we consider a system of N qubits, each of which can be |0〉 or |1〉. We
then need to assign amplitudes to all 2N possible outcomes of measuring the qubits in order
from first to last. So the computer’s state has the form

|ψ〉 =
∑

z∈{0,1}N

αz |z〉

25

0

1
0 1

2

+

Figure 4.1: Quantum states of the form α |0〉+ β |1〉, with α and β real, can be represented
by unit vectors in the plane. Then the operation U corresponds to a 45◦ counterclockwise
rotation.

where ∑

z∈{0,1}N

|αz|2 = 1.

What was just said is remarkable—for it suggests that Nature needs to keep track of 2N

complex numbers just to describe a state of N interacting particles. If N = 300, then this
is already more complex numbers than there are particles in the known universe. The goal
of quantum computing is to exploit this strange sort of parallelism that is inherent in the
laws of physics as we currently understand them.

The difficulty is that, when the computer’s state is measured, we only see one of
the “basis states” |x〉, not the entire collection of amplitudes. However, for a few specific
problems, we might be able to arrange things so that basis states corresponding to wrong
answers all have amplitudes close to 0, because of interference between positive and negative
contributions. If we can do that, then basis states corresponding to right answers will be
measured with high probability.

More explicitly, a quantum computer applies a sequence of unitary matrices called
gates, each of which acts on only one or two of the N qubits (meaning that is a tensor
product of the identity operation on N −1 or N −2 qubits, and the operation of interest on
the remaining qubits). As an example, the controlled-NOT or CNOT gate is a two-qubit
gate that flips a “target” qubit if a “control” qubit is 1, and otherwise does nothing:

|00〉 → |00〉 , |01〉 → |01〉 , |10〉 → |11〉 , |11〉 → |10〉 .

The unitary matrix corresponding to the CNOT gate is




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 .

26

Adleman, DeMarrais, and Huang [16] showed that the CNOT gate, together with the one-
qubit gate [

3
5 −4

5
4
5

3
5

]
,

constitute a universal set of quantum gates, in that they can be used to approximate any
other gate to any desired accuracy. Indeed, almost any set of one- and two-qubit gates is
universal in this sense [96].

A quantum circuit is just a sequence of gates drawn from a finite universal set.
Without loss of generality, we can take the circuit’s output to be the result of a single
measurement after all gates have been applied; that is, z ∈ {0, 1}N with probability |αz|2.
(If a binary output is needed, we simply throw away the last N − 1 bits of z.) It is known
that allowing intermediate measurements does not yield any extra computational power
[55]. The circuit is polynomial-size if both N and the number of gates are upper-bounded
by a polynomial in the length n of the input.

We can now define the important complexity class BQP, or Bounded-Error Quan-
tum Polynomial-Time. Given an input x ∈ {0, 1}n, first a polynomial-time classical algo-
rithm A prepares a polynomial-size quantum circuit Ux. (The requirement that the circuit
itself be efficiently preparable is called uniformity.) Then Ux is applied to the “all-0” initial
state |0〉⊗N . We say a language L ⊆ {0, 1}n is in BQP if there exists an A such that for all
x,

(i) If x ∈ L then Ux outputs ‘1’ with probability at least 2/3.

(ii) If x /∈ L then Ux outputs ‘0’ with probability at least 2/3.

By running Ux multiple times and taking the majority answer, we can boost the
probability of success from 2/3 to 1 − 2−p(n) for any polynomial p.

BQP was first defined in a 1993 paper by Bernstein and Vazirani [55].1 That paper
marked a turning point. Before, quantum computing had been an idea, explored in pio-
neering work by Deutsch [92], Feynman [110], and others. Afterward, quantum computing
was a full-fledged model in the sense of computational complexity theory, which could be
meaningfully compared against other models. For example, Bernstein and Vazirani showed
that BPP ⊆ BQP ⊆ P#P: informally, quantum computers are at least as powerful as classi-
cal probabilistic computers, and at most exponentially more powerful. (The containment
BQP ⊆ P#P was later improved to BQP ⊆ PP by Adleman, DeMarrais, and Huang [16].)

Bernstein and Vazirani also gave an oracle problem called Recursive Fourier Sam-
pling (RFS), and showed that it requires nΩ(logn) classical probabilistic queries but only n
quantum queries. This provided the first evidence that quantum computers are strictly
more powerful than classical probabilistic computers, i.e. that BPP 6= BQP. Soon after-
ward, Simon [222] widened the gap to polynomial versus exponential, by giving an ora-
cle problem that requires Ω

(
2n/2

)
classical probabilistic queries but only O (n) quantum

1As a historical note, Bernstein and Vazirani [55] defined BQP in terms of “quantum Turing machines.”
However, Yao [248] showed that Bernstein and Vazirani’s definition is equivalent to the much simpler one
given here. Also, Berthiaume and Brassard [57] had implicitly defined EQP (Exact Quantum Polynomial-
Time) a year earlier, and had shown that it lies outside P and even NP relative to an oracle.

27

queries. However, these results attracted limited attention because the problems seemed
artificial.

People finally paid attention when Shor [221] showed that quantum computers
could factor integers and compute discrete logarithms in polynomial time. The security
of almost all modern cryptography rests on the presumed intractability of those two prob-
lems. It had long been known [179] that factoring is classically reducible to the following
problem: given oracle access to a periodic function f : {1, . . . , R} → {1, . . . , R}, where R is
exponentially large, find the period of f . Shor gave an efficient quantum algorithm for this
oracle problem, by exploiting the quantum Fourier transform, a tool that had earlier been
used by Simon. (The algorithm for the discrete logarithm problem is more complicated
but conceptually similar.)

Other results in the “quantum canon,” such as Grover’s algorithm [141] and meth-
ods for quantum error-correction and fault-tolerance [20, 80, 134, 161, 227], will be discussed
in this thesis as the need arises.

4.2 Further Concepts

This section summarizes “fancier” quantum mechanics concepts, which are needed for Part
II and for Chapter 10 of Part I (which deals with quantum advice). They are not needed
for the other chapters in Part I.

Tensor Product. If |ψ〉 and |ϕ〉 are two quantum states, then their tensor
product, denoted |ψ〉⊗ |ϕ〉 or |ψ〉 |ϕ〉, is just a state that consists of |ψ〉 and |ϕ〉 next to each
other. For example, if |ψ〉 = α |0〉 + β |1〉 and |ϕ〉 = γ |0〉 + δ |1〉, then

|ψ〉 |ϕ〉 = (α |0〉 + β |1〉) (γ |0〉 + δ |1〉) = αγ |00〉 + αδ |01〉 + βγ |10〉 + βδ |11〉 .

Inner Product. The inner product between two states |ψ〉 = α1 |1〉+· · ·+αN |N〉
and |ϕ〉 = β1 |1〉 + · · · + βN |N〉 is defined as

〈ψ|ϕ〉 = α∗
1β1 + · · · + α∗

NβN

where ∗ denotes complex conjugate. The inner product satisfies all the expected properties,
such as 〈ψ|ψ〉 = 1 and

〈ψ| (|ϕ〉 + |φ〉) = 〈ψ|ϕ〉 + 〈ψ|φ〉 .
If 〈ψ|ϕ〉 = 0 then we say |ψ〉 and |ϕ〉 are orthogonal.

General Measurements. In principle, we can choose any orthogonal basis of
states {|ϕ1〉 , . . . , |ϕN 〉} in which to measure a state |ψ〉. (Whether that measurement
can actually be performed efficiently is another matter.) Then the probability of obtaining
outcome |ϕj〉 is |〈ψ|ϕj〉|2. We can even measure in a non-orthogonal basis, a concept called
Positive Operator Valued Measurements (POVM’s) that I will not explain here. None of
these more general measurements increase the power of the quantum computing model,
since we can always produce the same effect by first applying a unitary matrix (possibly
using additional qubits called ancillas), and then measuring in a “standard” basis such as
{|1〉 , . . . , |N〉}.

28

Mixed States. Superposition states, such as α |0〉 + β |1〉, are also called pure
states. This is to distinguish them from mixed states, which are the most general kind
of state in quantum mechanics. Mixed states are just classical probability distributions
over pure states. There is a catch, though: any mixed state can be decomposed into
a probability distribution over pure states in infinitely many nonequivalent ways. For
example, if we have a state that is |0〉 with probability 1/2 and |1〉 with probability 1/2, then
no experiment could ever distinguish it from a state that is (|0〉 + |1〉) /

√
2 with probability

1/2 and (|0〉 − |1〉) /
√

2 with probability 1/2. For regardless of what orthogonal basis we
measured in, the two possible outcomes of measuring would both occur with probability
1/2. Therefore, this state is called the one-qubit maximally mixed state.

Density Matrices. We can represent mixed states using a formalism called
density matrices. The outer product of |ψ〉 = α1 |1〉 + · · · + αN |N〉 with itself, denoted
|ψ〉 〈ψ|, is an N × N complex matrix whose (i, j) entry is αiα

∗
j . Now suppose we have a

state that is |ϕ〉 = α |0〉 + β |1〉 with probability p, and |φ〉 = γ |0〉 + δ |1〉 with probability
1 − p. We represent the state by a Hermitian positive definite matrix ρ with trace 1, as
follows:

ρ = p |ϕ〉 〈ϕ| + (1 − p) |φ〉 〈φ| = p

[
αα∗ αβ∗

βα∗ ββ∗

]
+ (1 − p)

[
γγ∗ γδ∗

δγ∗ δδ∗

]
.

When we apply a unitary operation U , the density matrix ρ changes to UρU−1. When
we measure in the standard basis, the probability of outcome |j〉 is the jth diagonal entry
of ρ. Proving that these rules are the correct ones, and that a density matrix really is a
unique description of a mixed state, are “exercises for the reader” (which as always means
the author was too lazy). Density matrices will mainly be used in Chapter 10.

Trace Distance. Suppose you are given a system that was prepared in state ρ
with probability 1/2, and σ with probability 1/2. After making a measurement, you must
guess which state the system was prepared in. What is the maximum probability that you
will be correct? The answer turns out to be

1 + ‖ρ− σ‖tr

2

where ‖ρ− σ‖tr is the trace distance between ρ and σ, defined as 1
2

∑
i |λi| where λ1, . . . , λN

are the eigenvalues of ρ− σ.
Entanglement. Suppose ρ is a joint state of two systems. If ρ can be written as

a probability distribution over pure states of the form |ψ〉 ⊗ |ϕ〉, then we say ρ is separable;
otherwise ρ is entangled.

Hamiltonians. Instead of discrete unitary operations, we can imagine that a
quantum state evolves in time by a continuous rotation called a Hamiltonian. A Hamil-
tonian is an N × N Hermitian matrix H. To find the unitary operation U (t) that is
effected by “leaving H on” for t time steps, the rule2 is U (t) = e−iHt. The only place I
use Hamiltonians is in Chapter 14, and even there the use is incidental.

2Here Planck’s constant is set equal to 1 as always.

29

Part I

Limitations of Quantum
Computers

30

Chapter 5

Introduction

“A quantum possibility is less real than a classical reality, but more real than
a classical possibility.”

—Boris Tsirelson [231]

Notwithstanding accounts in the popular press, a decade of research has made it
clear that quantum computers would not be a panacea. In particular, we still do not have a
quantum algorithm to solve NP-complete problems in polynomial time. But can we prove
that no such algorithm exists, i.e. that NP 6⊂ BQP? The difficulty is that we can’t even
prove no classical algorithm exists; this is the P versus NP question. Of course, we could
ask whether NP 6⊂ BQP assuming that P 6= NP—but unfortunately, even this conditional
question seems far beyond our ability to answer. So we need to refine the question even
further: can quantum computers solve NP-complete problems in polynomial time, by brute
force?

What is meant by “brute force” is the following. In Shor’s factoring algorithm
[221], we prepare a superposition of the form

1√
R

R∑

r=1

|r〉 |g (r)〉

where g (r) = xr modN for some x,N . But as far as the key step of the algorithm is
concerned, the function g is a “black box.” Given any superposition like the one above,
the algorithm will find the period of g assuming g is periodic; it does not need further
information about how g was computed. So in the language of Section 3.3, we might as
well say that g is computed by an oracle.

Now suppose we are given a Boolean formula ϕ over n variables, and are asked to
decide whether ϕ is satisfiable. One approach would be to exploit the internal structure
of ϕ: “let’s see, if I set variable x37 to TRUE, then this clause here is satisfied, but those
other clauses aren’t satisfied any longer . . . darn!” However, inspired by Shor’s factoring
algorithm, we might hope for a cruder quantum algorithm that treats ϕ merely as an oracle,
mapping an input string x ∈ {0, 1}n to an output bit ϕ (x) that is 1 if and only if x satisfies
ϕ. The algorithm would have to decide whether there exists an x ∈ {0, 1}n such that

31

ϕ (x) = 1, using as few calls to the ϕ oracle as possible, and not learning about ϕ in any
other way. This is what is meant by brute force.

A fundamental result of Bennett, Bernstein, Brassard, and Vazirani [51] says that
no brute-force quantum algorithm exists to solve NP-complete problems in polynomial time.
In particular, for some probability distribution over oracles, any quantum algorithm needs
Ω
(
2n/2

)
oracle calls to decide, with at least a 2/3 chance of being correct, whether there

exists an x ∈ {0, 1}n such that ϕ (x) = 1. On a classical computer, of course, Θ (2n) oracle
calls are necessary and sufficient. But as it turns out, Bennett et al.’s quantum lower bound
is tight, since Grover’s quantum search algorithm [141] can find a satisfying assignment (if
it exists) quadratically faster than any classical algorithm. Amusingly, Grover’s algorithm
was proven optimal before it was discovered to exist!

A recurring theme in this thesis is the pervasiveness of Bennett et al.’s finding. I
will show that, even if a problem has considerably more structure than the basic Grover
search problem, even if “quantum advice states” are available, or even if we could examine
the entire history of a hidden variable, still any brute-force quantum algorithm would take
exponential time.

5.1 The Quantum Black-Box Model

The quantum black-box model formalizes the idea of a brute-force algorithm. For the time
being, suppose that a quantum algorithm’s goal is to evaluate f (X), where f : {0, 1}n →
{0, 1} is a Boolean function and X = x1 . . . xn is an n-bit string. Then the algorithm’s
state at any time t has the form ∑

i,z

α
(t)
i,z |i, z〉 .

Here i ∈ {1, . . . , N} is the index of an oracle bit xi to query, and z is an arbitrarily large
string of bits called the “workspace,” containing whatever information the algorithm wants
to store there. The state evolves in time via an alternating sequence of algorithm steps and
query steps. An algorithm step multiplies the vector of αi,z’s by an arbitrary unitary matrix
that does not depend on X. It does not matter how many quantum gates would be needed
to implement this matrix. A query step maps each basis state |i, z〉 to |i, z ⊕ xi〉, effecting

the transformation α
(t+1)
i,z = α

(t)
i,z⊕xi

. Here z ⊕ xi is the string z, with xi exclusive-OR’ed
into a particular location in z called the “answer bit.” The reason exclusive-OR is used is
that the query step has to be reversible, or else it would not be unitary.

At the final step T , the state is measured in the standard basis, and the output of
the algorithm is taken to be (say) z1, the first bit of z. The algorithm succeeds if

∑

i,z : z1=f(X)

∣∣∣α(T)
i,z

∣∣∣
2
≥ 2

3

for all X ∈ {0, 1}n. Here the constant 2/3 is arbitrary. Then the (bounded-error) quantum
query complexity of f , denoted Q2 (f), is the minimum over all quantum algorithms A that
succeed at evaluating f , of the number of queries to f made by A. Here the ‘2’ represents
the fact that the error probability is two-sided. One can compare Q2 (f) with Q0 (f),

32

or zero-error quantum query complexity; R2 (f), or bounded-error classical randomized
query complexity; and D (f), or deterministic query complexity, among other complexity
measures. Chapter 8 will define many such measures and compare them in detail.

As a simple example of the black-box model, let OR (x1, . . . , xn) = x1 ∨ · · · ∨ xn.
Then Grover’s algorithm [141] implies that Q2 (OR) = O (

√
n), while the lower bound of

Bennett et al. [51] implies that Q2 (OR) = Ω (
√
n). By comparison, D (OR) = R2 (OR) =

Θ (n).
The quantum black-box model has some simple generalizations, which I will use

when appropriate. First, f can be a partial function, defined only on a subset of {0, 1}n
(so we obtain what is called a promise problem). Second, the xi’s do not need to be bits;
in Chapters 6 and 7 they will take values from a larger range. Third, in Chapter 7 the
output will not be Boolean, and there will generally be more than one valid output (so we
obtain what is called a relation problem).

5.2 Oracle Separations

“I do believe it
Against an oracle.”
—Shakespeare, The Tempest

Several times in this thesis, I will use a lower bound on quantum query complexity
to show that a complexity class is not in BQP “relative to an oracle.” The method for turning
query complexity lower bounds into oracle separations was invented by Baker, Gill, and
Solovay [41] to show that there exists an oracle A relative to which PA 6= NPA. Basically,
they encoded into A an infinite sequence of exponentially hard search problems, one for
each input length n, such that (i) a nondeterministic machine can solve the nth problem
in time polynomial in n, but (ii) any deterministic machine would need time exponential
in n. They guaranteed (ii) by “diagonalizing” against all possible deterministic machines,
similarly to how Turing created an uncomputable real number by diagonalizing against all
possible computable reals. Later, Bennett and Gill [54] showed that a simpler way to
guarantee (ii) is just to choose the search problems uniformly at random. Throughout the
thesis, I will cavalierly ignore such issues, proceeding immediately from a query complexity
lower bound to the statement of the corresponding oracle separation.

The point of an oracle separation is to rule out certain approaches to solving
an open problem in complexity theory. For example, the Baker-Gill-Solovay theorem
implies that the standard techniques of computability theory, which relativize (that is, are
“oblivious” to the presence of an oracle), cannot be powerful enough to show that P = NP.
Similarly, the result of Bennett et al. [51] that Q2 (OR) = Ω (

√
n) implies that there exists

an oracle A relative to which NPA 6⊂ BQPA. While this does not show that NP 6⊂ BQP,
it does show that any proof of NP ⊆ BQP would have to use “non-relativizing” techniques
that are unlike anything we understand today.

However, many computer scientists are skeptical that anything can be learned
from oracles. The reason for their skepticism is that over the past 15 years, they have
seen several examples of non-relativizing results in classical complexity theory. The most

33

famous of these is Shamir’s Theorem [217, 173] that PSPACE ⊆ IP, where IP is the class of
problems that have interactive proof systems, meaning that if the answer for some instance
is “yes,” then a polynomial-time verifier can become convinced of that fact to any desired
level of confidence by exchanging a sequence of messages with an omniscient prover.1 By
contrast, oracles had been known relative to which not even coNP, let alone PSPACE, is
contained in IP [119]. So why should we ever listen to oracles again, if they got interactive
proofs so dramatically wrong?

My answer is threefold. First, essentially all quantum algorithms that we know
today—from Shor’s algorithm, as discussed previously, to Grover’s algorithm, to the quan-
tum adiabatic algorithm2 [108], to the algorithms of Hallgren [143] and van Dam, Hallgren,
and Ip [90]—are oracle algorithms at their core. We do not know of any non-relativizing
quantum algorithm technique analogous to the arithmetization technique that was used to
prove PSPACE ⊆ IP. If such a technique is ever discovered, I will be one of the first to
want to learn it.

The second response is that without oracle results, we do not have even the be-
ginnings of understanding. Once we know (for example) that SZK 6⊂ BQP relative to an
oracle, we can then ask the far more difficult unrelativized question, knowing something
about the hurdles that any proof of SZK ⊆ BQP would have to overcome.

The third response is that “the proof of the pudding is in the proving.” In other
words, the real justification for the quantum black-box model is not the a priori plausibility
of its assumptions, but the depth and nontriviality of what can be (and has been) proved
in it. For example, the result that coNP 6⊂ IP relative to an oracle [119] does not tell us
much about interactive proof systems. For given an exponentially long oracle string X, it
is intuitively obvious that nothing a prover could say could convince a classical polynomial-
time verifier that X is the all-0 string, even if the prover and verifier could interact. The
only issue is how to formalize that obvious fact by diagonalizing against all possible proof
systems. By contrast, the quantum oracle separations that we have are not intuitively
obvious in the same way; or rather, the act of understanding them confers an intuition
where none was previously present.

1Arora, Impagliazzo, and Vazirani [36] claim the Cook-Levin Theorem, that Satisfiability is NP-complete,
as another non-relativizing result. But this hinges on what we mean by “non-relativizing,” far more than
the PSPACE ⊆ IP example.

2Given an assignment x to a 3SAT formula ϕ, the adiabatic algorithm actually queries an oracle that
returns the number of clauses of ϕ that x satisfies, not just whether x satisfies ϕ or not. Furthermore, van
Dam, Mosca, and Vazirani [91] have shown such an oracle is sufficient to reconstruct ϕ. On the other hand,
the adiabatic algorithm itself would be just as happy with a fitness landscape that did not correspond to
any 3SAT instance, and that is what I mean by saying that it is an oracle algorithm at the core.

34

Chapter 6

The Collision Problem

The collision problem of size n, or Coln, is defined as follows. Let X = x1 . . . xn
be a sequence of n integers drawn from {1, . . . , n}, with n even. We are guaranteed that
either

(1) X is one-to-one (that is, a permutation of {1, . . . , n}), or

(2) X is two-to-one (that is, each element of {1, . . . , n} appears in X twice or not at all).

The problem is to decide whether (1) or (2) holds. (A variant asks us to find a
collision in a given two-to-one function. Clearly a lower bound for the collision problem as
defined above implies an equivalent lower bound for this variant.) Because of its simplicity,
the collision problem was widely considered a benchmark for our understanding of quantum
query complexity.

I will show that Q2 (Coln) = Ω
(
n1/5

)
, where Q2 (f) is the bounded-error quantum

query complexity of function f . The best known upper bound, due to Brassard, Høyer,
and Tapp [68], is O

(
n1/3

)
(see Section 2.1.1). Previously, though, no lower bound better

than the trivial Ω (1) bound was known. How great a speedup quantum computers yield
for the problem was apparently first asked by Rains [195].

Previous lower bound techniques failed for the problem because they depended on
a function’s being sensitive to many disjoint changes to the input. For example, Beals et al.

[45] showed that for all total Boolean functions f , Q2 (f) = Ω
(√

bs (f)
)
, where bs (f) is the

block sensitivity, defined by Nisan [185] to be, informally, the maximum number of disjoint
changes (to any particular input X) to which f is sensitive. In the case of the collision
problem, though, every one-to-one input differs from every two-to-one input in at least n/2
places, so the block sensitivity is O (1). Ambainis’s adversary method [27] faces a related
obstacle. In that method we consider the algorithm and input as a bipartite quantum
state, and upper-bound how much the entanglement of the state can increase via a single
query. But under the simplest measures of entanglement, it turns out that the algorithm
and input can become almost maximally entangled after O (1) queries, again because every
one-to-one input is far from every two-to-one input.1

1More formally, the adversary method cannot prove any lower bound on Q2 (f) better than RC (f),
where RC(f) is the randomized certificate complexity of f (to be defined in Chapter 8). But for the

35

My proof is an adaptation of the polynomial method, introduced to quantum com-
puting by Beals et al. [45]. Their idea was to reduce questions about quantum algorithms
to easier questions about multivariate polynomials. In particular, if a quantum algorithm
makes T queries, then its acceptance probability is a polynomial over the input bits of
degree at most 2T . So by showing that any polynomial approximating the desired output
has high degree, one obtains a lower bound on T .

To lower-bound the degree of a multivariate polynomial, a key technical trick is to
construct a related univariate polynomial. Beals et al. [45], using a lemma due to Minsky
and Papert [180], replace a polynomial p (X) (where X is a bit string) by q (|X|) (where
|X| denotes the Hamming weight of X), satisfying

q (k) = EX
|X|=k

p (X)

and deg (q) ≤ deg (p).
Here I construct the univariate polynomial in a different way. I consider a uniform

distribution over g-to-one inputs, where g might be greater than 2. Even though the
problem is to distinguish g = 1 from g = 2, the acceptance probability must lie in the
interval [0, 1] for all g, and that is a surprisingly strong constraint. I show that the
acceptance probability is close to a univariate polynomial in g of degree at most 2T . I then
obtain a lower bound by generalizing a classical approximation theory result of Ehlich and
Zeller [106] and Rivlin and Cheney [206]. Much of the proof deals with the complication
that g does not divide n in general.

Shortly after this work was completed, Shi [220] improved it to give a tight lower
bound of Ω

(
n1/3

)
for the collision problem, when the xi range from 1 to 3n/2 rather than

from 1 to n. For a range of size n, his bound was Ω
(
n1/4

)
. Subsequently Kutin [163]

and Ambainis [29] showed a lower bound of Ω
(
n1/3

)
for a range of size n as well. By a

simple reduction, these results imply a lower bound of Ω
(
n2/3

)
for the element distinctness

problem—that of deciding whether there exist i 6= j such that xi = xj. The previous best
known lower bound was Ω

(
n1/2

)
, and at the time of Shi’s work, the best known upper

bound was O
(
n3/4

)
, due to Buhrman et al. [77]. Recently, however, Ambainis [30] gave a

novel algorithm based on quantum walks that matches the n2/3 lower bound.
The chapter is organized as follows. Section 6.1 motivates the collision lower bound

within quantum computing, pointing out connections to collision-resistant hash functions,
the nonabelian hidden subgroup problem, statistical zero-knowledge, and information era-
sure. Section 6.2 gives technical preliminaries, Section 6.3 proves the crucial fact that the
acceptance probability is “almost” a univariate polynomial, and Section 6.4 completes the
lower bound argument. I conclude in Section 6.6 with some open problems. In Section 6.5
I show a lower bound of Ω

(
n1/7

)
for the set comparison problem, a variant of the collision

problem needed for the application to information erasure.

collision function, RC (Coln) = O (1).

36

6.1 Motivation

In Chapter 1 I listed seven implications of the collision lower bound; this section discusses a
few of those implications in more detail. The implication that motivated me personally—
concerning the computational power of so-called hidden-variable theories—is deferred to
Chapter 16.

6.1.1 Oracle Hardness Results

The original motivation for the collision problem was to model (strongly) collision-resistant
hash functions in cryptography. There is a large literature on collision-resistant hashing;
see [203, 42] for example. When building secure digital signature schemes, it is useful to
have a family of hash functions {Hi}, such that finding a distinct (x, y) pair with Hi (x) =
Hi (y) is computationally intractable. A quantum algorithm for finding collisions using
O (polylog (n)) queries would render all hash functions insecure against quantum attack
in this sense. (Shor’s algorithm [221] already renders hash functions based on modular
arithmetic insecure.) My result indicates that collision-resistant hashing might still be
possible in a quantum setting.

The collision problem also models the nonabelian hidden subgroup problem, of
which graph isomorphism is a special case. Given a group G and subgroup H ≤ G,
suppose we have oracle access to a function f : G → N such that for all g1, g2 ∈ G,
f (g1) = f (g2) if and only if g1 and g2 belong to the same coset of H. Is there then an
efficient quantum algorithm to determine H? If G is abelian, the work of Simon [222], Shor
[221], and Kitaev [154] implies an affirmative answer. If G is nonabelian, though, efficient
quantum algorithms are known only for special cases [107, 140]. An O (polylog (n))-query
algorithm for the collision problem would yield a polynomial-time algorithm to distinguish
|H| = 1 from |H| = 2, which does not exploit the group structure at all. My result implies
that no such algorithm exists.

Finally, the collision lower bound implies that there exists an oracle relative to
which SZK 6⊂ BQP, where SZK is the class of problems having statistical zero-knowledge
proof protocols. For suppose that a verifier V and prover P both have oracle access to
a sequence X = x1 . . . x2n , which is either one-to-one or two-to-one. To verify with zero
knowledge that X is one-to-one, V can repeatedly choose an i ∈R {1, . . . , 2n} and send xi to
P , whereupon P must send i back to V . Thus, using standard diagonalization techniques,
one can produce an oracle A such that SZKA 6⊂ BQPA.

6.1.2 Information Erasure

Let f : {0, 1}n → {0, 1}m with m ≥ n be a one-to-one function. Then we can consider two
kinds of quantum oracle for f :

(A) a standard oracle, one that maps |x〉 |z〉 to

|x〉 |z ⊕ f (x)〉, or

(B) an erasing oracle (as proposed by Kashefi et al. [152]), which maps |x〉 to |f (x)〉, in
effect “erasing” |x〉.

37

Intuitively erasing oracles seem at least as strong as standard ones, though it is
not clear how to simulate the latter with the former without also having access to an oracle
that maps |y〉 to

∣∣f−1 (y)
〉
. The question that concerns us here is whether erasing oracles

are more useful than standard ones for some problems. One-way functions provide a clue:
if f is one-way, then (by assumption) |x〉 |f (x)〉 can be computed efficiently, but if |f (x)〉
could be computed efficiently given |x〉 then so could |x〉 given |f (x)〉, and hence f could be
inverted. But can we find, for some problem, an exponential gap between query complexity
given a standard oracle and query complexity given an erasing oracle?

In Section 6.5 I extend the collision lower bound to show an affirmative answer.
Define the set comparison problem of size n, or SetCompn, as follows. We are given as input
two sequences, X = x1 . . . xn and Y = y1 . . . yn, such that for each i, xi, yi ∈ {1, . . . , 2n}.
A query has the form (b, i), where b ∈ {0, 1} and i ∈ {1, . . . , n}, and produces as output
(0, xi) if b = 0 and (1, yi) if b = 1. Sequences X and Y are both one-to-one; that is, xi 6= xj
and yi 6= yj for all i 6= j. We are furthermore guaranteed that either

(1) X and Y are equal as sets (that is, {x1, . . . , xn} = {y1, . . . , yn}) or

(2) X and Y are far as sets (that is,

|{x1, . . . , xn} ∪ {y1, . . . , yn}| ≥ 1.1n).

As before the problem is to decide whether (1) or (2) holds.
This problem can be solved with high probability in a constant number of queries

using an erasing oracle, by using a trick similar to that of Watrous [239] for verifying group
non-membership. First, using the oracle, we prepare the uniform superposition

1√
2n

∑

i∈{1,...,n}
(|0〉 |xi〉 + |1〉 |yi〉) .

We then apply a Hadamard gate to the first register, and finally we measure the first register.
If X and Y are equal as sets, then interference occurs between every (|0〉 |z〉 , |1〉 |z〉) pair
and we observe |0〉 with certainty. But if X and Y are far as sets, then basis states |b〉 |z〉
with no matching |1 − b〉 |z〉 have probability weight at least 1/10, and hence we observe |1〉
with probability at least 1/20.

In Section 6.5 I sketch a proof that Q2 (SetCompn) = Ω
(
n1/7

)
; that is, no efficient

quantum algorithm using a standard oracle exists for this problem. Recently, Midrijanis

[178] gave a lower bound of Ω
(
(n/ log n)1/5

)
not merely for the set comparison problem,

but for the set equality problem (where we are promised that X and Y are either equal or
disjoint).

6.2 Preliminaries

Let A be a quantum query algorithm as defined in Section 5.1. A basis state of A is written
|i, z〉. Then a query replaces each |i, z〉 by |i, z ⊕ xi〉, where xi is exclusive-OR’ed into some
specified location of z. Between queries, the algorithm can perform any unitary operation

38

that does not depend on the input. Let T be the total number of queries. Also, assume
for simplicity that all amplitudes are real; this restriction is without loss of generality [55].

Let α
(t)
i,z (X) be the amplitude of basis state |i, z〉 after t queries when the input

is X. Also, let ∆ (xi, h) = 1 if xi = h, and ∆ (xi, h) = 0 if xi 6= h. Let P (X) be the
probability that A returns “two-to-one” when the input is X. Then we obtain a simple
variant of a lemma due to Beals et al. [45].

Lemma 1 P (X) is a multilinear polynomial of degree at most 2T over the ∆ (xi, h).

Proof. We show, by induction on t, that for all basis states |i, z〉, the amplitude

α
(t)
i,z (X) is a multilinear polynomial of degree at most t over the ∆ (xi, h). Since P (X) is

a sum of squares of α
(t)
i,z ’s, the lemma follows.

The base case (t = 0) holds since, before making any queries, each α
(t)
i,z is a degree-

0 polynomial over the ∆ (xi, h). A unitary transformation on the algorithm part replaces

each α
(t)
i,z by a linear combination of α

(t)
i,z ’s, and hence cannot increase the degree. Suppose

the lemma holds prior to the tth query. Then

α
(t+1)
i,z (X) =

∑

1≤h≤n
α

(t)
i,z⊕h (X) ∆ (xi, h) ,

and we are done.

6.3 Reduction to Bivariate Polynomial

Call the point (g,N) ∈ <2 an (n, T)-quasilattice point if and only if

(1) g and N are integers, with g dividing N ,

(2) 1 ≤ g ≤ √
n,

(3) n ≤ N ≤ n+ n/ (10T), and

(4) if g = 1 then N = n.

For quasilattice point (g,N), define Dn (g,N) to be the uniform distribution over
all size-n subfunctions of g-to-1 functions having domain {1, . . . , N} and range a subset
of {1, . . . , n}. More precisely: to draw an X from Dn (g,N), we first choose a set S ⊆
{1, . . . , n} with |S| = N/g ≤ n uniformly at random. We then choose a g-to-1 function
X̂ = x̂1 . . . x̂N from {1, . . . , N} to S uniformly at random. Finally we let xi = x̂i for each
1 ≤ i ≤ n.

Let P (g,N) be the probability that algorithm A returns z = 2 when the input is
chosen from Dn (g,N):

P (g,N) = EX
X∈Dn(g,N)

[P (X)] .

We then have the following surprising characterization:

39

Lemma 2 For all sufficiently large n and if T ≤ √
n/3, there exists a bivariate polynomial

q (g,N) of degree at most 2T such that if (g,N) is a quasilattice point, then

|P (g,N) − q (g,N)| < 0.182

(where the constant 0.182 can be made arbitrarily small by adjusting parameters).

Proof. Let I be a product of ∆ (xi, h) variables, with degree r (I), and let I (X) ∈
{0, 1} be I evaluated on input X. Then define

γ (I, g,N) = EX
X∈Dn(g,N)

[I (X)]

to be the probability that monomial I evaluates to 1 when the input is drawn from Dn (g,N).
Then by Lemma 1, P (X) is a polynomial of degree at most 2T over X, so

P (g,N) = EX
X∈Dn(g,N)

[P (X)]

= EX
X∈Dn(g,N)


 ∑

I:r(I)≤2t

βII (X)




=
∑

I:r(I)≤2T

βIγ (I, g,N)

for some coefficients βI .
We now calculate γ (I, g,N). Assume without loss of generality that for all

∆ (xi, h1) ,∆ (xj, h2) ∈ I, either i 6= j or h1 = h2, since otherwise γ (I, g,N) = 0.
Define the “range” Z (I) of I to be the set of all h such that ∆ (xi, h) ∈ I. Let

w (I) = |Z (I)|; then we write Z (I) =
{
z1, . . . , zw(I)

}
. Clearly γ (I, g,N) = 0 unless

Z (I) ∈ S, where S is the range of X̂. By assumption,

N

g
≥ n√

n
≥ 2T ≥ r (I)

so the number of possible S is

(
n

N/g

)
and, of these, the number that contain Z is

(
n− w (I)

N/g −w (I)

)
.

Then, conditioned on Z ∈ S, what is the probability that γ (I, g,N) = 1? The

total number of g-to-1 functions with domain size N is N !/ (g!)N/g , since we can permute
the N function values arbitrarily, but must not count permutations that act only within
the N/g constant-value blocks of size g.

Among these functions, how many satisfy γ (I, g,N) = 1? Suppose that, for each
1 ≤ j ≤ w (I), there are rj (I) distinct i such that ∆ (xi, zj) ∈ I. Clearly

r1 (I) + · · · + rw(I) (I) = r (I) .

40

Then we can permute the (N − r (I))! function values outside of I arbitrarily, but must not
count permutations that act only within the N/g constant-value blocks, which have size
either g or g − ri (I) for some i. So the number of functions for which γ (I, g,N) = 1 is

(N − r (I))!

(g!)N/g−w(I)
∏w(I)

i=1
(g − ri (I))!

.

Putting it all together,

γ (I, g,N) =

(
n− w (I)

N/g − w (I)

)

(
n

N/g

) · (N − r (I))! (g!)N/g

(g!)N/g−w(I)N !
∏w(I)

i=1
(g − ri (I))!

=
(N − r (I))! (n− w (I))! (N/g)!

N !n! (N/g − w (I))!
· (g!)w(I)

∏w(I)

i=1
(g − ri (I))!

=
(N − r (I))!

N !

(n− w (I))!

n!
·
w(I)−1∏

i=0

(
N

g
− i

)w(I)∏

i=1


g

ri(I)−1∏

j=1

(g − j)




=
(N − 2T)!n!

N ! (n− 2T)!
q̃n,T,I (g,N)

where

q̃n,T,I (g,N) =
(n− w (I))! (n− 2T)!

(n!)2
·

2T−1∏

i=r(I)

(N − i)

w(I)−1∏

i=0

(N − gi)

w(I)∏

i=1

ri(I)−1∏

j=1

(g − j)

is a bivariate polynomial of total degree at most

(2T − r (I)) + w (I) + (r (I) − w (I)) = 2T.

(Note that in the case ri (I) > g for some i, this polynomial evaluates to 0, which is what
it ought to do.) Hence

P (g,N) =
∑

I:r(I)≤2T

βIγ (I, g,N)

=
(N − 2T)!n!

N ! (n− 2T)!
q (g,N)

where
q (g,N) =

∑

I:r(I)≤2T

βI q̃n,T,I (g,N) .

Clearly
(N − 2T)!n!

N ! (n− 2T)!
≤ 1.

41

Since N ≤ n+ n/ (10T) and T ≤ √
n/3, we also have

(N − 2T)!n!

N ! (n− 2T)!
≥
(
n− 2T + 1

N − 2T + 1

)2T

≥ exp

{
−1

5

n

n− (2T + 1) /n

}

≥ 0.818

for all sufficiently large n. Thus, since 0 ≤ P (g,N) ≤ 1,

|P (g,N) − q (g,N)| < 0.182

and we are done.

6.4 Lower Bound

We have seen that, if a quantum algorithm for the collision problem makes few queries,
then its acceptance probability can be approximated by a low-degree bivariate polynomial.
This section completes the lower bound proof by showing that no such polynomial exists.
To do so, it generalizes an approximation theory result due to Rivlin and Cheney [206] and
(independently) Ehlich and Zeller [106]. That result was applied to query complexity by
Nisan and Szegedy [186] and later by Beals et al. [45].

Theorem 3 Q2 (Coln) = Ω
(
n1/5

)
.

Proof. Let g have range 1 ≤ g ≤ G. Then the quasilattice points (g,N) all lie
in the rectangular region R = [1, G] × [n, n+ n/ (10T)]. Recalling the polynomial q (g,N)
from Lemma 2, define

d (q) = max
(g,N)∈R

(
max

{∣∣∣∣
∂q

∂g

∣∣∣∣ ,
n

10T (G− 1)
·
∣∣∣∣
∂q

∂N

∣∣∣∣
})

.

Suppose without loss of generality that we require

P (1, n) ≤ 1

10
and P (2, n) ≥ 9

10

(that is, algorithm A distinguishes 1-to-1 from 2-to-1 functions with error probability at
most 1/10). Then, since

|P (g,N) − q (g,N)| < 0.182

by elementary calculus we have

d (q) ≥ max
1≤g≤2

∂q

∂g
> 0.8 − 2 (0.182) = 0.436.

An inequality due to Markov (see [82, 186]) states that, for a univariate polynomial p, if
b1 ≤ p (x) ≤ b2 for all a1 ≤ x ≤ a2, then

max
a[1]≤x≤a[2]

∣∣∣∣
dp (x)

dx

∣∣∣∣ ≤
b2 − b1
a2 − a1

deg (p)2 .

42

Clearly for every point
(
ĝ, N̂

)
∈ R, there exists a quasilattice point (g,N) for which

|g − ĝ| ≤ 1 and
∣∣∣N − N̂

∣∣∣ ≤ G.

For take g = dĝe—or, in the special case ĝ = 1, take g = 2, since there is only one quasilattice
point with g = 1. Furthermore, since P (g,N) represents an acceptance probability at such
a point, we have

−0.182 < q (g,N) < 1.182.

Observe that for all
(
ĝ, N̂

)
∈ R,

−0.182 −
(

10TG (G− 1)

n
+ 1

)
d (q) < q

(
ĝ, N̂

)
< 1.182 +

(
10TG (G− 1)

n
+ 1

)
d (q) .

For consider a quasilattice point close to
(
ĝ, N̂

)
, and note that the maximum-

magnitude derivative is at most d (q) in the g direction and 10T (G− 1) d (q) /n in the N
direction.

Let (g∗, N∗) be a point in R at which the weighted maximum-magnitude derivative
d (q) is attained. Suppose first that the maximum is attained in the g direction. Then
q (g,N∗) (with N∗ constant) is a univariate polynomial with

∣∣∣∣
dq (g,N∗)

dg

∣∣∣∣ > 0.436

for some 1 ≤ g ≤ G. So

2T ≥ deg (q (g,N∗))

≥
√

d (q) (G− 1)

1.364 + 2d (q) (1 + 10TG (G− 1) /n)

= Ω

(
min

{√
G,

√
n

TG

})
.

Similarly, suppose the maximum d (q) is attained in the N direction. Then
q (g∗, N) (with g∗ constant) is a univariate polynomial with

∣∣∣∣
dq (g∗, N)

dN

∣∣∣∣ >
0.436T (G− 1)

n

for some n ≤ N ≤ n+ n/ (10T). So

2T ≥
√

(10T (G− 1) /n) d (q)n/ (10T)

1.364 + 2d (q) (1 + 10TG (G− 1) /n)

≥ Ω

(
min

{√
G,

√
n

TG

})
.

43

One can show that the lower bound on T is optimized when we take G = n2/5 ≤√
n. Then

T = Ω

(
min

{
n1/5,

√
n√

Tn1/5

})
,

T = Ω
(
n1/5

)

and we are done.

6.5 Set Comparison

Here I sketch a proof that Q2 (SetCompn) = Ω
(
n1/7

)
, where SetCompn is the set compari-

son problem of size n as defined in Section 6.1.2.
The idea is the following. We need a distribution of inputs with a parameter g,

such that the inputs are one-to-one when g = 1 or g = 2—since otherwise the problem of
distinguishing g = 1 from g = 2 would be ill-defined for erasing oracles. On the other
hand, the inputs must not be one-to-one for all g > 2—since otherwise the lower bound for
standard oracles would apply also to erasing oracles, and we would not obtain a separation
between the two. Finally, the acceptance probability must be close to a polynomial in g.

The solution is to consider κ (g)-to-one inputs, where

κ (g) = 4g2 − 12g + 9.

is a quadratic with κ (1) = κ (2) = 1. The total range of the inputs (on sequences X and
Y combined) has size roughly n/g; thus, we can tell the g = 1 inputs apart from the g = 2
inputs using an erasing oracle, even though κ (g) is the same for both. The disadvantage is
that, because κ (g) increases quadratically rather than linearly in g, the quasilattice points
become sparse more quickly. That is what weakens the lower bound from Ω

(
n1/5

)
to

Ω
(
n1/7

)
. Note that, using the ideas of Shi [220], one can improve my lower bound on

Q2 (SetCompn) to Ω
(
n1/6

)
.

Call (g,N,M) ∈ <3 an (n, T)-super-quasilattice point if and only if

(1) g is an integer in
[
1, n1/3

]
,

(2) N and M are integers in [n, n (1 + 1/ (100T))],

(3) g divides N ,

(4) if g = 1 then N = n,

(5) κ (g) divides M , and

(6) if g = 2 then M = n.

For super-quasilattice point (g,N,M), we draw input (X,Y) = (x1 . . . xn, y1 . . . yn)
from distribution Ln (g,N,M) as follows. We first choose a set S ⊆ {1, . . . , 2n} with
|S| = 2N/g ≤ 2n uniformly at random. We then choose two sets SX , SY ⊆ S with

44

|SX | = |SX | = M/κ (g) ≤ |S|, uniformly at random and independently. Next we choose
κ (g)-1 functions X̂ = x̂1 . . . x̂N : {1, . . . ,M} → SX and Ŷ = ŷ1 . . . ŷN : {1, . . . ,M} → SY
uniformly at random and independently. Finally we let xi = x̂i and yi = ŷi for each
1 ≤ i ≤ n.

Define sets XS = {x1, . . . , xn} and YS = {y1, . . . , yn}. Suppose g = 1 and
N = M = n; then by Chernoff bounds,

Pr
(X,Y)∈Ln(1,n,n)

[|XS ∪ YS | < 1.1n] ≤ 2e−n/10.

Thus, if algorithm A can distinguish |XS ∪ YS| = n from |XS ∪ YS| ≥ 1.1n with probability
at least 9/10, then it can distinguish (X,Y) ∈ Ln (1, n, n) from (X,Y) ∈ Ln (2, n, n) with
probability at least 9/10 − 2e−n/10. So a lower bound for the latter problem implies an
equivalent lower bound for the former.

Define P (X,Y) to be the probability that the algorithm returns that X and Y
are far on input (X,Y), and let

P (g,N,M) = EX
(X,Y)∈Ln(g,N,M)

[P (X,Y)] .

We then have

Lemma 4 For all sufficiently large n and if T ≤ n1/3/8, there exists a trivariate polynomial
q (g,N,M) of degree at most 8T such that if (g,N,M) is a super-quasilattice point, then

|P (g,N,M) − q (g,N,M)| < ε

for some constant 0 < ε < 1/2.

Proof Sketch. By analogy to Lemma 1, P (X,Y) is a multilinear polynomial
of degree at most 2T over variables of the form ∆ (xi, h) and ∆ (yi, h). Let I (X,Y) =
IX (X) IY (Y) where IX is a product of rX (I) distinct ∆ (xi, h) variables and IY is a product
of rY (I) distinct ∆ (yi, h) variables. Let r (I) = rX (I) + rY (I). Define

γ (I, g,N,M) = EX
(X,Y)∈Ln(g,N,M)

[I (X,Y)] ;

then
P (g,N,M) =

∑

I:r(I)≤2T

βIγ (I, g,N,M)

for some coefficients βI . We now calculate γ (I, g,N,M). As before we assume there are
no pairs of variables ∆ (xi, h1) ,∆ (xi, h2) ∈ I with h1 6= h2. Let ZX (I) be the range of IX
and let ZY (I) be the range of IY . Then let Z (I) = ZX (I)∪ZY (I). Let wX (I) = |ZX (I)|,
wY (I) = |ZY (I)|, and w (I) = |Z (I)|. By assumption

N

g
≥ M

κ (g)
≥ 1

4
n1/3 ≥ 2T

45

so

Pr [Z (I) ⊆ S] =

(
2n− w (I)

2N/g − w (I)

)

(
2n

2N/g

) .

The probabilities that ZX (I) ⊆ SX given Z (I) ⊆ S and ZY (I) ⊆ SY given Z (I) ⊆ S can
be calculated similarly.

Let rX,1 (I) , . . . , rX,w[X](I) (I) be the multiplicities of the range elements in ZX (I),
so that

rX,1 (I) + · · · + rX,w[X](I) (I) = rX (I) .

Then

Pr [IX (X) | ZX (I) ⊆ SX] =
(M − rX (I))!

M !

w[X](I)∏

i=1

r[X,i](I)−1∏

j=0

(κ (g) − j)

and similarly for Pr [IY (Y) | ZY (I) ⊆ SY].
Putting it all together and manipulating, we obtain (analogously to Lemma 1)

that
γ (I, g,N,M) ≈ q̃n,T,I (g,N,M)

where q̃n,T,I (g,N,M) is a trivariate polynomial in (g,N,M) of total degree at most 8T .
Thus

P (g,N,M) ≈ q (g,N,M)

where q (g,N,M) is a polynomial of total degree at most 8T . The argument that q
approximates P to within a constant is analogous to that of Lemma 2.

The remainder of the lower bound argument follows the lines of Theorem 3.

Theorem 5 Q2 (SetCompn) = Ω
(
n1/7

)
.

Proof Sketch. Let g ∈ [1, G] for some G ≤ n1/3. Then the super-quasilattice
points (g,N,M) all lie in R = [1, G] × [n, n+ n/ (100T)]2. Define d(q) to be

max
(g,N,M)∈R

(
max

{∣∣∣∣
∂q

∂g

∣∣∣∣ ,
n/100T

(G− 1)

∣∣∣∣
∂q

∂N

∣∣∣∣ ,
n/100T

(G− 1)

∣∣∣∣
∂q

∂M

∣∣∣∣
})

.

Then d (q) ≥ δ for some constant δ > 0, by Lemma 4.

For every point
(
ĝ, N̂ , M̂

)
∈ R, there exists a super-quasilattice point (g,N,M)

such that |g − ĝ| ≤ 1,
∣∣∣N − N̂

∣∣∣ ≤ G, and
∣∣∣M − M̂

∣∣∣ ≤ κ (G) . Hence, q
(
ĝ, N̂ , M̂

)
can

deviate from [0, 1] by at most

O

((
TG3

n
+ 1

)
d (q)

)
.

46

Let (g∗, N∗,M∗) be a point in R at which d (q) is attained. Suppose d (q) is
attained in the g direction; the cases of the N and M directions are analogous. Then
q (g,N∗,M∗) is a univariate polynomial in g, and

8T ≥ deg (q (g,N∗,M∗))

= Ω

(
min

{√
G,

√
n

TG2

})
.

One can show that the bound is optimized when we take G = n2/7 ≤ n1/3. Then

T = Ω

(
min

{
n1/7,

√
n√

Tn2/7

})
,

T = Ω
(
n1/7

)
.

6.6 Open Problems

In my original paper on the collision problem, I listed four open problems: improving the
collision lower bound to Ω

(
n1/3

)
; showing any nontrivial quantum lower bound for the set

equality problem; proving a time-space tradeoff lower bound for the collision problem; and
deciding whether quantum query complexity and degree as a real polynomial are always
asymptotically equal. Happily, three of these problems have since been resolved [163, 178,
28], but the time-space tradeoff remains wide open. We would like to say (for example)
that if a quantum computer is restricted to using O (log n) qubits, then it needs Θ (

√
n)

queries for the collision problem, ordinary Grover search being the best possible algorithm.
Currently, we cannot show such a result for any problem with Boolean output, only for
problems such as sorting with a large non-Boolean output [158].

Another problem is to give an oracle relative to which SZK 6⊂ QMA, where QMA

is Quantum Merlin Arthur as defined in [239]. In other words, show that if a function is
one-to-one rather than two-to-one, then this fact cannot be verified using a small number
of quantum queries, even with the help of a succinct quantum proof.

Finally, is it the case that for all (partial or total) functions f that are invariant
under permutation symmetry, R2 (f) and Q2 (f) are polynomially related?

47

Chapter 7

Local Search

This chapter deals with the following problem.
Local Search. Given an undirected graph G = (V,E) and function f : V → N,

find a local minimum of f —that is, a vertex v such that f (v) ≤ f (w) for all neighbors w
of v.

We will be interested in the number of queries that an algorithm needs to solve
this problem, where a query just returns f (v) given v. We will consider deterministic,
randomized, and quantum algorithms. Section 7.1 motivates the problem theoretically and
practically; this section explains the results.

First, though, we need some simple observations. If G is the complete graph of

size N , then clearly Ω (N) queries are needed to find a local minimum (or Ω
(√

N
)

with

a quantum computer). At the other extreme, if G is a line of length N , then even a
deterministic algorithm can find a local minimum in O (logN) queries, using binary search:
query the middle two vertices, v and w. If f (v) ≤ f (w), then search the line of length
(N − 2) /2 connected to v; otherwise search the line connected to w. Continue recursively
in this manner until a local minimum is found.

So the interesting case is when G is a graph of ‘intermediate’ connectedness: for
example, the Boolean hypercube {0, 1}n, with two vertices adjacent if and only if they have
Hamming distance 1. For this graph, Llewellyn, Tovey, and Trick [171] showed a Ω (2n/

√
n)

lower bound on the number of queries needed by any deterministic algorithm, using a simple
adversary argument. Intuitively, until the set of vertices queried so far comprises a vertex
cut (that is, splits the graph into two or more connected components), an adversary is free
to return a descending sequence of f -values: f (v1) = 2n for the first vertex v1 queried by
the algorithm, f (v2) = 2n−1 for the second vertex queried, and so on. Moreover, once the
set of queried vertices does comprise a cut, the adversary can choose the largest connected
component of unqueried vertices, and restrict the problem recursively to that component.
So to lower-bound the deterministic query complexity, it suffices to lower-bound the size
of any cut that splits the graph into two reasonably large components.1 For the Boolean
hypercube, Llewellyn et al. showed that the best one can do is essentially to query all
Ω (2n/

√
n) vertices of Hamming weight n/2.

1Llewellyn et al. actually give a tight characterization of deterministic query complexity in terms of vertex
cuts.

48

Llewellyn et al.’s argument fails completely in the case of randomized algorithms.
By Yao’s minimax principle, what we want here is a fixed distribution D over functions
f : {0, 1}n → N, such that any deterministic algorithm needs many queries to find a local
minimum of f , with high probability if f is drawn from D. Taking D to be uniform will
not do, since a local minimum of a uniform random function is easily found. However,
Aldous [24] had the idea of defining D via a random walk, as follows. Choose a vertex
v0 ∈ {0, 1}n uniformly at random; then perform an unbiased walk2 v0, v1, v2, . . . starting
from v0. For each vertex v, set f (v) equal to the first hitting time of the walk at v—
that is, f (v) = min {t : vt = v}. Clearly any f produced in this way has a unique local
minimum at v0, since for all t > 0, if vertex vt is visited for the first time at step t then
f (vt) > f (vt−1). Using sophisticated random walk analysis, Aldous managed to show
a lower bound of 2n/2−o(n) on the expected number of queries needed by any randomized
algorithm to find v0.

3 (As we will see in Section 7.2, this lower bound is close to tight.)
Intuitively, since a random walk on the hypercube mixes in O (n log n) steps, an algorithm
that has not queried a v with f (v) < 2n/2 has almost no useful information about where
the unique minimum v0 is, so its next query will just be a “stab in the dark.”

However, Aldous’s result leaves several questions about Local Search unan-
swered. What if the graph G is a 3-D cube, on which a random walk does not mix very
rapidly? Can we still lower-bound the randomized query complexity of finding a local
minimum? More generally, what parameters of G make the problem hard or easy? Also,
what is the quantum query complexity of Local Search?

This chapter presents a new approach to Local Search, which I believe points the
way to a complete understanding of its complexity. The approach is based on Ambainis’s
quantum adversary method [27]. Surprisingly, the approach yields new and simpler lower
bounds for the problem’s classical randomized query complexity, in addition to quantum
lower bounds. Thus, along with recent work by Kerenidis and de Wolf [153] and by
Aharonov and Regev [22], the results of this chapter illustrate how quantum ideas can help
to resolve classical open problems.

The results are as follows. For the Boolean hypercube G = {0, 1}n, I show that
any quantum algorithm needs Ω

(
2n/4/n

)
queries to find a local minimum on G, and any

randomized algorithm needs Ω
(
2n/2/n2

)
queries (improving the 2n/2−o(n) lower bound of

Aldous [24]). The proofs are elementary and do not require random walk analysis. By
comparison, the best known upper bounds are O

(
2n/3n1/6

)
for a quantum algorithm and

O
(
2n/2

√
n
)

for a randomized algorithm. If G is a d-dimensional grid of size N1/d ×
· · · × N1/d, where d ≥ 3 is a constant, then I show that any quantum algorithm needs

Ω
(√

N1/2−1/d/ logN
)

queries to find a local minimum onG, and any randomized algorithm

needs Ω
(
N1/2−1/d/ logN

)
queries. No nontrivial lower bounds (randomized or quantum)

were previously known in this case.4

In a preprint discussing these results, I raised as my “most ambitious” conjecture
that the deterministic and quantum query complexities of local search are polynomially
related for every family of graphs. At the time, it was not even known whether deterministic

2Actually, Aldous used a continuous-time random walk, so the functions would be from {0, 1}n to R.
3Independently and much later, Droste et al. [101] showed the weaker bound 2g(n) for any g (n) = o (n).
4A lower bound on deterministic query complexity was known for such graphs [170].

49

and randomized query complexities were polynomially related, not even for simple examples
such as the 2-dimensional square grid. Subsequently Santha and Szegedy [213] spectacularly
resolved the conjecture, by showing that the quantum query complexity is always at least
the 19th root (!) of the deterministic complexity. On the other hand, in the specific case of
the hypercube, my lower bound is close to tight; Santha and Szegedy’s is not. Also, I give
randomized lower bounds that are quadratically better than my quantum lower bounds;
Santha and Szegedy give only quantum lower bounds.

In another recent development, Ambainis [25] has improved the Ω
(
2n/4/n

)
quan-

tum lower bound for local search on the hypercube to 2n/3/nO(1), using a hybrid argument.
Note that Ambainis’s lower bound matches the upper bound up to a polynomial factor.

The chapter is organized as follows. Section 7.1 motivates lower bounds on Local

Search, pointing out connections to simulated annealing, quantum adiabatic algorithms,
and the complexity class TFNP of total function problems. Section 7.2 defines notation and
reviews basic facts about Local Search, including upper bounds. In Section 7.3 I give
an intuitive explanation of Ambainis’s quantum adversary method, then state and prove a
classical analogue of Ambainis’s main lower bound theorem. Section 7.4 introduces snakes,
a construction by which I apply the two adversary methods to Local Search. I show
there that to prove lower bounds for any graph G, it suffices to upper-bound a combinatorial
parameter ε of a ‘snake distribution’ on G. Section 7.5 applies this framework to specific
examples of graphs: the Boolean hypercube in Section 7.5.1, and the d-dimensional grid in
Section 7.5.2.

7.1 Motivation

Local search is the most effective weapon ever devised against hard optimization problems.
For many real applications, neither backtrack search, nor approximation algorithms, nor
even Grover’s algorithm can compare. Furthermore, along with quantum computing, local
search (broadly defined) is one of the most interesting links between computer science and
Nature. It is related to evolutionary biology via genetic algorithms, and to the physics of
materials via simulated annealing. Thus it is both practically and scientifically important
to understand its performance.

The conventional wisdom is that, although local search performs well in practice,
its central (indeed defining) flaw is a tendency to get stuck at local optima. If this were
correct, one corollary would be that the reason local search performs so well is that the
problem it really solves—finding a local optimum—is intrinsically easy. It would thus be
unnecessary to seek further explanations for its performance. Another corollary would be
that, for unimodal functions (which have no local optima besides the global optimum), the
global optimum would be easily found.

However, the conventional wisdom is false. The results of Llewellyn et al. [171]
and Aldous [24] show that even if f is unimodal, any classical algorithm that treats f as a
black box needs exponential time to find the global minimum of f in general. My results
extend this conclusion to quantum algorithms. In my view, the practical upshot of these
results is that they force us to confront the question: What is it about ‘real-world’ problems
that makes it easy to find a local optimum? That is, why do exponentially long chains

50

of descending values, such as those used for lower bounds, almost never occur in practice,
even in functions with large range sizes? One possibility is that the functions that occur in
practice look “globally” like random functions, but I do not know whether that is true in
any meaningful sense.

The results of this chapter are also relevant for physics. Many physical sys-
tems, including folding proteins and networks of springs and pulleys, can be understood as
performing ‘local search’ through an energy landscape to reach a locally-minimal energy
configuration. A key question is, how long will the system take to reach its ground state
(that is, a globally-minimal configuration)? Of course, if there are local optima, the sys-
tem might never reach its ground state, just as a rock in a mountain crevice does not roll
to the bottom by going up first. But what if the energy landscape is unimodal? And
moreover, what if the physical system is quantum? My results show that, for certain en-
ergy landscapes, even a quantum system would take exponential time to reach its ground
state, regardless of what external Hamiltonian is applied to “drive” it. So in particular,
the quantum adiabatic algorithm proposed by Farhi et al. [108], which can be seen as a
quantum analogue of simulated annealing, needs exponential time to find a local minimum
in the worst case.

Finally, this chapter’s results have implications for so-called total function problems
in complexity theory. Megiddo and Papadimitriou [176] defined a complexity class TFNP,
consisting (informally) of those NP search problems for which a solution always exists.
For example, we might be given a function f : {0, 1}n → {0, 1}n−1 as a Boolean circuit,
and asked to find any distinct x, y pair such that f (x) = f (y). This particular problem
belongs to a subclass of TFNP called PPP (Polynomial Pigeonhole Principle). Notice that
no promise is involved: the combinatorial nature of the problem itself forces a solution to
exist, even if we have no idea how to find it. In a recent talk, Papadimitriou [189] asked
broadly whether such ‘nonconstructive existence problems’ might be good candidates for
efficient quantum algorithms. In the case of PPP problems like the one above, the collision
lower bound of Chapter 6 implies a negative answer in the black-box setting. For other
subclasses of TFNP, such as PODN (Polynomial Odd-Degree Node), a quantum black-box
lower bound follows easily from the optimality of Grover’s search algorithm.

However, there is one important subclass of TFNP for which no quantum lower
bound was previously known. This is PLS (Polynomial Local Search), defined by Johnson,
Papadimitriou, and Yannakakis [151] as a class of optimization problems whose cost function
f and neighborhood function η (that is, the set of neighbors of a given point) are both
computable in polynomial time.5 Given such a problem, the task is to output any local
minimum of the cost function: that is, a v such that f (v) ≤ f (w) for all w ∈ η (v). The
lower bound of Llewellyn et al. [171] yields an oracle A relative to which FPA 6= PLSA,
by a standard diagonalization argument along the lines of Baker, Gill, and Solovay [41].
Likewise, the lower bound of Aldous [24] yields an oracle relative to which PLS 6⊂ FBPP,
where FBPP is simply the function version of BPP. The results of this chapter yield the
first oracle relative to which PLS 6⊂ FBQP. In light of this oracle separation, I raise an

5Some authors require only the minimum neighbor of a given point to be computable in polynomial
time, which does not seem like the “right” idealization to me. In any case, for lower bound purposes we
always assume the algorithm knows the whole neighborhood structure in advance, and does not need to
make queries to learn about it.

51

admittedly vague question: is there a nontrivial “combinatorial” subclass of TFNP that we
can show is contained in FBQP?

7.2 Preliminaries

In the Local Search problem, we are given an undirected graph G = (V,E) with N = |V |,
and oracle access to a function f : V → N. The goal is to find any local minimum of f ,
defined as a vertex v ∈ V such that f (v) ≤ f (w) for all neighbors w of v. Clearly such a
local minimum exists. We want to find one using as few queries as possible, where a query
returns f (v) given v. Queries can be adaptive; that is, can depend on the outcomes of
previous queries. We assume G is known in advance, so that only f needs to be queried.
Since we care only about query complexity, not computation time, there is no difficulty in
dealing with an infinite range for f—though for lower bound purposes, it will turn out that

a range of size O
(√

|V |
)

suffices. I do not know of any case where a range larger than this

makes the Local Search problem harder, but I also do not know of a general reduction
from large to small range.

The model of query algorithms is the standard one. Given a graph G, the
deterministic query complexity of Local Search on G, which we denote DLS (G), is
minΓ maxf T (Γ, f,G) where the minimum ranges over all deterministic algorithms Γ, the
maximum ranges over all f , and T (Γ, f,G) is the number of queries made to f by Γ before
it halts and outputs a local minimum of f (or ∞ if Γ fails to do so). The randomized query
complexity RLS (G) is defined similarly, except that now the algorithm has access to an
infinite random string R, and must only output a local minimum with probability at least
2/3 over R. For simplicity, one can assume that the number of queries T is the same for
all R; clearly this assumption changes the complexity by at most a constant factor.

In the quantum model, an algorithm’s state has the form
∑

v,z,s αv,z,s |v, z, s〉,
where v is the label of a vertex in G, and z and s are strings representing the answer register
and workspace respectively. The αv,z,s’s are complex amplitudes satisfying

∑
v,z,s |αv,z,s|2 =

1. Starting from an arbitrary (fixed) initial state, the algorithm proceeds by an alternating
sequence of queries and algorithm steps. A query maps each |v, z, s〉 to |v, z ⊕ f (v) , s〉,
where ⊕ denotes bitwise exclusive-OR. An algorithm step multiplies the vector of αv,z,s’s
by an arbitrary unitary matrix that does not depend on f . Letting Mf denote the set of
local minima of f , the algorithm succeeds if at the end

∑
v,z,s : v∈Mf

|αv,z,s|2 ≥ 2
3 . Then the

bounded-error quantum query complexity, or QLS (G), is defined as the minimum number
of queries used by a quantum algorithm that succeeds on every f .

It is immediate that QLS (G) ≤ RLS (G) ≤ DLS (G) ≤ N . Also, letting δ be the
maximum degree of G, we have the following trivial lower bound.

Proposition 6 RLS (G) = Ω (δ) and QLS (G) = Ω
(√

δ
)
.

Proof. Let v be a vertex of G with degree δ. Choose a neighbor w of v uniformly
at random, and let f (w) = 1. Let f (v) = 2, and f (u) = 3 for all neighbors u of v
other than w. Let S be the neighbor set of v (including v itself); then for all x /∈ S,
let f (x) = 3 + ∆ (x, S) where ∆ (x, S) is the minimum distance from x to a vertex in S.

52

Clearly f has a unique local minimum at w. However, finding y requires exhaustive search

among the δ neighbors of v, which takes Ω
(√

δ
)

quantum queries by Bennett et al. [51].

A corollary of Proposition 6 is that classically, zero-error randomized query com-
plexity is equivalent to bounded-error up to a constant factor. For given a candidate local
minimum v, one can check using O (δ) queries that v is indeed a local minimum. Since
Ω (δ) queries are needed anyway, this verification step does not affect the overall complexity.

As pointed out by Aldous [24], a classical randomized algorithm can find a local

minimum of f with high probability in O
(√

Nδ
)

queries. The algorithm just queries
√
Nδ

vertices uniformly at random, and lets v0 be a queried vertex for which f (v) is minimal.
It then follows v0 to a local minimum by steepest descent. That is, for t = 0, 1, 2, . . ., it
queries all neighbors of vt, halts if vt is a local minimum, and otherwise sets vt+1 to be the
neighbor w of vt for which f (w) is minimal (breaking ties by lexicographic ordering). A
similar idea yields an improved quantum upper bound.

Proposition 7 For any G, QLS (G) = O
(
N1/3δ1/6

)
.

Proof. The algorithm first chooses N2/3δ1/3 vertices of G uniformly at random,
then uses Grover search to find a chosen vertex v0 for which f (v) is minimal. By a result of
Dürr and Høyer [104], this can be done with high probability in O

(
N1/3δ1/6

)
queries. Next,

for t = 0, 1, 2, . . ., the algorithm performs Grover search over all neighbors of vt, looking
for a neighbor w such that f (w) < f (vt). If it finds such a w, then it sets vt+1 := w and
continues to the next iteration. Otherwise, it repeats the Grover search log (N/δ) times
before finally giving up and returning vt as a claimed local minimum.

The expected number of u such that f (u) < f (v0) is at most N/
(
N2/3δ1/3

)
=

(N/δ)1/3. Since f (vt+1) < f (vt) for all t, clearly the number of such u provides an upper
bound on t. Furthermore, assuming there exists a w such that f (w) < f (vt), the expected
number of repetitions of Grover’s algorithm until such a w is found is O (1). Since each

repetition takes O
(√

δ
)

queries, by linearity of expectation the total expected number of

queries used by the algorithm is therefore

O
(
N1/3δ1/6 + (N/δ)1/3

√
δ + log (N/δ)

√
δ
)

or O
(
N1/3δ1/6

)
. To see that the algorithm finds a local minimum with high probability,

observe that for each t, the probability of not finding a w such that f (w) < f (vt), given

that one exists, is at most c− log(N/δ) ≤ (δ/N)1/3 /10 for a suitable constant c. So by
the union bound, the probability that the algorithm returns a ‘false positive’ is at most
(N/δ)1/3 · (δ/N)1/3 /10 = 1/10.

7.3 Relational Adversary Method

There are essentially two known methods for proving lower bounds on quantum query
complexity: the polynomial method of Beals et al. [45], and the quantum adversary method

53

of Ambainis [27].6 For a few problems, such as the collision problem [2, 220], the polynomial
method succeeded where the adversary method failed. However, for problems that lack
permutation symmetry (such as Local Search), the adversary method has proven more
effective.7

How could a quantum lower bound method possibly be applied classically? When
proving randomized lower bounds, the tendency is to attack “bare-handed”: fix a distri-
bution over inputs, and let x1, . . . , xt be the locations queried so far by the algorithm.
Show that for small t, the posterior distribution over inputs, conditioned on x1, . . . , xt, is
still ‘hard’ with high probability—so that the algorithm knows almost nothing even about
which location xt+1 to query next. This is essentially the approach taken by Aldous [24]
to prove a 2n/2−o(n) lower bound on RLS ({0, 1}n).

In the quantum case, however, it is unclear how to specify what an algorithm
‘knows’ after a given number of queries. So we are almost forced to step back, and identify
general combinatorial properties of input sets that make them hard to distinguish. Once
we have such properties, we can then try to exhibit them in functions of interest.

We will see, somewhat surprisingly, that this “gloved” approach is useful for clas-
sical lower bounds as well as quantum ones. In the relational adversary method, we assume
there exists a T -query randomized algorithm for function F . We consider a set A of 0-
inputs of F , a set B of 1-inputs, and an arbitrary real-valued relation function R (A,B) ≥ 0
for A ∈ A and B ∈ B. Intuitively, R (A,B) should be large if A and B differ in only a few
locations. We then fix a probability distribution D over inputs; by Yao’s minimax principle,
there exists a T -query deterministic algorithm Γ∗ that succeeds with high probability on
inputs drawn from D. Let WA be the set of 0-inputs and WB the set of 1-inputs on which
Γ∗ succeeds. Using the relation function R, we define a separation measure S between WA

and WB , and show that (1) initially S = 0, (2) by the end of the computation S must be
large, and (3) S increases by only a small amount as the result of each query. It follows
that T must be large.

The advantage of the relational method is that converts a “dynamic” opponent—
an algorithm that queries adaptively—into a relatively static one. It thereby makes it
easier to focus on what is unique about a problem, aspects of query complexity that are
common to all problems having been handled automatically. Furthermore, one does not
need to know anything about quantum computing to understand and apply the method.
On the other hand, I have no idea how one would come up with it in the first place, without
Ambainis’s quantum adversary method [27] and the reasoning about entanglement that led
to it.

The starting point is the “most general” adversary theorem in Ambainis’s original
paper (Theorem 6 in [27]), which he introduced to prove a quantum lower bound for the
problem of inverting a permutation. Here the input is a permutation σ (1) , . . . , σ (N), and
the task is to output 0 if σ−1 (1) ≤ N/2 and 1 otherwise. To lower-bound this problem’s
query complexity, what we would like to say is this:

Given any 0-input σ and any location x, if we choose a random 1-input τ that is

6I am thinking here of the hybrid method [51] as a cousin of the adversary method.
7Indeed, Ambainis [28] has given problems for which the adversary method provably yields a better lower

bound than the polynomial method.

54

‘related’ to σ, then the probability θ (σ, x) over τ that σ (x) does not equal τ (x) is small.
In other words, the algorithm is unlikely to distinguish σ from a random neighbor τ of σ
by querying x.

Unfortunately, the above claim is false. Letting x = σ−1 (1), we have that σ (x) 6=
τ (x) for every 1-input τ , and thus θ (σ, x) = 1. Ambainis resolves this difficulty by letting
us take the maximum, over all 0-inputs σ and 1-inputs τ that are related and differ at x,
of the geometric mean

√
θ (σ, x) θ (τ, x). Even if θ (σ, x) = 1, the geometric mean is still

small provided that θ (τ, x) is small. More formally:

Theorem 8 (Ambainis) Let A ⊆ F−1 (0) and B ⊆ F−1 (1) be sets of inputs to function
F . Let R (A,B) ≥ 0 be a symmetric real-valued function, and for A ∈ A, B ∈ B, and
location x, let

θ (A,x) =

∑
B∗∈B : A(x) 6=B∗(x)R (A,B∗)
∑

B∗∈B R (A,B∗)
,

θ (B,x) =

∑
A∗∈A : A∗(x)6=B(x)R (A∗, B)
∑

A∗∈AR (A∗, B)
,

where the denominators are all nonzero. Then the number of quantum queries needed to
evaluate F with at least 9/10 probability is Ω (1/υgeom), where

υgeom = max
A∈A, B∈B, x : R(A,B)>0, A(x)6=B(x)

√
θ (A,x) θ (B,x).

The best way to understand Theorem 8 is to see it used in an example.

Proposition 9 (Ambainis) The quantum query complexity of inverting a permutation is

Ω
(√

N
)
.

Proof. Let A be the set of all permutations σ such that σ−1 (1) ≤ N/2, and B be
the set of permutations τ such that τ−1 (1) > N/2. Given σ ∈ A and τ ∈ B, let R (σ, τ) = 1
if σ and τ differ only at locations σ−1 (1) and τ−1 (1), and R (σ, τ) = 0 otherwise. Then
given σ, τ with R (σ, τ) = 1, if x 6= σ−1 (1) then θ (σ, x) = 2/N , and if x 6= τ−1 (1) then
θ (τ, x) = 2/N . So maxx : σ(x)6=τ(x)

√
θ (σ, x) θ (τ, x) =

√
2/N .

The only difference between Theorem 8 and my relational adversary theorem is
that in the latter, we take the minimum of θ (A,x) and θ (B,x) instead of the geometric
mean. Taking the reciprocal then gives up to a quadratically better lower bound: for
example, we obtain that the randomized query complexity of inverting a permutation is
Ω (N). However, the proofs of the two theorems are quite different.

Theorem 10 Let A,B, R, θ be as in Theorem 8. Then the number of randomized queries
needed to evaluate F with at least 9/10 probability is Ω (1/υmin), where

υmin = max
A∈A, B∈B, x : R(A,B)>0, A(x)6=B(x)

min {θ (A,x) , θ (B,x)} .

55

Proof. Let Γ be a randomized algorithm that, given an input A, returns F (A)
with at least 9/10 probability. Let T be the number of queries made by Γ. For all A ∈ A,
B ∈ B, define

M (A) =
∑

B∗∈B
R (A,B∗) ,

M (B) =
∑

A∗∈A
R (A∗, B) ,

M =
∑

A∗∈A
M (A∗) =

∑

B∗∈B
M (B∗) .

Now let DA be the distribution over A ∈ A in which each A is chosen with probability
M (A) /M ; and let DB be the distribution over B ∈ B in which each B is chosen with
probability M (B) /M . Let D be an equal mixture of DA and DB . By Yao’s minimax
principle, there exists a deterministic algorithm Γ∗ that makes T queries, and succeeds with
at least 9/10 probability given an input drawn from D. Therefore Γ∗ succeeds with at least
4/5 probability given an input drawn from DA alone, or from DB alone. In other words,
letting WA be the set of A ∈ A and WB the set of B ∈ B on which Γ∗ succeeds, we have

∑

A∈WA

M (A) ≥ 4

5
M,

∑

B∈WB

M (B) ≥ 4

5
M.

Define a predicate P (t) (A,B), which is true if Γ∗ has distinguished A ∈ A from B ∈ B by
the tth query and false otherwise. (To distinguish A from B means to query an index x
for which A (x) 6= B (x), given either A or B as input.) Also, for all A ∈ A, define a score
function

S(t) (A) =
∑

B∗∈B : P (t)(A,B∗)

R (A,B∗) .

This function measures how much “progress” has been made so far in separating A from
B-inputs, where the B-inputs are weighted by R (A,B). Similarly, for all B ∈ B define

S(t) (B) =
∑

A∗∈A : P (t)(A∗,B)

R (A∗, B) .

It is clear that for all t, ∑

A∈A
S(t) (A) =

∑

B∈B
S(t) (B) .

So we can denote the above sum by S(t) and think of it as a global progress measure. The
proof relies on the following claims about S(t):

(i) S(0) = 0 initially.

(ii) S(T) ≥ 3M/5 by the end.

(iii) ∆S(t) ≤ 3υminM for all t, where ∆S(t) = S(t) − S(t−1) is the amount by which S(t)

increases as the result of a single query.

56

It follows from (i)-(iii) that

T ≥ 3M/5

3υminM
=

1

5υmin

which establishes the theorem. Part (i) is obvious. For part (ii), observe that for every
pair (A,B) with A ∈ WA and B ∈ WB , the algorithm Γ∗ must query an x such that
A (x) 6= B (x). Thus

S(T) ≥
∑

A∈WA, B∈WB

R (A,B)

≥
∑

A∈WA

M (A) −
∑

B/∈WB

M (B)

≥ 4

5
M − 1

5
M.

It remains only to show part (iii). Suppose ∆S(t) > 3υminM for some t; we will obtain a
contradiction. Let

∆S(t) (A) = S(t) (A) − S(t−1) (A) ,

and let CA be the set of A ∈ A for which ∆S(t) (A) > υminM (A). Since
∑

A∈A
∆S(t) (A) = ∆S(t) > 3υminM,

it follows by Markov’s inequality that
∑

A∈CA

∆S(t) (A) ≥ 2

3
∆S(t).

Similarly, if we let CB be the set of B ∈ B for which ∆S(t) (B) > υminM (B), we have
∑

B∈CB

∆S(t) (B) ≥ 2

3
∆S(t).

In other words, at least 2/3 of the increase in S(t) comes from (A,B) pairs such that
A ∈ CA, and at least 2/3 comes from (A,B) pairs such that B ∈ CB. Hence, by a
‘pigeonhole’ argument, there exists an A ∈ CA and B ∈ CB with R (A,B) > 0 that are
distinguished by the tth query. In other words, there exists an x with A (x) 6= B (x), such
that the tth index queried by Γ∗ is x whether the input is A or B. Then since A ∈ CA, we
have υminM (A) < ∆S(t) (A), and hence

υmin <
∆S(t) (A)

M (A)

≤
∑

B∗∈B : A(x)6=B∗(x)R (A,B∗)
∑

B∗∈B R (A,B∗)

which equals θ (A,x). Similarly υmin < θ (B,x) since B ∈ CB . This contradicts the
definition

υmin = max
A∈A, B∈B, x : R(A,B)>0, A(x) 6=B(x)

min {θ (A,x) , θ (B,x)} ,

and we are done.

57

7.4 Snakes

For the lower bounds, it will be convenient to generalize random walks to arbitrary distri-
butions over paths, which we call snakes.

Definition 11 Given a vertex h in G and a positive integer L, a snake distribution Dh,L

(parameterized by h and L) is a probability distribution over paths (x0, . . . , xL−1) in G, such
that each xt is either equal or adjacent to xt+1, and xL−1 = h. Let Dh,L be the support of
Dh,L. Then an element of Dh,L is called a snake; the part near x0 is the tail and the part
near xL−1 = h is the head.

Given a snake X and integer t, we use X [t] as shorthand for {x0, . . . , xt}.

Definition 12 We say a snake X ∈ Dh,L is ε-good if the following holds. Choose j
uniformly at random from {0, . . . , L− 1}, and let Y = (y0, . . . , yL−1) be a snake drawn
from Dh,L conditioned on xt = yt for all t > j. Then

(i) Letting SX,Y be the set of vertices v in X∩Y such that min {t : xt = v} = min {t : yt = v},
we have

Pr
j,Y

[X ∩ Y = SX,Y] ≥ 9/10.

(ii) For all vertices v, Prj,Y [v ∈ Y [j]] ≤ ε.

The procedure above—wherein we choose a j uniformly at random, then draw a
Y from Dh,L consistent with X on all steps later than j—will be important in what follows.
I call it the snake X flicking its tail. Intuitively, a snake is good if it is spread out fairly
evenly in G—so that when it flicks its tail, (1) with high probability the old and new tails
do not intersect, and (2) any particular vertex is hit by the new tail with probability at
most ε.

I now explain the ‘snake method’ for proving lower bounds for Local Search.
Given a snake X, we define an input fX with a unique local minimum at x0, and f -values
that decrease along X from head to tail. Then, given inputs fX and fY with X∩Y = SX,Y ,
we let the relation function R (fX , fY) be proportional to the probability that snake Y is
obtained by X flicking its tail. (If X ∩ Y 6= SX,Y we let R = 0.) Let fX and gY be inputs
with R (fX , gY) > 0, and let v be a vertex such that fX (v) 6= gY (v). Then if all snakes
were good, there would be two mutually exclusive cases: (1) v belongs to the tail of X, or
(2) v belongs to the tail of Y . In case (1), v is hit with small probability when Y flicks
its tail, so θ (fY , v) is small. In case (2), v is hit with small probability when X flicks its
tail, so θ (fX , v) is small. In either case, then, the geometric mean

√
θ (fX , v) θ (fY , v) and

minimum min {θ (fX , v) , θ (fY , v)} are small. So even though θ (fX , v) or θ (fY , v) could be
large individually, Theorems 8 and 10 yield a good lower bound, as in the case of inverting
a permutation (see Figure 7.1).

One difficulty is that not all snakes are good; at best, a large fraction of them are.
We could try deleting all inputs fX such that X is not good, but that might ruin some
remaining inputs, which would then have fewer neighbors. So we would have to delete

58

4

3
2

1

5
6

7

8

9

10

11

xj+1=yj+1

x0

54

3

2
1

11

y0

Large θ(fX,v)
but small θ(fY,v)

Large θ(fY,v)
but small θ(fX,v)

xL-1=yL-1

Figure 7.1: For every vertex v such that fX (v) 6= fY (v), either when snake X flicks its
tail v is not hit with high probability, or when snake Y flicks its tail v is not hit with high
probability.

those inputs as well, and so on ad infinitum. What we need is basically a way to replace
“all inputs” by “most inputs” in Theorems 8 and 10.

Fortunately, a simple graph-theoretic lemma can accomplish this. The lemma (see
Diestel [100, p.6] for example) says that any graph with average degree at least k contains
an induced subgraph with minimum degree at least k/2. Below I prove a weighted analogue
of the lemma.

Lemma 13 Let p (1) , . . . , p (m) be positive reals summing to 1. Also let w (i, j) for i, j ∈
{1, . . . ,m} be nonnegative reals satisfying w (i, j) = w (j, i) and

∑
i,j w (i, j) ≥ r. Then

there exists a nonempty subset U ⊆ {1, . . . ,m} such that for all i ∈ U ,
∑

j∈U w (i, j) ≥
rp (i) /2.

Proof. If r = 0 then the lemma trivially holds, so assume r > 0. We construct
U via an iterative procedure. Let U (0) = {1, . . . ,m}. Then for all t, if there exists an
i∗ ∈ U (t) for which ∑

j∈U(t)

w (i∗, j) <
r

2
p (i∗) ,

then set U (t+ 1) = U (t)\{i∗}. Otherwise halt and return U = U (t). To see that the U so
constructed is nonempty, observe that when we remove i∗, the sum

∑
i∈U(t) p (i) decreases

by p (i∗), while
∑

i,j∈U(t) w (i, j) decreases by at most

∑

j∈U(t)

w (i∗, j) +
∑

j∈U(t)

w (j, i∗) < rp (i∗) .

So since
∑

i,j∈U(t) w (i, j) was positive to begin with, it must still be positive at the end of
the procedure; hence U must be nonempty.

I can now prove the main result of the section.

59

Theorem 14 Suppose a snake drawn from Dh,L is ε-good with probability at least 9/10.
Then

RLS (G) = Ω (1/ε) , QLS (G) = Ω
(√

1/ε
)
.

Proof. Given a snake X ∈ Dh,L, we construct an input function fX as follows.
For each v ∈ X, let fX (v) = min {t : xt = v}; and for each v /∈ X, let fX (v) = ∆ (v, h) +L
where ∆ (v, h) is the distance from v to h in G. Clearly fX so defined has a unique local
minimum at x0. To obtain a decision problem, we stipulate that querying x0 reveals an
answer bit (0 or 1) in addition to fX (x1); the algorithm’s goal is then to return the answer
bit. Obviously a lower bound for the decision problem implies a corresponding lower bound
for the search problem. Let us first prove the theorem in the case that all snakes in Dh,L are
ε-good. Let p (X) be the probability of drawing snake X from Dh,L. Also, given snakes
X,Y and j ∈ {0, . . . , L− 1}, let qj (X,Y) be the probability that X∗ = Y , if X∗ is drawn
from Dh,L conditioned on agreeing with X on all steps later than j. Then define

w (X,Y) =
p (X)

L

L−1∑

j=0

qj (X,Y) .

The first claim is that w is symmetric; that is, w (X,Y) = w (Y,X). It suffices to show
that

p (X) qj (X,Y) = p (Y) qj (Y,X)

for all j. We can assume X agrees with Y on all steps later than j, since otherwise
qj (X,Y) = qj (Y,X) = 0. Given an X∗ ∈ Dh,L, let A denote the event that X∗ agrees
with X (or equivalently Y) on all steps later than j, and let BX (resp. BY) denote the
event that X∗ agrees with X (resp. Y) on steps 1 to j. Then

p (X) qj (X,Y) = Pr [A] Pr [BX |A] · Pr [BY |A]

= p (Y) qj (Y,X) .

Now let E (X,Y) denote the event that X ∩ Y = SX,Y , where SX,Y is as in Definition
12. Also, let fX be the input obtained from X that has answer bit 0, and gX be the
input that has answer bit 1. To apply Theorems 8 and 10, take A = {fX : X ∈ Dh,L}
and B = {gX : X ∈ Dh,L}. Then take R (fX , gY) = w (X,Y) if E (X,Y) holds, and
R (fX , gY) = 0 otherwise. Given fX ∈ A and gY ∈ B with R (fX , gY) > 0, and letting v
be a vertex such that fX (v) 6= gY (v), we must then have either v /∈ X or v /∈ Y . Suppose
the former case; then

∑

fX∗∈A : fX∗(v) 6=gY (v)

R (fX∗ , gY) ≤
∑

fX∗∈A : fX∗(v) 6=gY (v)

p (Y)

L

L−1∑

j=0

qj (Y,X∗) ≤ εp (Y) ,

since Y is ε-good. Thus θ (gY , v) equals

∑
fX∗∈A : fX∗(v) 6=gY (v)R (fX∗ , gY)

∑
fX∗∈AR (fX∗, gY)

≤ εp (Y)

9p (Y) /10
.

60

Similarly, if v /∈ Y then θ (fX , v) ≤ 10ε/9 by symmetry. Hence

υmin = max
fX∈A, gY ∈B, v : R(fX ,gY)>0, fX(v) 6=gY (v)

min {θ (fX , v) , θ (gY , v)} ≤ ε

9/10
,

υgeom = max
fX∈A, gY ∈B, v : R(fX ,gY)>0, fX(v) 6=gY (v)

√
θ (fX , v) θ (gY , v) ≤

√
ε

9/10
,

the latter since θ (fX , v) ≤ 1 and θ (gY , v) ≤ 1 for all fX , gY and v.
In the general case, all we know is that a snake drawn from Dh,L is ε-good with

probability at least 9/10. Let G (X) denote the event that X is ε-good. Take A∗ =
{fX ∈ A : G (X)} and B∗ = {gY ∈ B : G (Y)}, and take R (fX , gY) as before. Then since

∑

X,Y : E(X,Y)

w (X,Y) ≥
∑

X

9

10
p (X) ≥ 9

10
,

by the union bound we have

∑

fX∈A∗, gY ∈B∗

R (fX , gY) ≥
∑

X,Y : G(X)∧G(Y)∧E(X,Y)

w (X,Y) −
∑

X : qG(X)

p (X) −
∑

Y : qG(Y)

p (Y)

≥ 9

10
− 1

10
− 1

10

=
7

10
.

So by Lemma 13, there exist subsets Ã ⊆ A∗ and B̃ ⊆ B∗ such that for all fX ∈ Ã and
gY ∈ B̃,

∑

gY ∗∈B̃

R (fX , gY ∗) ≥ 7p (X)

20
,

∑

fX∗∈Ã

R (fX∗, gY) ≥ 7p (Y)

20
.

So for all fX , gY with R (fX , gY) > 0, and all v such that fX (v) 6= gY (v), either θ (fX , v) ≤
20ε/7 or θ (gY , v) ≤ 20ε/7. Hence υmin ≤ 20ε/7 and υgeom ≤

√
20ε/7.

7.5 Specific Graphs

In this section I apply the ‘snake method’ developed in Section 7.4 to specific examples
of graphs: the Boolean hypercube in Section 7.5.1, and the d-dimensional cubic grid (for
d ≥ 3) in Section 7.5.2.

7.5.1 Boolean Hypercube

Abusing notation, let {0, 1}n denote the n-dimensional Boolean hypercube—that is, the
graph whose vertices are n-bit strings, with two vertices adjacent if and only if they have

61

Hamming distance 1. Given a vertex v ∈ {0, 1}n, let v [0] , . . . , v [n− 1] denote the n
bits of v, and let v(i) denote the neighbor obtained by flipping bit v [i]. In this section I
lower-bound RLS ({0, 1}n) and QLS ({0, 1}n).

Fix a ‘snake head’ h ∈ {0, 1}n and take L = 2n/2/100. I define the snake distribu-
tion Dh,L via what I call a coordinate loop, as follows. Starting from x0 = h, for each t take

xt+1 = xt with 1/2 probability, and xt+1 = x
(tmodn)
t with 1/2 probability. The following is

a basic fact about this distribution.

Proposition 15 The coordinate loop mixes completely in n steps, in the sense that if t∗ ≥
t+ n, then xt∗ is a uniform random vertex conditioned on xt.

One could also use the random walk distribution, following Aldous [24]. However,
not only is the coordinate loop distribution easier to work with (since it produces fewer
self-intersections), it also yields a better lower bound (since it mixes completely in n steps,
as opposed to approximately in n log n steps).

I first upper-bound the probability, over X, j, and Y [j], that X∩Y 6= SX,Y (where
SX,Y is as in Definition 12).

Lemma 16 Suppose X is drawn from Dh,L, j is drawn uniformly from {0, . . . , L− 1}, and
Y [j] is drawn from Dxj ,j. Then PrX,j,Y [j] [X ∩ Y = SX,Y] ≥ 0.9999.

Proof. Call a disagreement a vertex v such that

min {t : xt = v} 6= min {t∗ : yt∗ = v} .

Clearly if there are no disagreements then X ∩ Y = SX,Y . If v is a disagreement, then by
the definition of Dh,L we cannot have both t > j−n and t∗ > j−n. So by Proposition 15,
either yt∗ is uniformly random conditioned on X, or xt is uniformly random conditioned on
Y [j]. Hence PrX,j,Y [j] [xt = yt∗] = 1/2n. So by the union bound,

Pr
X,j,Y [j]

[X ∩ Y 6= SX,Y] ≤ L2

2n
= 0.0001.

I now argue that, unless X spends a ‘pathological’ amount of time in one part of
the hypercube, the probability of any vertex v being hit when X flicks its tail is small. To
prove this, I define a notion of sparseness, and then show that (1) almost all snakes drawn
from Dh,L are sparse (Lemma 18), and (2) sparse snakes are unlikely to hit any given vertex
v (Lemma 19).

Definition 17 Given vertices v,w and i ∈ {0, . . . , n− 1}, let ∆ (x, v, i) be the number of
steps needed to reach v from x by first setting x [i] := v [i], then setting x [i− 1] := v [i− 1],
and so on. (After we set x [0] we wrap around to x [n− 1].) Then X is sparse if there
exists a constant c such that for all v ∈ {0, 1}n and all k,

|{t : ∆ (xt, v, tmodn) = k}| ≤ cn

(
n+

L

2n−k

)
.

62

Lemma 18 If X is drawn from Dh,L, then X is sparse with probability 1 − o (1).

Proof. For each i ∈ {0, . . . , n− 1}, the number of t ∈ {0, . . . , L− 1} such that

t ≡ i (modn) is at most L/n. For such a t, let E
(v,i,k)
t be the event that ∆ (xt, v, i) ≤ k;

then E
(v,i,k)
t holds if and only if

xt [i] = v [i] , . . . , xt [i− k + 1] = v [i− k + 1]

(where we wrap around to xt [n− 1] after reaching xt [0]). This occurs with probability

2k/2n over X. Furthermore, by Proposition 15, the E
(v,i,k)
t events for different t’s are

independent. So let

µk =
L

n
· 2k

2n
;

then for fixed v, i, k, the expected number of t’s for which E
(v,i,k)
t holds is at most µk. Thus

by a Chernoff bound, if µk ≥ 1 then

Pr
X

[∣∣∣
{
t : E

(v,i,k)
t

}∣∣∣ > cn · µk
]
<

(
ecn−1

(cn)cn

)µk

<
1

22n

for sufficiently large c. Similarly, if µk < 1 then

Pr
X

[∣∣∣
{
t : E

(v,i,k)
t

}∣∣∣ > cn
]
<

(
ecn/µk−1

(cn/µk)
cn/µk

)µk

<
1

22n

for sufficiently large c. By the union bound, then,

∣∣∣
{
t : E

(v,i,k)
t

}∣∣∣ ≤ cn · (1 + µk)

= c

(
n+

L

2n−k

)

for every v, i, k triple simultaneously with probability at least 1 − n22n/22n = 1 − o (1).
Summing over all i’s produces the additional factor of n.

Lemma 19 If X is sparse, then for every v ∈ {0, 1}n,

Pr
j,Y

[v ∈ Y [j]] = O

(
n2

L

)
.

Proof. By assumption, for every k ∈ {0, . . . , n},

Pr
j

[∆ (xj, v, jmodn) = k] ≤ |{t : ∆ (xt, v, tmodn) = k}|
L

≤ cn

L

(
n+

L

2n−k

)
.

63

Consider the probability that v ∈ Y [j] in the event that ∆ (xj, v, jmodn) = k. Clearly

Pr
Y

[v ∈ {yj−n+1, . . . , yj}] =
1

2k
.

Also, Proposition 15 implies that for every t ≤ j − n, the probability that yt = v is 2−n.
So by the union bound,

Pr
Y

[v ∈ {y0, . . . , yj−n}] ≤
L

2n
.

Then Prj,Y [v ∈ Y [j]] equals

n∑

k=0

(
Prj [∆ (xj, v, jmodn) = k] ·

PrY [v ∈ Y [j] | ∆ (xj, v, jmodn) = k]

)
≤

n∑

k=0

cn

L

(
n+

L

2n−k

)(
1

2k
+
L

2n

)

= O

(
cn2

L

)

as can be verified by breaking the sum into cases and doing some manipulations.
The main result follows easily:

Theorem 20

RLS ({0, 1}n) = Ω

(
2n/2

n2

)
, QLS ({0, 1}n) = Ω

(
2n/4

n

)
.

Proof. Take ε = n2/2n/2. Then by Theorem 14, it suffices to show that a snake
X drawn from Dh,L is O (ε)-good with probability at least 9/10. First, since

Pr
X,j,Y [j]

[X ∩ Y = SX,Y] ≥ 0.9999

by Lemma 16, Markov’s inequality shows that

Pr
X

[
Pr
j,Y [j]

[X ∩ Y = SX,Y] ≥ 9

10

]
≥ 19

20
.

Second, by Lemma 18, X is sparse with probability 1 − o (1), and by Lemma 19, if X is
sparse then

Pr
j,Y

[v ∈ Y [j]] = O

(
n2

L

)
= O (ε)

for every v. So both requirements of Definition 12 hold simultaneously with probability at
least 9/10.

64

Figure 7.2: In d = 3 dimensions, a snake drawn from Dh,L moves a random distance left or
right, then a random distance up or down, then a random distance inward or outward, etc.

7.5.2 Constant-Dimensional Grid Graph

In the Boolean hypercube case, Dh,L was defined by a ‘coordinate loop’ instead of the
usual random walk mainly for convenience. When we move to the d-dimensional grid,
though, the drawbacks of random walks become more serious: first, the mixing time is
too long, and second, there are too many self-intersections, particularly if d ≤ 4. The
snake distribution will instead use straight lines of randomly chosen lengths attached at the
endpoints, as in Figure 7.2. Let Gd,N be a d-dimensional grid graph with d ≥ 3. That is,
Gd,N has N vertices of the form v = (v [0] , . . . , v [d− 1]), where each v [i] is in

{
1, . . . , N1/d

}

(assume for simplicity that N is a dth power). Vertices v and w are adjacent if and only
if |v [i] − w [i]| = 1 for some i ∈ {0, . . . , d− 1}, and v [j] = w [j] for all j 6= i (so Gd,N does
not wrap around at the boundaries).

Take L =
√
N/100, and define the snake distribution Dh,L as follows. Starting

from x0 = h, for each T take xN1/d(T+1) identical to xN1/dT , but with the (T mod d)th

coordinate xN1/d(T+1) [T mod d] replaced by a uniform random value in
{
1, . . . , N1/d

}
. Then

take the vertices xN1/dT+1, . . . , xN1/dT+N1/d−1 to lie along the shortest path from xN1/dT to
xN1/d(T+1), ‘stalling’ at xN1/d(T+1) once that vertex has been reached. Call

ΦT =
(
xN1/dT , . . . , xN1/dT+N1/d−1

)

a line of vertices, whose direction is T mod d. As in the Boolean hypercube case, we have:

Proposition 21 Dh,L mixes completely in dN1/d steps, in the sense that if T ∗ ≥ T + d,
then xN1/dT ∗ is a uniform random vertex conditioned on xN1/dT .

Lemma 16 in Section 7.5.1 goes through essentially without change.

Definition 22 Letting ∆ (x, v, i) be as before, we say X is sparse if there exists a constant
c (possibly dependent on d) such that for all vertices v and all k,

∣∣∣
{
t : ∆

(
xt, v,

⌊
t/N1/d

⌋
mod d

)
= k

}∣∣∣ ≤ (c logN)

(
N1/d +

L

N1−k/d

)
.

65

Lemma 23 If X is drawn from Dh,L, then X is sparse with probability 1 − o (1).

Proof. Similar to Lemma 18. Let ΦT be a line of vertices with direction i =
T mod d, and notice that ∆ (xt, v, i) is the same for every vertex xt in ΦT . Let E

(v,i,k)
T

denote the event that ∆ (xt, v, i) ≤ k for the xt’s in ΦT . Then E
(v,i,k)
T occurs with probability

N (k−1)/d/N over X. Furthermore, if |T − T ∗| ≥ d then E
(v,i,k)
T and E

(v,i,k)
T ∗ are independent

events. So let

µk = L · N
(k−1)/d

N
;

then for fixed v, i, k, the expected number of lines for which E
(v,i,k)
T holds is at most µk.

Thus, by a Chernoff bound, if µk ≥ 1 then

Pr
X

[∣∣∣
{
T : E

(v,i,k)
T

}∣∣∣ > c logN · µk
]
<

(
ec logN−1

(c logN)c logN

)µk

which is at most 1/N2 for sufficiently large c. Similarly, if µk < 1 then letting m =
(c logN) /µk,

Pr
X

[∣∣∣
{
T : E

(v,i,k)
T

}∣∣∣ > c logN
]
<

(
em−1

mm

)µk

<
1

N2

for sufficiently large c. So with probability 1 − o (1) it holds that for all v, k, letting
it =

⌊
t/N1/d

⌋
mod d,

|{t : ∆ (xt, v, it) = k}| ≤ c logN · (1 + µk) ·N1/d

= (c logN)

(
N1/d +

L

N1−k/d

)
.

Lemma 24 If X is sparse, then for every v ∈ Gd,N ,

Pr
j,Y

[v ∈ Y [j]] = O

(
N1/d logN

L

)
,

where the big-O hides a constant dependent on d.

Proof. As in Lemma 19, setting ij =
⌊
j/N1/d

⌋
mod d we obtain that Prj,Y [v ∈ Y [j]]

equals

d∑

k=1

Pr
j

[∆ (xj , v, ij) = k] Pr
Y

[v ∈ Y [j] | ∆ (xj, v, ij) = k]

≤
d∑

k=1

c logN

L

(
N1/d +

L

N1−k/d

)(
1

N (k−1)/d
+
L

N

)

= O

(
N1/d logN

L

)
.

66

By the same proof as for Theorem 20, taking ε = (logN) /N1/2−1/d yields the
following:

Theorem 25 Neglecting a constant dependent on d, for all d ≥ 3

RLS (Gd,N) = Ω

(
N1/2−1/d

logN

)
,

QLS (Gd,N) = Ω



√
N1/2−1/d

logN


 .

67

Chapter 8

Quantum Certificate Complexity

This chapter studies the relationships between classical and quantum measures of
query complexity. Let f : S → {0, 1} be a Boolean function with S ⊆ {0, 1}n, that takes
input Y = y1 . . . yn. Then the deterministic query complexity D (f) is the minimum number
of queries to the yi’s needed to evaluate f , if Y is chosen adversarially and if queries can
be adaptive (that is, can depend on the outcomes of previous queries). Also, the bounded-
error randomized query complexity, R2 (f), is the minimum expected number of queries
needed by a randomized algorithm that, for each Y , outputs f (Y) with probability at least
2/3. Here the ‘2’ refers to two-sided error; if instead we require f (Y) to be output with
probability 1 for every Y , we obtain R0 (f), or zero-error randomized query complexity.

Analogously, Q2 (f) is the minimum number of queries needed by a quantum
algorithm that outputs f (Y) with probability at least 2/3 for all Y . Also, for k ∈ {0, 1}
let Qk

0 (f) be the minimum number of queries needed by a quantum algorithm that outputs
f (Y) with probability 1 if f (Y) = k, and with probability at least 1/2 if f (Y) 6= k.
Then let Q0 (f) = max

{
Q0

0 (f) ,Q1
0 (f)

}
. If we require a single algorithm that succeeds

with probability 1 for all Y , we obtain QE (f), or exact quantum query complexity. See
Buhrman and de Wolf [78] for a more detailed survey of these measures.

It is immediate that

Q 2 (f) ≤ R 2 (f) ≤ R 0 (f) ≤ D(f) ≤ n,

that Q0 (f) ≤ R0 (f), and that QE (f) ≤ D (f). If f is partial (i.e. S 6= {0, 1}n), then Q2 (f)
can be superpolynomially smaller than R2 (f); this is what makes Shor’s period-finding
algorithm [221] possible. For total f , by contrast, the largest known gap even between
D (f) and Q2 (f) is quadratic, and is achieved by the OR function on n bits: D (OR) = n
(indeed R2 (OR) = Ω (n)), whereas Q2 (OR) = Θ (

√
n) because of Grover’s search algorithm

[141]. Furthermore, for total f , Beals et al. [45] showed that D (f) = O
(
Q2 (f)6

)
, while

de Wolf [244] showed that D (f) = O
(
Q2 (f)2 Q0 (f)2

)
.

The result of Beals et al. [45] relies on two intermediate complexity measures, the
certificate complexity C (f) and block sensitivity bs (f), which are defined as follows.

Definition 26 A certificate for an input X is a set S ⊆ {1, . . . , n} such that for all inputs

68

Deterministic Randomized Quantum

Query complexity D (f) R2 (f) Q2 (f)
Certificate complexity C (f) RC (f) QC (f)

Table 8.1: Query complexity measures and their certificate complexity analogues.

Y of f , if yi = xi for all i ∈ S then f (Y) = f (X). Then CX (f) is the minimum size of a
certificate for X, and C (f) is the maximum of CX (f) over all X.

Definition 27 A sensitive block on input X is a set B ⊆ {1, . . . , n} such that f
(
X(B)

)
6=

f (X), where X(B) is obtained from X by flipping xi for each i ∈ B. Then bsX (f) is the
maximum number of disjoint sensitive blocks on X, and bs (f) is the maximum of bsX (f)
over all X.

Clearly bs (f) ≤ C(f) ≤ D (f). For total f , these measures are all polynomially
related: Nisan [185] showed that C (f) ≤ bs (f)2, while Beals et al. [45] showed that D (f) ≤
C (f) bs (f). Combining these results with bs (f) = O

(
Q2 (f)2

)
(from the optimality of

Grover’s algorithm), one obtains D (f) = O
(
Q2 (f)6

)
.

8.1 Summary of Results

I investigate RC (f) and QC (f), the bounded-error randomized and quantum generaliza-
tions of the certificate complexity C (f) (see Table 8.1). My motivation is that, just as
C (f) was used to show a polynomial relation between D (f) and Q2 (f), so RC (f) and
QC (f) can lead to new relations among fundamental query complexity measures.

What the certificate complexity C (f) measures is the number of queries used to
verify a certificate, not the number of bits used to communicate it. Thus, if we want
to generalize C (f), we should assume the latter is unbounded. A consequence is that
without loss of generality, a certificate is just a claimed value X for the input Y 1—since
any additional information that a prover might provide, the verifier can compute for itself.
The verifier’s job is to check that f (Y) = f (X). With this in mind I define RC (f) as
follows.

Definition 28 A randomized verifier for input X is a randomized algorithm that, on input
Y to f , (i) accepts with probability 1 if Y = X, and (ii) rejects with probability at least 1/2 if
f (Y) 6= f (X). (If Y 6= X but f (Y) = f (X), the acceptance probability can be arbitrary.)
Then RCX (f) is the minimum expected number of queries used by a randomized verifier
for X, and RC (f) is the maximum of RCX (f) over all X.

I define QC (f) analogously, with quantum instead of randomized algorithms. The
following justifies the definition (the RC (f) part was originally shown by Raz et al. [199]).

1Throughout this chapter, I use Y to denote the ‘actual’ input being queried, and X to denote the
‘claimed’ input.

69

Proposition 29 Making the error probability two-sided rather than one-sided changes RC (f)
and QC(f) by at most a constant factor.

Proof. For RC (f), let rYV be the event that verifier V rejects on input Y , and
let dYV be the event that V encounters a disagreement with X on Y . We may assume
Pr
[
rYV | dYV

]
= 1. Suppose that Pr

[
rYV
]
≤ ε0 if Y = X and Pr

[
rYV
]
≥ 1 − ε1 if f (Y) 6=

f (X). We wish to lower-bound Pr
[
dYV
]

for all Y such that f (Y) 6= f (X). Observe that

Pr
[
rYV ∧ qdYV | f (Y) 6= f (X)

]
≤ Pr

[
rXV ∧ qdXV

]
= Pr

[
rXV
]
≤ ε0.

Hence for f (Y) 6= f (X),

Pr
[
dYV
]
≥ Pr

[
rYV
]
− Pr

[
rYV ∧ qdYV

]
≥ 1 − ε1 − ε0.

Now let V ∗ be identical to V except that, whenever V rejects despite having found no
disagreement with X, V ∗ accepts. Clearly Pr

[
rXV ∗
]

= 0. Also, in the case f (Y) 6= f (X),

Pr
[
rYV ∗
]

= Pr
[
dYV
]
≥ 1 − ε1 − ε0.

The result follows since O (1) repetitions suffice to boost any constant error probability to
any other constant error probability.

For QC(f), suppose the verifier’s final state given input Y is

∑

z

αYz |z〉
(
βYz |0〉 + γYz |1〉

)

where |0〉 is the reject state, |1〉 is the accept state, and
∣∣βYz

∣∣2 +
∣∣γYz
∣∣2 = 1 for all z. Suppose

also that AX ≥ 1− ε0 and that AY ≤ ε1 whenever f (Y) 6= f (X), where AY =
∑

z

∣∣αYz γYz
∣∣2

is the probability of accepting. Then the verifier can make AX = 1 by performing the
conditional rotation (

γXz −βXz
βXz γXz

)

on the second register prior to measurement. In the case f (Y) 6= f (X), this produces

AY =
∑

z

∣∣αYz
∣∣2 ∣∣βXz βYz + γXz γ

Y
z

∣∣2

≤ 2
∑

z

∣∣αYz
∣∣2
(∣∣βXz

∣∣2 +
∣∣γYz
∣∣2
)

≤ 2 (ε0 + ε1) .

It is immediate that QC (f) ≤ RC (f) ≤ C (f), that QC (f) = O (Q2 (f)), and
that RC (f) = O (R2 (f)). We also have RC (f) = Ω (bs (f)), since a randomized verifier
for X must query each sensitive block on X with 1/2 probability. This suggests viewing
RC (f) as an ‘alloy’ of block sensitivity and certificate complexity, an interpretation for
which Section 8.5 gives some justification.

70

The results of this chapter are as follows. In Section 8.3 I show that QC (f) =

Θ
(√

RC (f)
)

for all f (partial or total), precisely characterizing quantum certificate com-

plexity in terms of randomized certificate complexity. To do this, I first give a nonadaptive
characterization of RC (f), and then apply the adversary method of Ambainis [27] to lower-
bound QC(f) in terms of this characterization. Then, in Section 8.4, I extend results on
polynomials due to de Wolf [244] and to Nisan and Smolensky (as described by Buhrman
and de Wolf [78]), to show that R0 (f) = O (RC (f) ndeg (f) log n) for all total f , where
ndeg (f) is the minimum degree of a polynomial p such that p (X) 6= 0 if and only if
f (X) 6= 0. Combining the results of Sections 8.3 and 8.4 leads to a new lower bound on

quantum query complexity: that R0 (f) = O
(
Q2 (f)2 Q0 (f) log n

)
for all total f . To my

knowledge, this is the first quantum lower bound to use both the adversary method and
the polynomial method at different points in the argument.

Finally, in Section 8.5, I exhibit asymptotic gaps between RC (f) and other query

complexity measures, including a total f for which C (f) = Θ
(
QC (f)2.205

)
, and a sym-

metric partial f for which QC (f) = O (1) yet Q2 (f) = Ω (n/ log n). I conclude in Section
8.6 with some open problems.

8.2 Related Work

Raz et al. [199] studied a query complexity measure they called ma (f), for Merlin-Arthur.
In my notation, ma (f) equals the maximum of RCX (f) over all X with f (X) = 1. Raz
et al. observed that ma (f) = ip (f), where ip (f) is the number of queries needed given
arbitrarily many rounds of interaction with a prover. They also used error-correcting codes
to construct a total f for which ma (f) = O (1) but C (f) = Ω (n). This has similarities to
the construction, in Section 8.5.2, of a symmetric partial f for which QC(f) = O (1) but
Q2 (f) = Ω (n/ log n). Aside from that and from Proposition 29, Raz et al.’s results do not
overlap with the results here.

Watrous [239] has investigated a different notion of ‘quantum certificate complexity’—
whether certificates that are quantum states can be superpolynomially smaller than any
classical certificate. Also, de Wolf [245] has investigated ‘nondeterministic quantum query
complexity’ in the alternate sense of algorithms that accept with zero probability when
f (Y) = 0, and with positive probability when f (Y) = 1.

8.3 Characterization of Quantum Certificate Complexity

We wish to show that QC(f) = Θ
(√

RC (f)
)
, precisely characterizing quantum certificate

complexity in terms of randomized certificate complexity. The first step is to give a simpler
characterization of RC (f).

Lemma 30 Call a randomized verifier for X nonadaptive if, on input Y , it queries each
yi with independent probability λi, and rejects if and only if it encounters a disagreement
with X. (Thus, we identify such a verifier with the vector (λ1, . . . , λn).) Let RCX

na (f)

71

be the minimum of λ1 + · · · + λn over all nonadaptive verifiers for X. Then RCX
na (f) =

Θ
(
RCX (f)

)
.

Proof. Clearly RCX
na (f) = Ω

(
RCX (f)

)
. For the upper bound, we can assume

that a randomized verifier rejects immediately on finding a disagreement with X, and
accepts if it finds no disagreement. Let Y = {Y : f (Y) 6= f (X)}. Let V be an optimal
randomized verifier, and let pt (Y) be the probability that V , when given input Y ∈ Y, finds
a disagreement with X on the tth query. By Markov’s inequality, V must have found a
disagreement with probability at least 1/2 after T =

⌈
2RCX (f)

⌉
queries. So by the union

bound

p1 (Y) + · · · + pT (Y) ≥ 1

2

for each Y ∈ Y. Suppose we choose t ∈ {1, . . . , T} uniformly at random and simulate the
tth query, pretending that queries 1, . . . , t − 1 have already been made and have returned
agreement with X. Then we must find a disagreement with probability at least 1/2T .
By repeating this procedure 4T times, we can boost the probability to 1 − e−2. For i ∈
{1, . . . , n}, let λi be the probability that yi is queried at least once. Then λ1+· · ·+λn ≤ 4T ,
whereas for each Y ∈ Y, ∑

i:yi 6=xi

λi ≥ 1 − e−2.

It follows that, if each yi is queried with independent probability λi, then the probability
that at least one yi disagrees with X is at least

1 −
∏

i:yi 6=xi

(1 − λi) ≥ 1 −
(

1 − 1 − e−2

n

)n
> 0.57.

To obtain a lower bound on QC(f), I will use the following simple reformulation
of Ambainis’s adversary method [27].

Theorem 31 (Ambainis) Given a function f : S → {0, 1} with S ⊆ {0, 1}n, let β be
a function from S to nonnegative reals, and let R : S2 → {0, 1} be a relation such that
R (X,Y) = R (Y,X) for all X,Y and R (X,Y) = 0 whenever f (X) = f (Y). Let δ0, δ1 ∈
(0, 1] be such that for every X ∈ S and i ∈ {1, . . . , n},

∑

Y :R(X,Y)=1

β (Y) ≥ 1,

∑

Y :R(X,Y)=1,xi 6=yi

β (Y) ≤ δf(X).

Then Q2 (f) = Ω
(√

1
δ0δ1

)
.

I now prove the main result of the section.

72

Theorem 32 For all f (partial or total) and all X,

QCX (f) = Θ

(√
RCX (f)

)
.

Proof. Let (λ1, . . . , λn) be an optimal nonadaptive randomized verifier for X, and
let

S = λ1 + · · · + λn.

First, QCX (f) = O
(√

S
)
. We can run a “weighted Grover search,” in which the propor-

tion of basis states querying index i is within a constant factor of λi/S. (It suffices to use

n2 basis states.) Let Y = {Y : f (Y) 6= f (X)}; then for any Y ∈ Y, O
(√

S
)

iterations

suffice to find a disagreement with X with probability Ω (1). Second, QCX (f) = Ω
(√

S
)
.

Consider a matrix game in which Alice chooses an index i to query and Bob chooses Y ∈ Y;
Alice wins if and only if yi 6= xi. If both players are rational, then Alice wins with proba-
bility O (1/S), since otherwise Alice’s strategy would yield a verifier (λ′1, . . . , λ

′
n) with

λ′1 + · · · + λ′n = o (S) .

Hence by the minimax theorem, there exists a distribution µ over Y such that for every i,

Pr
Y ∈µ

[yi 6= xi] = O

(
1

S

)
.

Let β (X) = 1 and let β (Y) = µ (Y) for each Y ∈ Y. Also, let R (Y,Z) = 1 if and only
if Z = X for each Y ∈ Y and Z /∈ Y. Then we can take δf(Y) = 1 and δf(X) = O (1/S)
in Theorem 31. So the quantum query complexity of distinguishing X from an arbitrary

Y ∈ Y is Ω
(√

S
)
.

8.4 Quantum Lower Bound for Total Functions

The goal of this section is to show that

R0 (f) = O
(
Q2 (f)2 Q0 (f) log n

)

for all total f . Say that a real multilinear polynomial p (x1, . . . , xn) nondeterministically
represents f if for all X ∈ {0, 1}n, p (X) 6= 0 if and only if f (X) 6= 0. Let ndeg (f) be the
minimum degree of a nondeterministic polynomial for f . Also, given such a polynomial p,
say that a monomial M1 ∈ p is covered by M2 ∈ p if M2 contains every variable in M1. A
monomial M is called a maxonomial if it is not covered by any other monomial of p. The
following is a simple generalization of a lemma attributed in [78] to Nisan and Smolensky.

Lemma 33 (Nisan-Smolensky) Let p nondeterministically represent f . Then for every
maxonomial M of p and X ∈ f−1 (0), there is a set B of variables in M such that f

(
X(B)

)
6=

f (X), where X(B) is obtained from X by flipping the variables in B.

73

Proof. Obtain a restricted function g from f , and a restricted polynomial q from
p, by setting each variable outside of M to xi. Then g cannot be constant, since its
representing polynomial q contains M as a monomial. Thus there is a subset B of variables
in M such that g

(
X(B)

)
= 1, and hence f

(
X(B)

)
= 1.

Using Lemma 33, de Wolf [244] showed that D (f) ≤ C (f) ndeg (f) for all total
f , slightly improving the result D (f) ≤ C (f) deg (f) due to Buhrman and de Wolf [78].
In Theorem 35, I will give an analogue of this result for randomized query and certificate
complexities. However, I first need a probabilistic lemma.

Lemma 34 Suppose we repeatedly apply the following procedure: first identify the set B of
maxonomials of p, then ‘shrink’ each M ∈ B with (not necessarily independent) probability
at least 1/2. Shrinking M means replacing it by an arbitrary monomial of degree deg (M)−
1. Then with high probability p is a constant polynomial after O (deg (p) log n) iterations.

Proof. For any set A of monomials, consider the weighting function

ω (A) =
∑

M∈A
deg (M)!

Let S be the set of monomials of p. Initially ω (S) ≤ ndeg(p) deg (p)!, and we are done when
ω (S) = 0. The claim is that at every iteration, ω (B) ≥ 1

eω (S). For every M∗ ∈ S \B is

covered by some M ∈ B, but a given M ∈ B can cover at most
(deg(M)

`

)
distinct M∗ with

deg (M∗) = `. Hence

ω (S \B) ≤
∑

M∈B

deg(M)−1∑

`=0

(deg(M)
`

)
`!

≤
∑

M∈B
deg (M)!

(
1

1!
+

1

2!
+ · · ·

)

≤ (e− 1)ω (B) .

At every iteration, the contribution of each M ∈ B to ω (A) has at least 1/2
probability of shrinking from deg (M)! to (deg (M) − 1)! (or to 0 if deg (M) = 1). When
this occurs, the contribution of M is at least halved. Hence ω (S) decreases by an expected
amount at least 1

4eω (S). Thus after

log4e/(4e−1)

(
2ndeg(p) deg (p)!

)
= O (deg (p) log n)

iterations, the expectation of ω (S) is less than 1/2, so S is empty with probability at least
1/2.

I can now prove the main result.2

Theorem 35 For total f ,

R0 (f) = O (RC (f) ndeg (f) log n) .

2The proof of Theorem 35 that I gave previously [4] makes a claim that is both superfluous for proving
the theorem and false. I am grateful to Gatis Midrijanis for pointing this out to me.

74

Proof. The algorithm is as follows.

Repeat

Choose a 0-input X compatible with all queries made so far3

Query a randomized 0-certificate for X

Until f has been restricted to a constant function

Let p be a polynomial that nondeterministically represents f . Then the key fact
is that for every 0-input X, when we query a randomized 0-certificate for X we “hit” each
maxonomial M of p with probability at least 1/2. Here hitting M means querying a
variable in M . This is because, by Lemma 33, it is possible to change f (X) from 0 to 1
just by flipping variables in M . So a randomized certificate would be incorrect if it probed
those variables with probability less than 1/2.

Therefore, each iteration of the algorithm shrinks each maxonomial of p with
probability at least 1/2. It follows from Lemma 34 that the algorithm terminates after an
expected number of iterations O (deg (p) log n).

Buhrman et al. [45] showed that ndeg (f) ≤ 2Q0 (f). Combining this with Theo-
rems 32 and 35 yields a new relation between classical and quantum query complexity.

Corollary 36 For all total f ,

R0 (f) = O
(
Q2 (f)2 Q0 (f) log n

)
.

The best previous relation of this kind was R0 (f) = O
(
Q2 (f)2 Q0 (f)2

)
, due to

de Wolf [244]. It is worth mentioning another corollary of Theorems 32 and 35, this one
purely classical:

Corollary 37 For all total f ,

R0 (f) = O (R2 (f) ndeg (f) log n)

Previously, no relation between R0 and R2 better than R0 (f) = O
(
R2 (f)3

)
was

known (although no asymptotic gap between R0 and R2 is known either [212]).

8.5 Asymptotic Gaps

Having related RC (f) and QC (f) to other query complexity measures in Section 8.4, in
what follows I seek the largest possible asymptotic gaps among the measures. In particular,

I give a total f for which RC (f) = Θ
(
C (f)0.907

)
and hence C (f) = Θ

(
QC (f)2.205

)
, as

well as a total f for which bs (f) = Θ
(
RC (f)0.922

)
. Although these gaps are the largest

3Clearly, as long as f is not a constant function, there exists a 0-input X compatible with all queries
made so far.

75

of which I know, Section 8.5.1 shows that no ‘local’ technique can improve the relations

C (f) = O
(
RC (f)2

)
and RC (f) = O

(
bs (f)2

)
. Finally, Section 8.5.2 uses combinatorial

designs to construct a symmetric partial f for which RC (f) and QC (f) are O (1), yet
Q2 (f) = Ω (n/ log n).

Wegener and Zádori [240] exhibited total Boolean functions with asymptotic gaps
between C (f) and bs (f). In similar fashion, I give a function family {gt} with an asymp-
totic gap between C (gt) and RC (gt). Let g1 (x1, . . . , x29) equal 1 if and only if the Hamming
weight of its input is 13, 14, 15, or 16. (The parameter 29 was found via computer search
to produce a maximal separation.) Then for t > 1, let

gt (x1, . . . , x29t) = g0 [gt−1 (X1) , . . . , gt−1 (X29)]

where X1 is the first 29t−1 input bits, X2 is the second 29t−1, and so on. For k ∈ {0, 1},
let

bs k (f) = max
f(X)=k

bsX (f) ,

C k (f) = max
f(X)=k

CX (f) .

Then since bs0 (g1) = bs1 (g1) = 17, we have bs (gt) = 17t. On the other hand, C0 (g1) = 17
but C1 (g1) = 26, so

C 1 (gt) = 13C 1 (gt−1) + 13C 0 (gt−1) ,

C 0 (gt) = 17max
{
C 1 (gt−1) ,C

0 (gt−1)
}
.

Solving this recurrence yields C (gt) = Θ
(
22.725t

)
. We can now show a gap between C

and RC.

Proposition 38 RC (gt) = Θ
(
C (gt)

0.907
)
.

Proof. Since bs (gt) = Ω
(
C (gt)

0.907
)
, it suffices to show that RC (gt) = O (bs (gt)).

The randomized verifier V chooses an input variable to query as follows. Let X be
the claimed input, and let K =

∑29
i=1 gt−1 (Xi). Let I0 = {i : gt−1 (Xi) = 0} and I1 =

{i : gt−1 (Xi) = 1}. With probability pK , V chooses an i ∈ I1 uniformly at random; other-
wise A chooses an i ∈ I0 uniformly at random. Here pK is as follows.

K [0, 12] 13 14 15 16 [17, 29]

pK 0 13
17

7
12

5
12

4
17 1

Once i is chosen, V repeats the procedure for Xi, and continues recursively in this
manner until reaching a variable yj to query. One can check that if gt (X) 6= gt (Y), then
gt−1 (Xi) 6= gt−1 (Yi) with probability at least 1/17. Hence xj 6= yj with probability at
least 1/17t, and RC (gt) = O

(
17t
)
.

By Theorem 32, it follows that C (gt) = Θ
(
QC (gt)

2.205
)
. This offers a surpris-

ing contrast with the query complexity setting, where the best known gap between the

deterministic and quantum measures is quadratic (D (f) = Θ
(
Q2 (f)2

)
).

76

The family {gt} happens not to yield an asymptotic gap between bs (f) and RC (f).
The reason is that any input to g0 can be covered perfectly by sensitive blocks of minimum
size, with no variables left over. In general, though, one can have bs (f) = o (RC (f)). As
reported by Bublitz et al. [74], M. Paterson found a total Boolean function h1 (x1, . . . , x6)
such that CX (h1) = 5 and bsX (h1) = 4 for all X. Composing h1 recursively yields

bs (ht) = Θ
(
C(ht)

0.861
)

and bs (ht) = Θ
(
RC (ht)

0.922
)
, both of which are the largest such

gaps of which I know.

8.5.1 Local Separations

It is a longstanding open question whether the relation C (f) ≤ bs (f)2 due to Nisan [185]

is tight. As a first step, one can ask whether the relations C (f) = O
(
RC (f)2

)
and

RC (f) = O
(
bs (f)2

)
are tight. In this section I introduce a notion of local proof in query

complexity, and then show there is no local proof that C (f) = o
(
RC (f)2

)
or that RC (f) =

o
(
bs (f)2

)
. This implies that proving either result would require techniques unlike those

that are currently known. My inspiration comes from computational complexity, where
researchers first formalized known methods of proof, including relativizable proofs [41] and
natural proofs [202], and then argued that these methods were not powerful enough to
resolve the field’s outstanding problems.

Let G (f) and H (f) be query complexity measures obtained by maximizing over
all inputs—that is,

G (f) = max
X

GX (f) ,

H (f) = max
X

HX (f) .

Call B ⊆ {1, . . . , n} a minimal block on X if B is sensitive on X (meaning f
(
X(B)

)
6=

f (X)), and no sub-block B′ ⊂ B is sensitive on X. Also, let X’s neighborhood N (X)
consist of X together with X(B) for every minimal block B of X. Consider a proof that
G (f) = O (t (H (f))) for some nondecreasing t. I call the proof local if it proceeds by
showing that for every input X,

GX (f) = O

(
max

Y ∈N (X)

{
t
(
HY (f)

)})
.

As a canonical example, Nisan’s proof [185] that C (f) ≤ bs (f)2 is local. For each X,
Nisan observes that (i) a maximal set of disjoint minimal blocks is a certificate for X, (ii)
such a set can contain at most bsX (f) blocks, and (iii) each block can have size at most
maxY ∈N (X) bsY (f). Another example of a local proof is the proof in Section 8.3 that

RC (f) = O
(
QC(f)2

)
.

Proposition 39 There is no local proof showing that C (f) = o
(
RC (f)2

)
or that RC (f) =

o
(
bs (f)2

)
for all total f .

77

Proof. The first part is easy: let f (X) = 1 if |X| ≥ √
n (where |X| denotes the

Hamming weight of X), and f (X) = 0 otherwise. Consider the all-zero input 0n. We
have C0n

(f) = n−d√ne+1, but RC0n
(f) = O (

√
n), and indeed RCY (f) = O (

√
n) for all

Y ∈ N (0n). For the second part, arrange the input variables in a lattice of size
√
n×√

n.
Take m = Θ

(
n1/3

)
, and let g (X) be the monotone Boolean function that outputs 1 if and

only if X contains a 1-square of size m×m. This is a square of 1’s that can wrap around
the edges of the lattice; note that only the variables along the sides must be set to 1, not
those in the interior. An example input, with a 1-square of size 3 × 3, is shown below.

0 0 0 0 0
0 0 0 0 0
1 0 0 1 1
1 0 0 1 0
1 0 0 1 1

Clearly bs0
n

(g) = Θ
(
n1/3

)
, since there can be at most n/m2 disjoint 1-squares of size

m×m. Also, bsY (g) = Θ
(
n1/3

)
for any Y that is 0 except for a single 1-square. On the

other hand, if we choose uniformly at random among all such Y ’s, then at any lattice site
i, PrY [yi = 1] = Θ

(
n−2/3

)
. Hence RC0n

(g) = Ω
(
n2/3

)
.

8.5.2 Symmetric Partial Functions

If f is partial, then QC (f) can be much smaller than Q2 (f). This is strikingly illustrated
by the collision problem: let Col (Y) = 0 if Y = y1 . . . yn is a one-to-one sequence and
Col (Y) = 1 if Y is a two-to-one sequence, promised that one of these is the case. Then
RC (Col) = QC (Col) = O (1), since every one-to-one input differs from every two-to-one
input on at least n/2 of the yi’s. On the other hand, Chapter 6 showed that Q2 (Col) =
Ω
(
n1/5

)
.
From the example of the collision problem, it is tempting to conjecture that (say)

Q2 (f) = O
(
n1/3

)
whenever QC(f) = O (1)—that is, ‘if every 0-input is far from every

1-input, then the quantum query complexity is sublinear.’ Here I disprove this conjecture,
even for the special case of symmetric functions such as Col. (Given a finite set H, a function
f : S → {0, 1} where S ⊆ Hn is called symmetric if x1 . . . xn ∈ S implies xσ(1) . . . xσ(n) ∈ S
and f (x1 . . . xn) = f

(
xσ(1) . . . xσ(n)

)
for every permutation σ.)

The proof uses the following lemma, which can be found in Nisan and Wigderson
[187] for example.

Lemma 40 (Nisan-Wigderson) For any γ > 1, there exists a family of sets

A1, . . . , Am ⊆ {1, . . . , dγne}

such that m = Ω
(
2n/γ

)
, |Ai| = n for all i, and |Ai ∩Aj| ≤ n/γ for all i 6= j.

A lemma due to Ambainis [26] is also useful. Let f : S → {0, 1} where S ⊆
{0, 1}n be a partial Boolean function, and let p : {0, 1}n → R be a real-valued multilinear
polynomial. We say that p approximates f if (i) p (X) ∈ [0, 1] for every input X ∈ {0, 1}n
(not merely those in S), and (ii) |p (X) − g (X)| ≤ 1/3 for every X ∈ S.

78

Lemma 41 (Ambainis) At most 2O(∆(n,d)dn2) distinct Boolean functions (partial or total)
can be approximated by polynomials of degree d, where ∆ (n, d) =

∑d
i=0

(n
i

)
.

The result is an easy consequence of Lemmas 40 and 41.

Theorem 42 There exists a symmetric partial f for which QC(f) = O (1) and Q2 (f) =
Ω (n/ log n).

Proof. Let f : S → {0, 1} where S ⊆ {1, . . . , 3n}n, and let m = Ω
(
2n/3

)
.

Let A1, . . . , Am ⊆ {1, . . . , 3n} be as in Lemma 40. We put x1, . . . , xn in S if and only if
{x1, . . . , xn} = Aj for some j. Clearly QC(f) = O (1), since if i 6= j then every permutation
of Ai differs from every permutation of Aj on at least n/3 indices. The number of symmetric

f with S as above is 2m = 2Ω(2n/3). We can convert any such f to a Boolean function
g on O (n log n) variables. But Beals et al. [45] showed that, if Q2 (g) = T , then g is
approximated by a polynomial of degree at most 2T . So by Lemma 41, if Q2 (g) ≤ T for
every g then

2T · ∆ (n log n, 2T) · (n log n)2 = Ω
(
2n/3

)

and we solve to obtain T = Ω (n/ log n).

8.6 Open Problems

Is d̃eg (f) = Ω
(√

RC (f)
)
, where d̃eg (f) is the minimum degree of a polynomial approx-

imating f? In other words, can one lower-bound QC (f) using the polynomial method of
Beals et al. [45], rather than the adversary method of Ambainis [27]?

Also, is R0 (f) = O
(
RC (f)2

)
? If so we obtain the new relations R0 (f) =

O
(
Q2 (f)4

)
and R0 (f) = O

(
R2 (f)2

)
.

79

Chapter 9

The Need to Uncompute

Like a classical algorithm, a quantum algorithm can solve problems recursively by
calling itself as a subroutine. When this is done, though, the algorithm typically needs
to call itself twice for each subproblem to be solved. The second call’s purpose is to
uncompute ‘garbage’ left over by the first call, and thereby enable interference between
different branches of the computation. Of course, a factor of 2 increase in running time
hardly seems like a big deal, when set against the speedups promised by quantum computing.
The problem is that these factors of 2 multiply, with each level of recursion producing
an additional factor. Thus, one might wonder whether the uncomputing step is really
necessary, or whether a cleverly designed algorithm might avoid it. This chapter gives the
first nontrivial example in which recursive uncomputation is provably necessary.

The example concerns a long-neglected problem called Recursive Fourier Sampling
(henceforth RFS), which was introduced by Bernstein and Vazirani [55] in 1993 to prove the
first oracle separation between BPP and BQP. Many surveys on quantum computing pass
directly from the Deutsch-Jozsa algorithm [97] to the dramatic results of Simon [222] and
Shor [221], without even mentioning RFS. There are two likely reasons for this neglect.
First, the RFS problem seems artificial. It was introduced for the sole purpose of proving
an oracle result, and is unlike all other problems for which a quantum speedup is known.
(I will define RFS in Section 9.1; but for now, it involves a tree of depth log n, where each
vertex is labeled with a function to be evaluated via a Fourier transform.) Second, the
speedup for RFS is only quasipolynomial (n versus nlogn), rather than exponential as for
the period-finding and hidden subgroup problems.

Nevertheless, I believe that RFS merits renewed attention—for it serves as an im-
portant link between quantum computing and the ideas of classical complexity theory. One
reason is that, although other problems in BQP—such as the factoring, discrete logarithm,
and ‘shifted Legendre symbol’ problems [90]—are thought to be classically intractable, these
problems are quite low-level by complexity-theoretic standards. They, or their associated
decision problems, are in NP ∩ coNP.1 By contrast, Bernstein and Vazirani [55] showed
that, as an oracle problem, RFS lies outside NP and even MA (the latter result is unpub-
lished, though not difficult). Subsequently Watrous [239] gave an oracle A, based on an

1For the shifted Legendre symbol problem, this is true assuming a number-theoretic conjecture of Boneh
and Lipton [61].

80

unrelated problem, for which BQPA 6⊂ MAA.2 Also, Green and Pruim [137] gave an oracle

B for which BQPB 6⊂ PNPB
. However, Watrous’s problem was shown by Babai [38] to be

in AM, while Green and Pruim’s problem is in BPP. Thus, neither problem can be used
to place BQP outside higher levels of the polynomial hierarchy.

On the other hand, Umesh Vazirani and others have conjectured that RFS is not in
PH, from which it would follow that there exists an oracle A relative to which BQPA 6⊂ PHA.
Proving this is, in my view, one of the central open problems in quantum complexity theory.
Its solution seems likely to require novel techniques for constant-depth circuit lower bounds.3

In this chapter I examine the RFS problem from a different angle. Could Bernstein
and Vazirani’s quantum algorithm for RFS be improved even further, to give an exponential
speedup over the classical algorithm? And could we use RFS, not merely to place BQP

outside of PH relative to an oracle, but to place it outside of PH with (say) a logarithmic
number of alternations?

My answer to both questions is a strong ‘no.’ I study a large class of variations
on RFS, and show that all of them fall into one of two classes:

(1) a trivial class, for which there exists a classical algorithm making only one query, or

(2) a nontrivial class, for which any quantum algorithm needs 2Ω(h) queries, where h is the
height of the tree to be evaluated. (By comparison, the Bernstein-Vazirani algorithm
uses 2h queries, because of its need to uncompute garbage recursively at each level of
the tree.)

Since nh queries always suffice classically, this dichotomy theorem implies that the speedup
afforded by quantum computers is at most quasipolynomial. It also implies that (nontrivial)
RFS is solvable in quantum polynomial time only when h = O (log n).

The plan is as follows. In Section 9.1 I define the RFS problem, and give Bernstein
and Vazirani’s quantum algorithm for solving it. In Section 9.2, I use the adversary method
of Ambainis [27] to prove a lower bound on the quantum query complexity of any RFS
variant. This bound, however, requires a parameter that I call the “nonparity coefficient”
to be large. Intuitively, given a Boolean function g : {0, 1}n → {0, 1}, the nonparity
coefficient measures how far g is from being the parity of some subset of its input bits—not
under the uniform distribution over inputs (the standard assumption in Fourier analysis),
but under an adversarial distribution. The crux of the argument is that either the nonparity
coefficient is zero (meaning the RFS variant in question is trivial), or else it is bounded below
by a positive constant. This statement is proved in Section 9.2, and seems like it might be
of independent interest. Section 9.3 concludes with some open problems.

2Actually, to place BQP outside MA relative to an oracle, it suffices to consider the complement of Simon’s
problem (“Does f (x) = f (x⊕ s) only when s = 0?”).

3For the RFS function can be represented by a low-degree real polynomial—this follows from the existence
of a polynomial-time quantum algorithm for RFS, together with the result of Beals et al. [45] relating
quantum algorithms to low-degree polynomials. As a result, the circuit lower bound technique of Razborov
[200] and Smolensky [225], which is based on the nonexistence of low-degree polynomials, seems unlikely to
work. Even the random restriction method of Furst et al. [122] can be related to low-degree polynomials,
as shown by Linial et al. [168].

81

9.1 Preliminaries

In ordinary Fourier sampling, we are given oracle access to a Boolean function A : {0, 1}n →
{0, 1}, and are promised that there exists a secret string s ∈ {0, 1}n such that A (x) =
s · x (mod 2) for all x. The problem is to find s—or rather, since we need a problem with
Boolean output, the problem is to return g (s), where g : {0, 1}n → {0, 1} is some known
Boolean function. We can think of g (s) as the “hard-core bit” of s, and can assume that
g itself is efficiently computable, or else that we are given access to an oracle for g.

To obtain a height-2 recursive Fourier sampling tree, we simply compose this
problem. That is, we are no longer given direct access to A (x), but instead are promised
that A (x) = g (sx), where sx ∈ {0, 1}n is the secret string for another Fourier sampling
problem. A query then takes the form (x, y), and produces as output Ax (y) = sx ·y (mod 2).
As before, we are promised that there exists an s such that A (x) = s · x (mod 2) for all x,
meaning that the sx strings must be chosen consistent with this promise. Again we must
return g (s).

Continuing, we can define height-h recursive Fourier sampling, or RFSh, recur-
sively as follows. We are given oracle access to a function A (x1, . . . , xh) for all x1, . . . , xh ∈
{0, 1}n, and are promised that

(1) for each fixed x∗1, A (x∗1, x2, . . . , xh) is an instance of RFSh−1 on x2, . . . , xh, having
answer bit b (x∗1) ∈ {0, 1}; and

(2) there exists a secret string s ∈ {0, 1}n such that b (x∗1) = s · x∗1 (mod 2) for each x∗1.

Again the answer bit to be returned is g (s). Note that g is assumed to be
the same everywhere in the tree—though using the techniques in this chapter, it would
be straightforward to generalize to the case of different g’s. As an example that will be
used later, we could take g (s) = gmod 3 (s), where gmod 3 (s) = 0 if |s| ≡ 0 (mod 3) and
gmod 3 (s) = 1 otherwise, and |s| denotes the Hamming weight of s. We do not want to take
g to be the parity of s, for if we did then g (s) could be evaluated using a single query. To
see this, observe that if x is the all-1’s string, then s · x (mod 2) is the parity of s.

By an ‘input,’ I will mean a complete assignment for the RFS oracle (that is,
A (x1, . . . , xh) for all x1, . . . , xh). I will sometimes refer also to an ‘RFS tree,’ where each
vertex at distance ` from the root has a label x1, . . . , x`. If ` = h then the vertex is a leaf;
otherwise it has 2n children, each with a label x1, . . . , x`, x`+1 for some x`+1. The subtrees
of the tree just correspond to the sub-instances of RFS.

Bernstein and Vazirani [55] showed that RFSlogn, or RFS with height logn (all
logarithms are base 2), is solvable on a quantum computer in time polynomial in n. I
include a proof for completeness. Let A = (An)n≥0 be an oracle that, for each n, encodes an
instance of RFSlogn whose answer is Ψn. Then let LA be the unary language {0n : Ψn = 1}.
Lemma 43 LA ∈ EQPA ⊆ BQPA for any choice of A.

Proof. RFS1 can be solved exactly in four queries, with no garbage bits left over.
The algorithm is as follows: first prepare the state

2−n/2
∑

x∈{0,1}n

|x〉 |A (x)〉 ,

82

using one query to A. Then apply a phase flip conditioned on A (x) = 1, and uncompute
A (x) using a second query, obtaining

2−n/2
∑

x∈{0,1}n

(−1)A(x) |x〉 .

Then apply a Hadamard gate to each bit of the |x〉 register. It can be checked that the
resulting state is simply |s〉. One can then compute |s〉 |g (s)〉 and uncompute |s〉 using
two more queries to A, to obtain |g (s)〉. To solve RFSlogn (n), we simply apply the
above algorithm recursively at each level of the tree. The total number of queries used is
4logn = n2.

One can further reduce the number of queries to 2log n = n by using the “one-call
kickback trick,” described by Cleve et al. [87]. Here one prepares the state

2−n/2
∑

x∈{0,1}n

|x〉 ⊗ |1〉 − |0〉√
2

and then exclusive-OR’s A (x) into the second register. This induces the desired phase

(−1)A(x) without the need to uncompute A (x). However, one still needs to uncompute |s〉
after computing |g (s)〉.

A remark on notation: to avoid confusion with subscripts, I denote the ith bit of
string x by x [i].

9.2 Quantum Lower Bound

In this section I prove a lower bound on the quantum query complexity of RFS. Crucially,
the bound should hold for any nontrivial one-bit function of the secret strings, not just a
specific function such as gmod 3 (s) defined in Section 9.1. Let RFSgh be height-h recursive
Fourier sampling in which the problem at each vertex is to return g (s). The following
notion turns out to be essential.

Definition 44 Given a Boolean function g : {0, 1}n → {0, 1} (partial or total), the nonpar-
ity coefficient µ (g) is the largest µ∗ for which there exist distributions D0 over the 0-inputs
of g, and D1 over the 1-inputs, such that for all z ∈ {0, 1}n, all 0-inputs ŝ0, and all 1-inputs
ŝ1, we have

Pr
s0∈D0,s1∈D1

[s0 · z ≡ ŝ1 · z (mod 2) ∨ s1 · z ≡ ŝ0 · z (mod 2)] ≥ µ∗.

Loosely speaking, the nonparity coefficient is high if there exist distributions over
0-inputs and 1-inputs that make g far from being a parity function of a subset of input bits.
The following proposition develops some intuition about µ (g).

Proposition 45

(i) µ (g) ≤ 3/4 for all nonconstant g.

83

(ii) µ (g) = 0 if and only if g can be written as the parity (or the NOT of the parity) of a
subset B of input bits.

Proof.

(i) Given any s0 6= ŝ1 and s1 6= ŝ0, a uniform random z will satisfy

Pr
z

[s0 · z 6≡ ŝ1 · z (mod 2) ∧ s1 · z 6≡ ŝ0 · z (mod 2)] ≥ 1

4
.

(If s0 ⊕ ŝ1 = s1 ⊕ ŝ0 then this probability will be 1/2; otherwise it will be 1/4.) So
certainly there is a fixed choice of z that works for random s0 and s1.

(ii) For the ‘if’ direction, take z [i] = 1 if and only if i ∈ B, and choose ŝ0 and ŝ1 arbitrarily.
This ensures that µ∗ = 0. For the ‘only if’ direction, if µ (g) = 0, we can choose D0

to have support on all 0-inputs, and D1 to have support on all 1-inputs. Then there
must be a z such that s0 ·z is constant as we range over 0-inputs, and s1 ·z is constant
as we range over 1-inputs. Take i ∈ B if and only if z [i] = 1.

If µ (g) = 0, then RFSgh is easily solvable using a single classical query. Theorem
47 will show that for all g (partial or total),

Q2

(
RFSgh

)
= Ω

((
1

1 − µ (g)

)h/2)
,

where Q2 is bounded-error quantum query complexity as defined in Section 5.1. In other
words, any RFS problem with µ bounded away from 0 requires a number of queries expo-
nential in the tree height h.

However, there is an essential further part of the argument, which restricts the
values of µ (g) itself. Suppose there existed a family {gn} of ‘pseudoparity’ functions: that
is, µ (gn) > 0 for all n, yet µ (gn) = O(1/ log n). Then the best bound obtainable from

Theorem 47 would be Ω
(
(1 + 1/ log n)h/2

)
, suggesting that RFSg

log2 n
might still be solvable

in quantum polynomial time. On the other hand, it would be unclear a priori how to solve
RFSg

log2 n
classically with a logarithmic number of alternations. Theorem 49 will rule out

this scenario by showing that pseudoparity functions do not exist: if µ (g) < 0.146 then g
is a parity function, and hence µ (g) = 0.

The theorem of Ambainis that we need is his “most general” lower bound from [27],
which he introduced to show that the quantum query complexity of inverting a permutation
is Ω (

√
n), and which we used already in Chapter 7. Let us restate the theorem in the present

context.

Theorem 46 (Ambainis) Let X ⊆ f−1 (0) and Y ⊆ f−1 (1) be sets of inputs to function
f . Let R (x, y) ≥ 0 be a symmetric real-valued relation function, and for x ∈ X, y ∈ Y ,

84

and index i, let

θ (x, i) =

∑
y∗∈Y : x[i] 6=y∗[i]R (x, y∗)
∑

y∗∈Y R (x, y∗)
,

θ (y, i) =

∑
x∗∈X : x∗[i]6=y[i]R (x∗, y)
∑

y∗∈Y R (x∗, y)
,

where the denominators are all nonzero. Then Q2 (f) = O (1/υ) where

υ = max
x∈X, y∈Y, i : R(x,y)>0, x[i]6=y[i]

√
θ (x, i) θ (y, i).

We are now ready to prove a lower bound for RFS.

Theorem 47 For all g (partial or total), Q2

(
RFSgh

)
= Ω

(
(1 − µ (g))−h/2

)
.

Proof. Let X be the set of all 0-inputs to RFSgh, and let Y be the set of all 1-
inputs. We will weight the inputs using the distributions D0,D1 from the definition of the
nonparity coefficient µ (g). For all x ∈ X, let p (x) be the product, over all vertices v in the
RFS tree for x, of the probability of the secret string s at v, if s is drawn from Dg(s) (where
we condition on v’s output bit, g (s)). Next, say that x ∈ X and y ∈ Y differ minimally if,
for all vertices v of the RFS tree, the subtrees rooted at v are identical in x and in y whenever
the answer bit g (s) at v is the same in x and in y. If x and y differ minimally, then we
will set R (x, y) = p (x) p (y); otherwise we will set R (x, y) = 0. Clearly R (x, y) = R (y, x)
for all x ∈ X, y ∈ Y . Furthermore, we claim that θ (x, i) θ (y, i) ≤ (1 − µ (g))h for all x, y
that differ minimally and all i such that x [i] 6= y [i]. For suppose y∗ ∈ Y is chosen with
probability proportional to R (x, y∗), and x∗ ∈ X is chosen with probability proportional to
R (x∗, y). Then θ (x, i) θ (y, i) equals the probability that we would notice the switch from
x to y∗ by monitoring i, times the probability that we would notice the switch from y to
x∗.

Let vj be the jth vertex along the path in the RFS tree from the root to the leaf
vertex i, for all j ∈ {1, . . . , h}. Also, let zj ∈ {0, 1}n be the label of the edge between
vj−1 and vj , and let sx,j and sy,j be the secret strings at vj in x and y respectively. Then
since x and y differ minimally, we must have g (sx,j) 6= g (sy,j) for all j—for otherwise the
subtrees rooted at vj would be identical, which contradicts the assumption x [i] 6= y [i].
So we can think of the process of choosing y∗ as first choosing a random s′x,1 from D1

so that 1 = g
(
s′x,1
)
6= g (sx,1) = 0, then choosing a random s′x,2 from D1−g(sx,2) so that

g
(
s′x,2
)
6= g (sx,2), and so on. Choosing x∗ is analogous, except that whenever we used D0 in

choosing y∗ we use D1, and vice versa. Since the 2h secret strings sx,1, . . . , sx,h, sy,1, . . . , sy,h
to be updated are independent of one another, it follows that

Pr [y∗ [i] 6= x [i]] Pr [x∗ [i] 6= y [i]] =
h∏

j=1

Pr
s∈D0

[s · zj 6≡ sx,j · zj] Pr
s∈D1

[s · zj 6≡ sy,j · zj]

≤
h∏

j=1

(1 − µ (g))

= (1 − µ (g))h

85

by the definition of µ (g). Therefore

Q2

(
RFSgh

)
= Ω

(
(1 − µ (g))−h/2

)

by Theorem 46.
Before continuing further, let me show that there is a natural, explicit choice of

g—the function gmod 3 (s) from Section 9.1—for which the nonparity coefficient is almost
3/4. Thus, for g = gmod 3, the algorithm of Lemma 43 is essentially optimal.

Proposition 48 µ (gmod 3) = 3/4 −O (1/n).

Proof. Let n ≥ 6. Let D0 be the uniform distribution over all s with |s| = 3 bn/6c
(so gmod 3 (s) = 0); likewise let D1 be the uniform distribution over s with |s| = 3 bn/6c+ 2
(gmod 3 (s) = 1). We consider only the case of s drawn from D0; the D1 case is analogous.
We will show that for any z,

∣∣∣∣ Pr
s∈D0

[s · z ≡ 0] − 1

2

∣∣∣∣ = O

(
1

n

)

(all congruences are mod 2). The theorem then follows, since by the definition of the
nonparity coefficient, given any z the choices of s0 ∈ D0 and s1 ∈ D1 are independent.

Assume without loss of generality that 1 ≤ |z| ≤ n/2 (if |z| > n/2, then replace z
by its complement). We apply induction on |z|. If |z| = 1, then clearly

Pr [s · z ≡ 0] = 3 bn/6c /n =
1

2
±O

(
1

n

)
.

For |z| ≥ 2, let z = z1 ⊕ z2, where z2 contains only the rightmost 1 of z and z1 contains all
the other 1’s. Suppose the proposition holds for |z| − 1. Then

Pr [s · z ≡ 0] =Pr [s · z1 ≡ 0] Pr [s · z2 ≡ 0|s · z1 ≡ 0] +

Pr [s · z1 ≡ 1] Pr [s · z2 ≡ 1|s · z1 ≡ 1] ,

where

Pr [s · z1 ≡ 0] =
1

2
+ α, Pr [s · z1 ≡ 1] =

1

2
− α

for some |α| = O (1/n). Furthermore, even conditioned on s · z1, the expected number of
1’s in s outside of z1 is (n− |z1|) /2±O (1) and they are uniformly distributed. Therefore

Pr [s · z2 ≡ b|s · z1 ≡ b] =
1

2
+ βb

for some |β0| , |β1| = O (1/n). So

Pr [s · z ≡ 0] =
1

2
+
β0

2
+ αβ0 −

β1

2
− αβ1

=
1

2
±O

(
1

n

)
.

Finally it must be shown that pseudoparity functions do not exist. That is, if g
is too close to a parity function for the bound of Theorem 47 to apply, then g actually is a
parity function, from which it follows that RFSgh admits an efficient classical algorithm.

86

Theorem 49 Suppose µ (g) < 0.146. Then g is a parity function (equivalently, µ (g) = 0).

Proof. By linear programming duality, there exists a joint distribution D over
z ∈ {0, 1}n, 0-inputs ŝ0 ∈ g−1 (0), and 1-inputs ŝ1 ∈ g−1 (1), such that for all s0 ∈ g−1 (0)
and s1 ∈ g−1 (1),

Pr
(z,ŝ0,ŝ1)∈D

[s0 · z ≡ ŝ1 · z (mod 2) ∨ s1 · z ≡ ŝ0 · z (mod 2)] < µ (g) .

Furthermore ŝ0 ·z 6≡ ŝ1 ·z (mod 2), since otherwise we could violate the hypothesis by taking
s0 = ŝ0 or s1 = ŝ1. It follows that there exists a joint distribution D′ over z ∈ {0, 1}n and
b ∈ {0, 1} such that

Pr
(z,b)∈D′

[s · z ≡ b (mod 2)] > 1 − µ (g)

for all s ∈ g−1 (0), and
Pr

(z,b)∈D′
[s · z 6≡ b (mod 2)] > 1 − µ (g)

for all s ∈ g−1 (1). But this implies that g is a bounded-error threshold function of parity
functions. More precisely, there exist probabilities pz, summing to 1, as well as bz ∈ {0, 1}
such that for all s ∈ {0, 1}n,

Ψ (s) =
∑

z∈{0,1}n

pz ((s · z) ⊕ bz) is

{
> 1 − µ (g) if g (s) = 1
< µ (g) if g (s) = 0.

We will consider var (Ψ), the variance of the above quantity Ψ (s) if s is drawn uniformly
at random from {0, 1}n. First, if pz ≥ 1/2 for any z, then g (s) = (s · z) ⊕ bz is a parity
function and hence µ (g) = 0. So we can assume without loss of generality that pz < 1/2 for
all z. Then since s is uniform, for each z1 6= z2 we know that (s · z1)⊕ bz1 and (s · z2)⊕ bz2
are pairwise independent {0, 1} random variables, both with expectation 1/2. So

var (Ψ) =
1

4

∑
zp

2
z <

1

4

((
1

2

)2

+

(
1

2

)2
)

=
1

8
.

On the other hand, since Ψ (s) is always less than µ or greater than 1 − µ,

var (Ψ) >

(
1

2
− µ

)2

.

Combining,

µ >
2 −

√
2

4
> 0.146.

87

9.3 Open Problems

An intriguing open problem is whether Theorem 47 can be proved using the polynomial
method of Beals et al. [45], rather than the adversary method of Ambainis [27]. It is known
that one can lower-bound polynomial degree in terms of block sensitivity, or the maximum
number of disjoint changes to an input that change the output value. The trouble is that
the RFS function has block sensitivity 1—the “sensitive blocks” of each input tend to have
small intersection, but are not disjoint. For this reason, I implicitly used the quantum
certificate complexity of Chapter 8 rather than block sensitivity to prove a lower bound.

I believe the constant of Theorem 49 can be improved. The smallest nonzero µ (g)
value I know of is attained when n = 2 and g = OR(s [1] , s [2]):

Proposition 50 µ (OR) = 1/3.

Proof. First, µ (OR) ≥ 1/3, since D1 can choose s [1] s [2] to be 01, 10, or 11
each with probability 1/3; then for any z 6= 0 and the unique 0-input ŝ0 = 00, we have
s1 · z 6≡ ŝ0 · z with probability at most 2/3. Second, µ (OR) ≤ 1/3, since applying linear
programming duality, we can let the pair (z, ŝ1) equal (01, 01), (10, 10), or (11, 10) each
with probability 1/3. Then 0 ≡ s0 · z 6≡ ŝ1 · z ≡ 1 always, and for any 1-input s1, we have
s1 · z ≡ 1 6≡ ŝ0 · z with probability 2/3.

Finally, I conjecture that uncomputation is unavoidable not just for RFS but for
many other recursive problems, such as game-tree evaluation. Formally, the conjecture is
that the quantum query complexity of evaluating a game tree increases exponentially with
depth as the number of leaves is held constant, even if there is at most one winning move
per vertex (so that the tree can be evaluated with zero probability of error).

88

Chapter 10

Limitations of Quantum Advice

How many classical bits can “really” be encoded into n qubits? Is it n, because
of Holevo’s Theorem [147]; 2n, because of dense quantum coding [78] and quantum telepor-
tation [53]; exponentially many, because of quantum fingerprinting [75]; or infinitely many,
because amplitudes are continuous? The best general answer to this question is probably
mu, the Zen word that “unasks” a question.1

To a computer scientist, however, it is natural to formalize the question in terms
of quantum one-way communication complexity [43, 75, 156, 250]. The setting is as follows:
Alice has an n-bit string x, Bob has an m-bit string y, and together they wish to evaluate
f (x, y) where f : {0, 1}n × {0, 1}m → {0, 1} is a Boolean function. After examining her
input x = x1 . . . xn, Alice can send a single quantum message ρx to Bob, whereupon Bob,
after examining his input y = y1 . . . ym, can choose some basis in which to measure ρx.
He must then output a claimed value for f (x, y). We are interested in how long Alice’s
message needs to be, for Bob to succeed with high probability on any x, y pair. Ideally the
length will be much smaller than if Alice had to send a classical message.

Communication complexity questions have been intensively studied in theoretical
computer science (see the book of Kushilevitz and Nisan [162] for example). In both the
classical and quantum cases, though, most attention has focused on two-way communica-
tion, meaning that Alice and Bob get to send messages back and forth. I believe that
the study of one-way quantum communication presents two main advantages. First, many
open problems about two-way communication look gruesomely difficult—for example, are
the randomized and quantum communication complexities of every total Boolean function
polynomially related? We might gain insight into these problems by tackling their one-way
analogues first. And second, because of its greater simplicity, the one-way model more
directly addresses our opening question: how much “useful stuff” can be packed into a
quantum state? Thus, results on one-way communication fall into the quantum informa-
tion theory tradition initiated by Holevo [147] and others, as much as the communication
complexity tradition initiated by Yao [247].

Related to quantum one-way communication is the notion of quantum advice. As
pointed out by Nielsen and Chuang [184, p.203], there is no compelling physical reason to

1Another mu-worthy question is, “Where does the power of quantum computing come from? Superpo-
sition? Interference? The large size of Hilbert space?”

89

assume that the starting state of a quantum computer is a computational basis state:2

[W]e know that many systems in Nature ‘prefer’ to sit in highly entangled states
of many systems; might it be possible to exploit this preference to obtain extra
computational power? It might be that having access to certain states allows
particular computations to be done much more easily than if we are constrained
to start in the computational basis.

One way to interpret Nielsen and Chuang’s provocative question is as follows.
Suppose we could request the best possible starting state for a quantum computer, know-
ing the language to be decided and the input length n but not knowing the input itself.3

Denote the class of languages that we could then decide by BQP/qpoly—meaning quan-
tum polynomial time, given an arbitrarily-entangled but polynomial-size quantum advice
state.4 How powerful is this class? If BQP/qpoly contained (for example) the NP-complete
problems, then we would need to rethink our most basic assumptions about the power of
quantum computing. We will see later that quantum advice is closely related to quantum
one-way communication, since we can think of an advice state as a one-way message sent
to an algorithm by a benevolent “advisor.”

This chapter is about the limitations of quantum advice and one-way communi-
cation. It presents three contributions which are basically independent of one another.

First, Section 10.2 shows that D1 (f) = O
(
mQ1

2 (f) log Q1
2 (f)

)
for any Boolean

function f , partial or total. Here D1 (f) is deterministic one-way communication com-
plexity, Q1

2 (f) is bounded-error one-way quantum communication complexity, and m is the
length of Bob’s input. Intuitively, whenever the set of Bob’s possible inputs is not too large,
Alice can send him a short classical message that lets him learn the outcome of any mea-
surement he would have wanted to make on the quantum message ρx. It is interesting that
a slightly tighter bound for total functions—D1 (f) = O

(
mQ1

2 (f)
)
—follows easily from a

result of Klauck [156] together with a lemma of Sauer [214] about VC-dimension. However,
the proof of the latter bound is highly nonconstructive, and seems to fail for partial f .

Using my communication complexity result, Section 10.2.1 shows that BQP/qpoly ⊆
PP/poly—in other words, BQP with polynomial-size quantum advice can be simulated in
PP with polynomial-size classical advice.5 This resolves a question of Harry Buhrman
(personal communication), who asked whether quantum advice can be simulated in any
classical complexity class with short classical advice. A corollary of this containment is
that we cannot hope to show an unrelativized separation between quantum and classical
advice (that is, that BQP/poly 6= BQP/qpoly), without also showing that PP does not have
polynomial-size circuits.

2One might object that the starting state is itself the outcome of some computational process, which
began no earlier than the Big Bang. However, (1) for all we know highly entangled states were created in
the Big Bang, and (2) 14 billion years is a long time.

3If we knew the input, we would simply request a starting state that contains the right answer!
4BQP/qpoly might remind readers of a better-studied class called QMA (Quantum Merlin-Arthur). But

there are two key differences: first, advice can be trusted while proofs cannot; second, proofs can be tailored
to a particular input while advice cannot.

5Given a complexity class C, the class C/poly consists of all languages decidable by a C machine, given
a polynomial-size classical advice string that depends only on the input length. See Chapter 3 for more
information about the complexity classes mentioned in this chapter.

90

What makes this result surprising is that, in the minds of many computer scien-
tists, a quantum state is basically an exponentially long vector. Indeed, this belief seems
to fuel skepticism of quantum computing (see Goldreich [130] for example). But given an
exponentially long advice string, even a classical computer could decide any language what-
soever. So one might imagine näıvely that quantum advice would let us solve problems
that are not even recursively enumerable given classical advice of a similar size! The failure
of this näıve intuition supports the view that a quantum superposition over n-bit strings is
“more similar” to a probability distribution over n-bit strings than to a 2n-bit string.

The second contribution of the chapter, in Section 10.3, is an oracle relative to
which NP is not contained in BQP/qpoly. Underlying this oracle separation is the first
correct proof of a direct product theorem for quantum search. Given an N -item database
with K marked items, the direct product theorem says that if a quantum algorithm makes

o
(√

N
)

queries, then the probability that the algorithm finds all K of the marked items

decreases exponentially in K. Notice that such a result does not follow from any existing
quantum lower bound. Earlier Klauck [157] had claimed a weaker direct product theorem,
based on the hybrid method of Bennett et al. [51], in a paper on quantum time-space
tradeoffs for sorting. Unfortunately, Klauck’s proof is incorrect. The proof uses the
polynomial method of Beals et al. [45], with the novel twist that we examine all higher
derivatives of a polynomial (not just the first derivative). The proof has already been
improved by Klauck, Špalek, and de Wolf [158], who were able to recover and even extend
Klauck’s original claims about quantum sorting.

The final contribution, in Section 10.4, is a new trace distance method for proving
lower bounds on quantum one-way communication complexity. Previously there was only
one basic lower bound technique: the VC-dimension method of Klauck [156], which relied
on lower bounds for quantum random access codes due to Ambainis et al. [32] and Nayak
[182]. Using VC-dimension one can show, for example, that Q1

2 (DISJ) = Ω (n), where the
disjointness function DISJ : {0, 1}n × {0, 1}n → {0, 1} is defined by DISJ (x, y) = 1 if and
only if xiyi = 0 for all i ∈ {1, . . . , n}.

For some problems, however, the VC-dimension method yields no nontrivial quan-
tum lower bound. Seeking to make this point vividly, Ambainis posed the following prob-
lem. Alice is given two elements x, y of a finite field Fp (where p is prime); Bob is given
another two elements a, b ∈ Fp. Bob’s goal is to output 1 if y ≡ ax+ b (mod p) and 0 other-
wise. For this problem, the VC-dimension method yields no randomized or quantum lower
bound better than constant. On the other hand, the well-known fingerprinting protocol
for the equality function [194] seems to fail for Ambainis’ problem, because of the interplay
between addition and multiplication. So it is natural to conjecture that the randomized
and even quantum one-way complexities are Θ (log p)—that is, that no nontrivial protocol
exists for this problem.

Ambainis posed a second problem in the same spirit. Here Alice is given x ∈
{1, . . . , N}, Bob is given y ∈ {1, . . . , N}, and both players know a subset S ⊂ {1, . . . , N}.
Bob’s goal is to decide whether x− y ∈ S where subtraction is modulo N . The conjecture
is that if S is chosen uniformly at random with |S| about

√
N , then with high probability

the randomized and quantum one-way complexities are both Θ (logN).
Using the trace distance method, I am able to show optimal quantum lower bounds

91

for both of Ambainis’ problems. Previously, no nontrivial lower bounds were known even
for randomized protocols. The key idea is to consider two probability distributions over
Alice’s quantum message ρx. The first distribution corresponds to x chosen uniformly at
random; the second corresponds to x chosen uniformly conditioned on f (x, y) = 1. These
distributions give rise to two mixed states ρ and ρy, which Bob must be able to distinguish
with non-negligible bias assuming he can evaluate f (x, y). I then show an upper bound on
the trace distance ‖ρ− ρy‖tr, which implies that Bob cannot distinguish the distributions.

Theorem 65 gives a very general condition under which the trace distance method
works; Corollaries 66 and 67 then show that the condition is satisfied for Ambainis’ two
problems. Besides showing a significant limitation of the VC-dimension method, I hope
the new method is a non-negligible step towards proving that R1

2 (f) = O
(
Q1

2 (f)
)

for all
total Boolean functions f , where R1

2 (f) is randomized one-way complexity. I conclude in
Section 10.5 with some open problems.

10.1 Preliminaries

Following standard conventions, I denote by D1 (f) the deterministic one-way complexity
of f , or the minimum number of bits that Alice must send if her message is a function of x.
Also, R1

2 (f), the bounded-error randomized one-way complexity, is the minimum k such
that for every x, y, if Alice sends Bob a k-bit message drawn from some distribution Dx,
then Bob can output a bit a such that a = f (x, y) with probability at least 2/3. (The
subscript 2 means that the error is two-sided.) The zero-error randomized complexity
R1

0 (f) is similar, except that Bob’s answer can never be wrong: he must output f (x, y)
with probability at least 1/2 and otherwise declare failure.

The bounded-error quantum one-way complexity Q1
2 (f) is the minimum k such

that, if Alice sends Bob a mixed state ρx of k qubits, there exists a joint measurement of ρx
and y enabling Bob to output an a such that a = f (x, y) with probability at least 2/3. The
zero-error and exact complexities Q1

0 (f) and Q1
E (f) are defined analogously. Requiring

Alice’s message to be a pure state would increase these complexities by at most a factor of
2, since by Kraus’ Theorem, every k-qubit mixed state can be realized as half of a 2k-qubit
pure state. (Winter [243] has shown that this factor of 2 is tight.) See Klauck [156]
for more detailed definitions of quantum and classical one-way communication complexity
measures.

It is immediate that D1 (f) ≥ R1
0 (f) ≥ R1

2 (f) ≥ Q1
2 (f), that R1

0 (f) ≥ Q1
0 (f) ≥

Q1
2 (f), and that D1 (f) ≥ Q1

E (f). Also, for total f , Durǐs et al. [103] showed that R1
0 (f) =

Θ
(
D1 (f)

)
, while Klauck [156] showed that Q1

E (f) = D1 (f) and that Q1
0 (f) = Θ

(
D1 (f)

)
.

In other words, randomized and quantum messages yield no improvement for total functions
if one is unwilling to tolerate a bounded probability of error. This remains true even if
Alice and Bob share arbitrarily many EPR pairs [156]. As is often the case, the situation
is dramatically different for partial functions: there it is easy to see that R1

0 (f) can be
constant even though D1 (f) = Ω (n): let f (x, y) = 1 if x1y1 + · · · + xn/2yn/2 ≥ n/4
and xn/2+1yn/2+1 + · · · + xnyn = 0 and f (x, y) = 0 if x1y1 + · · · + xn/2yn/2 = 0 and
xn/2+1yn/2+1 + · · · + xnyn ≥ n/4, promised that one of these is the case.

Moreover, Bar-Yossef, Jayram, and Kerenidis [43] have almost shown that Q1
E (f)

92

can be exponentially smaller than R1
2 (f). In particular, they proved that separation

for a relation, meaning a problem for which Bob has many possible valid outputs. For a
partial function f based on their relation, they also showed that Q1

E (f) = Θ (log n) whereas
R1

0 (f) = Θ (
√
n); and they conjectured (but did not prove) that R1

2 (f) = Θ (
√
n).

10.1.1 Quantum Advice

Informally, BQP/qpoly is the class of languages decidable in polynomial time on a quantum
computer, given a polynomial-size quantum advice state that depends only on the input
length. I now make the definition more formal.

Definition 51 A language L is in BQP/qpoly if there exists a polynomial-size quantum
circuit family {Cn}n≥1, and a polynomial-size family of quantum states {|ψn〉}n≥1, such
that for all x ∈ {0, 1}n,

(i) If x ∈ L then q (x) ≥ 2/3, where q (x) is the probability that the first qubit is measured
to be |1〉, after Cn is applied to the starting state |x〉 ⊗ |0 · · · 0〉 ⊗ |ψn〉.

(ii) If x /∈ L then q (x) ≤ 1/3.6

The central open question about BQP/qpoly is whether it equals BQP/poly, or
BQP with polynomial-size classical advice. We do have a candidate for an oracle problem
separating the two classes: the group membership problem of Watrous [239], which I will
describe for completeness. Let Gn be a black box group7 whose elements are uniquely
labeled by n-bit strings, and let Hn be a subgroup of Gn. Both Gn and Hn depend only on
the input length n, so we can assume that a nonuniform algorithm knows generating sets
for both of them. Given an element x ∈ Gn as input, the problem is to decide whether
x ∈ Hn.

If Gn is “sufficiently nonabelian” and Hn is exponentially large, we do not know
how to solve this problem in BQP or even BQP/poly. On the other hand, we can solve it
in BQP/qpoly as follows. Let the quantum advice state be an equal superposition over all
elements of Hn:

|Hn〉 =
1√
|Hn|

∑

y∈Hn

|y〉

We can transform |Hn〉 into

|xHn〉 =
1√
|Hn|

∑

y∈Hn

|xy〉

by mapping |y〉 |0〉 to |y〉 |xy〉 to
∣∣y ⊕ x−1xy

〉
|xy〉 = |0〉 |xy〉 for each y ∈ Hn. Our algorithm

will first prepare the state (|0〉 |Hn〉 + |1〉 |xHn〉) /
√

2, then apply a Hadamard gate to the

6If the starting state is |x〉 ⊗ |0 · · · 0〉 ⊗ |ϕ〉 for some |ϕ〉 6= |ψn〉, then the acceptance probability is not
required to lie in [0, 1/3] ∪ [2/3, 1]. Therefore, what I call BQP/qpoly corresponds to what Nishimura and
Yamakami [188] call BQP/∗Qpoly. Also, it does not matter whether the circuit family {Cn}n≥1 is uniform,

since we are giving it advice anyway.
7In other words, we have a quantum oracle available that given x, y ∈ Gn outputs xy (i.e. exclusive-OR’s

xy into an answer register), and that given x ∈ Gn outputs x−1.

93

first qubit, and finally measure the first qubit in the standard basis, in order to distinguish
the cases |Hn〉 = |xHn〉 and 〈Hn|xHn〉 = 0 with constant bias. The first case occurs
whenever x ∈ Hn, and the second occurs whenever x /∈ Hn.

Although the group membership problem provides intriguing evidence for the
power of quantum advice, we have no idea how to show that it is not also solvable us-
ing classical advice. Indeed, apart from a result of Nishimura and Yamakami [188] that
EESPACE 6⊂ BQP/qpoly, essentially nothing was known about the class BQP/qpoly before
the work reported here.

10.1.2 The Almost As Good As New Lemma

The following simple lemma, which was implicit in [32], is used three times in this chapter—
in Theorems 56, 57, and 64. It says that, if the outcome of measuring a quantum state ρ
could be predicted with near-certainty given knowledge of ρ, then measuring ρ will damage
it only slightly. Recall that the trace distance ‖ρ− σ‖tr between two mixed states ρ and σ
equals 1

2

∑
i |λi|, where λ1, . . . , λN are the eigenvalues of ρ− σ.

Lemma 52 Suppose a 2-outcome measurement of a mixed state ρ yields outcome 0 with
probability 1−ε. Then after the measurement, we can recover a state ρ̃ such that ‖ρ̃− ρ‖tr ≤√
ε. This is true even if the measurement is a POVM (that is, involves arbitrarily many

ancilla qubits).

Proof. Let |ψ〉 be a purification of the entire system (ρ plus ancilla). We can rep-
resent any measurement as a unitary U applied to |ψ〉, followed by a 1-qubit measurement.
Let |ϕ0〉 and |ϕ1〉 be the two possible pure states after the measurement; then 〈ϕ0|ϕ1〉 = 0
and U |ψ〉 = α |ϕ0〉+ β |ϕ1〉 for some α, β such that |α|2 = 1 − ε and |β|2 = ε. Writing the
measurement result as σ = (1 − ε) |ϕ0〉 〈ϕ0| + ε |ϕ1〉 〈ϕ1|, it is easy to show that

∥∥σ − U |ψ〉 〈ψ|U−1
∥∥

tr
=
√
ε (1 − ε).

So applying U−1 to σ, ∥∥U−1σU − |ψ〉 〈ψ|
∥∥

tr
=
√
ε (1 − ε).

Let ρ̃ be the restriction of U−1σU to the original qubits of ρ. Theorem 9.2 of Nielsen
and Chuang [184] shows that tracing out a subsystem never increases trace distance, so
‖ρ̃− ρ‖tr ≤

√
ε (1 − ε) ≤ √

ε.

10.2 Simulating Quantum Messages

Let f : {0, 1}n × {0, 1}m → {0, 1} be a Boolean function. In this section I first combine
existing results to obtain the relation D1 (f) = O

(
mQ1

2 (f)
)

for total f , and then prove
using a new method that D1 (f) = O

(
mQ1

2 (f) log Q1
2 (f)

)
for all f (partial or total).

Define the communication matrix Mf to be a 2n × 2m matrix with f (x, y) in the
xth row and yth column. Then letting rows (f) be the number of distinct rows in Mf , the
following is immediate.

94

Proposition 53 For total f ,

D1 (f) = dlog2 rows (f)e ,
Q1

2 (f) = Ω (log log rows (f)) .

Also, let the VC-dimension VC (f) equal the maximum k for which there exists a
2n× k submatrix Mg of Mf with rows (g) = 2k. Then Klauck [156] observed the following,
based on a lower bound for quantum random access codes due to Nayak [182].

Proposition 54 (Klauck) Q1
2 (f) = Ω (VC (f)) for total f .

Now let cols (f) be the number of distinct columns in Mf . Then Proposition 54
yields the following general lower bound:

Corollary 55 D1 (f) = O
(
mQ1

2 (f)
)

for total f , where m is the size of Bob’s input.

Proof. It follows from a lemma of Sauer [214] that

rows (f) ≤
VC(f)∑

i=0

(
cols (f)

i

)
≤ cols (f)VC(f)+1 .

Hence VC (f) ≥ logcols(f) rows (f) − 1, so

Q1
2 (f) = Ω (VC (f)) = Ω

(
log rows (f)

log cols (f)

)

= Ω

(
D1 (f)

m

)
.

In particular, D1 (f) and Q1
2 (f) are polynomially related for total f , whenever

Bob’s input is polynomially smaller than Alice’s, and Alice’s input is not “padded.” More

formally, D1 (f) = O
(
Q1

2 (f)1/(1−c)
)

whenever m = O (nc) for some c < 1 and rows (f) = 2n

(i.e. all rows of Mf are distinct). For then D1 (f) = n by Proposition 53, and Q1
2 (f) =

Ω
(
D1 (f) /nc

)
= Ω

(
n1−c) by Corollary 55.

I now give a new method for replacing quantum messages by classical ones when
Bob’s input is small. Although the best bound I know how to obtain with this method—
D1 (f) = O

(
mQ1

2 (f) log Q1
2 (f)

)
—is slightly weaker than the D1 (f) = O

(
mQ1

2 (f)
)

of
Corollary 55, our method works for partial Boolean functions as well as total ones. It
also yields a (relatively) efficient procedure by which Bob can reconstruct Alice’s quantum
message, a fact I will exploit in Section 10.2.1 to show BQP/qpoly ⊆ PP/poly. By contrast,
the method based on Sauer’s Lemma seems to be nonconstructive.

Theorem 56 D1 (f) = O
(
mQ1

2 (f) log Q1
2 (f)

)
for all f (partial or total).

95

Proof. Let f : D → {0, 1} be a partial Boolean function with D ⊆ {0, 1}n ×
{0, 1}m, and for all x ∈ {0, 1}n, let Dx = {y ∈ {0, 1}m : (x, y) ∈ D}. Suppose Alice can
send Bob a quantum state with Q1

2 (f) qubits, that enables him to compute f (x, y) for any
y ∈ Dx with error probability at most 1/3. Then she can also send him a boosted state ρ
with K = O

(
Q1

2 (f) log Q1
2 (f)

)
qubits, such that for all y ∈ Dx,

|Py (ρ) − f (x, y)| ≤ 1

Q1
2 (f)10

,

where Py (ρ) is the probability that some measurement Λ [y] yields a ‘1’ outcome when
applied to ρ. We can assume for simplicity that ρ is a pure state |ψ〉 〈ψ|; as discussed in
Section 10.1, this increases the message length by at most a factor of 2.

Let Y be any subset of Dx satisfying |Y| ≤ Q1
2 (f)2. Then starting with ρ, Bob

can measure Λ [y] for each y ∈ Y in lexicographic order, reusing the same message state
again and again but uncomputing whatever garbage he generates while measuring. Let ρt
be the state after the tth measurement; thus ρ0 = ρ = |ψ〉 〈ψ|. Since the probability that
Bob outputs the wrong value of f (x, y) on any given y is at most 1/Q1

2 (f)10, Lemma 52
implies that

‖ρt − ρt−1‖tr ≤
√

1

Q1
2 (f)10

=
1

Q1
2 (f)5

.

Since trace distance satisfies the triangle inequality, this in turn implies that

‖ρt − ρ‖tr ≤
t

Q1
2 (f)5

≤ 1

Q1
2 (f)3

.

Now imagine an “ideal scenario” in which ρt = ρ for every t; that is, the measurements do
not damage ρ at all. Then the maximum bias with which Bob could distinguish the actual
from the ideal scenario is

∥∥∥ρ0 ⊗ · · · ⊗ ρ|Y|−1 − ρ⊗|Y|
∥∥∥

tr
≤ |Y|

Q1
2 (f)3

≤ 1

Q1
2 (f)

.

So by the union bound, Bob will output f (x, y) for every y ∈ Y simultaneously with
probability at least

1 − |Y|
Q1

2 (f)10
− 1

Q1
2 (f)

≥ 0.9

for sufficiently large Q1
2 (f).

Now imagine that the communication channel is blocked, so Bob has to guess what
message Alice wants to send him. He does this by using the K-qubit maximally mixed
state I in place of ρ. We can write I as

I =
1

2K

2K∑

j=1

|ψj〉 〈ψj| ,

where |ψ1〉 , . . . , |ψ2K 〉 are orthonormal vectors such that |ψ1〉 = |ψ〉. So if Bob uses the same
procedure as above except with I instead of ρ, then for any Y ⊆ Dx with |Y| ≤ Q1

2 (f)2, he
will output f (x, y) for every y ∈ Y simultaneously with probability at least 0.9/2K .

96

The classical simulation of the quantum protocol is now as follows. Alice’s mes-
sage to Bob consists of T ≤ K inputs y1, . . . , yT ∈ Dx, together with f (x, y1) , . . . , f (x, yT).8

Thus the message length is mT + T = O
(
mQ1

2 (f) log Q1
2 (f)

)
. Here are the semantics of

Alice’s message: “Bob, suppose you looped over all y ∈ Dx in lexicographic order; and for
each one, guessed that f (x, y) = round (Py (I)), where round (p) is 1 if p ≥ 1/2 and 0 if
p < 1/2. Then y1 is the first y for which you would guess the wrong value of f (x, y). In
general, let It be the state obtained by starting from I and then measuring Λ [y1] , . . . ,Λ [yt]
in that order, given that the outcomes of the measurements are f (x, y1) , . . . , f (x, yt) re-
spectively. (Note that It is not changed by measurements of every y ∈ Dx up to yt, only by
measurements of y1, . . . , yt.) If you looped over all y ∈ Dx in lexicographic order beginning
from yt, then yt+1 is the first y you would encounter for which round (Py (It)) 6= f (x, y).”

Given the sequence of yt’s as defined above, it is obvious that Bob can compute
f (x, y) for any y ∈ Dx. First, if y = yt for some t, then he simply outputs f (x, yt).
Otherwise, let t∗ be the largest t for which yt < y lexicographically. Then Bob prepares
a classical description of the state It∗—which he can do since he knows y1, . . . , yt∗ and
f (x, y1) , . . . , f (x, yt∗)—and then outputs round (Py (It∗)) as his claimed value of f (x, y).
Notice that, although Alice uses her knowledge of Dx to prepare her message, Bob does not
need to know Dx in order to interpret the message. That is why the simulation works for
partial as well as total functions.

But why can we assume that the sequence of yt’s stops at yT for some T ≤
K? Suppose T > K; we will derive a contradiction. Let Y = {y1, . . . , yK+1}. Then
|Y| = K + 1 ≤ Q1

2 (f)2, so we know from previous reasoning that if Bob starts with I and
then measures Λ [y1] , . . . ,Λ [yK+1] in that order, he will observe f (x, y1) , . . . , f (x, yK+1)
simultaneously with probability at least 0.9/2K . But by the definition of yt, the probability
that Λ [yt] yields the correct outcome is at most 1/2, conditioned on Λ [y1] , . . . ,Λ [yt−1]
having yielded the correct outcomes. Therefore f (x, y1) , . . . , f (x, yK+1) are observed
simultaneously with probability at most 1/2K+1 < 0.9/2K , contradiction.

10.2.1 Simulating Quantum Advice

I now apply the new simulation method to upper-bound the power of quantum advice.

Theorem 57 BQP/qpoly ⊆ PP/poly.

Proof. For notational convenience, let Ln (x) = 1 if input x ∈ {0, 1}n is in
language L, and Ln (x) = 0 otherwise. Suppose Ln is computed by a BQP machine using
quantum advice of length p (n). We will give a PP machine that computes Ln using
classical advice of length O (np (n) log p (n)). Because of the close connection between
advice and one-way communication, the simulation method will be essentially identical to
that of Theorem 56.

By using a boosted advice state on K = O (p (n) log p (n)) qubits, a polynomial-
time quantum algorithm A can compute Ln (x) with error probability at most 1/p (n)10.
Now the classical advice to the PP machine consists of T ≤ K inputs x1, . . . , xT ∈ {0, 1}n,

8Strictly speaking, Bob will be able to compute f (x, y1) , . . . , f (x, yT) for himself given y1, . . . , yT ; he
does not need Alice to tell him the f values.

97

together with Ln (x1) , . . . , Ln (xT). Let I be the maximally mixed state on K qubits.
Also, let Px (ρ) be the probability that A outputs ‘1’ on input x, given ρ as its advice
state. Then x1 is the lexicographically first input x for which round (Px (I)) 6= Ln (x).
In general, let It be the state obtained by starting with I as the advice and then running
A on x1, . . . , xt in that order (uncomputing garbage along the way), if we postselect on A
correctly outputting Ln (x1) , . . . , Ln (xt). Then xt+1 is the lexicographically first x > xt
for which round (Px (It)) 6= Ln (x).

Given the classical advice, we can compute Ln (x) as follows: if x ∈ {x1, . . . , xT }
then output Ln (xt). Otherwise let t∗ be the largest t for which xt < x lexicographically,
and output round (Px (It∗)). The proof that this algorithm works is the same as in Theorem
56, and so is omitted for brevity. All that needs to be shown is that the algorithm can be
implemented in PP.

Adleman, DeMarrais, and Huang [16] (see also Fortnow and Rogers [118]) showed
that BQP ⊆ PP, by using what physicists would call a “Feynman sum-over-histories.”
Specifically, let C be a polynomial-size quantum circuit that starts in the all-0 state, and
that consists solely of Toffoli and Hadamard gates (Shi [219] has shown that this gate set
is universal). Also, let αz be the amplitude of basis state |z〉 after all gates in C have been
applied. We can write αz as a sum of exponentially many contributions, a1 + · · · + aN ,
where each ai is a rational real number computable in classical polynomial time. So by
evaluating the sum

|αz|2 =

N∑

i,j=1

aiaj ,

putting positive and negative terms on “opposite sides of the ledger,” a PP machine can
check whether |αz|2 > β for any rational constant β. It follows that a PP machine can also
check whether ∑

z : S1(z)

|αz|2 >
∑

z : S0(z)

|αz|2

(or equivalently, whether Pr [S1] > Pr [S0]) for any classical polynomial-time predicates S1

and S0.
Now suppose the circuit C does the following, in the case x /∈ {x1, . . . , xT }. It

first prepares the K-qubit maximally mixed state I (as half of a 2K-qubit pure state),
and then runs A on x1, . . . , xt∗ , x in that order, using I as its advice state. The claimed
values of Ln (x1) , . . . , Ln (xt∗) , Ln (x) are written to output registers but not measured.
For i ∈ {0, 1}, let the predicate Si (z) hold if and only if basis state |z〉 contains the output
sequence Ln (x1) , . . . , Ln (xt∗) , i. Then it is not hard to see that

Px (It∗) =
Pr [S1]

Pr [S1] + Pr [S0]
,

so Px (It∗) > 1/2 and hence Ln (x) = 1 if and only if Pr [S1] > Pr [S0]. Since the case
x ∈ {x1, . . . , xT } is trivial, this shows that Ln (x) is computable in PP/poly.

Let me make five remarks about Theorem 57. First, for the same reason that
Theorem 56 works for partial as well as total functions, one actually obtains the stronger

98

result that PromiseBQP/qpoly ⊆ PromisePP/poly, where PromiseBQP and PromisePP are
the promise-problem versions of BQP and PP respectively.

Second, as pointed out to me by Lance Fortnow, a corollary of Theorem 57 is that
we cannot hope to show an unrelativized separation between BQP/poly and BQP/qpoly,
without also showing that PP does not have polynomial-size circuits. For BQP/poly 6=
BQP/qpoly clearly implies that P/poly 6= PP/poly. But the latter then implies that PP 6⊂
P/poly, since assuming PP ⊂ P/poly we could also obtain polynomial-size circuits for a
language L ∈ PP/poly by defining a new language L′ ∈ PP, consisting of all (x, a) pairs
such that the PP machine would accept x given advice string a. The reason this works is
that PP is a syntactically defined class.

Third, initially I showed that BQP/qpoly ⊆ EXP/poly, by using a simulation in
which an EXP machine keeps track of a subspace H of the advice Hilbert space to which the
‘true’ advice state must be close. In that simulation, the classical advice specifies inputs
x1, . . . , xT for which dim (H) is at least halved; the observation that dim (H) must be at
least 1 by the end then implies that T ≤ K = O (p (n) log p (n)), meaning that the advice
is of polynomial size. The huge improvement from EXP to PP came solely from working
with measurement outcomes and their probabilities instead of with subspaces and their
dimensions. We can compute the former using the same “Feynman sum-over-histories”
that Adleman et al. [16] used to show BQP ⊆ PP, but I could not see any way to compute
the latter without explicitly storing and diagonalizing exponentially large matrices.

Fourth, assuming BQP/poly 6= BQP/qpoly, Theorem 57 is almost the best result
of its kind that one could hope for, since the only classes known to lie between BQP and PP

and not known to equal either are obscure ones such as AWPP [118]. Initially the theorem
seemed to me to prove something stronger, namely that BQP/qpoly ⊆ PostBQP/poly. Here
PostBQP is the class of languages decidable by polynomial-size quantum circuits with post-
selection—meaning the ability to measure a qubit that has a nonzero probability of being
|1〉, and then assume that the measurement outcome will be |1〉. Clearly PostBQP lies
somewhere between BQP and PP; one can think of it as a quantum analogue of the classical
complexity class BPPpath [144]. It turns out, however, that PostBQP = PP (see Chapter
15).

Fifth, it is clear that Adleman et al.’s BQP ⊆ PP result [16] can be extended
to show that PQP = PP. Here PQP is the quantum analogue of PP—that is, quantum
polynomial time but where the probability of a correct answer need only be bounded above
1/2, rather than above 2/3. It has been asked whether Theorem 57 could similarly be
extended to show that PQP/qpoly = PP/poly. The answer is no—for indeed, PQP/qpoly

contains every language whatsoever! To see this, given any function Ln : {0, 1}n → {0, 1},
let the quantum advice state be

|ψn〉 =
1

2n/2

∑

x∈{0,1}n

|x〉 |Ln (x)〉 .

Then a PQP algorithm to compute Ln is as follows: given an input x ∈ {0, 1}n, first measure
|ψn〉 in the standard basis. If |x〉 |Ln (x)〉 is observed, output Ln (x); otherwise output a
uniform random bit.

99

10.3 A Direct Product Theorem for Quantum Search

Can quantum computers solve NP-complete problems in polynomial time? In the early
days of quantum computing, Bennett et al. [51] gave an oracle relative to which NP 6⊂ BQP,
providing what is still the best evidence we have that the answer is no. It is easy to extend
Bennett et al.’s result to give an oracle relative to which NP 6⊂ BQP/poly; that is, NP is
hard even for nonuniform quantum algorithms. But when we try to show NP 6⊂ BQP/qpoly

relative to an oracle, a new difficulty arises: even if the oracle encodes 2n exponentially
hard search problems for each input length n, the quantum advice, being an “exponentially
large object” itself, might somehow encode information about all 2n problems. We need
to argue that even if so, only a miniscule fraction of that information can be extracted by
measuring the advice.

How does one prove such a statement? As it turns out, the task can be reduced
to proving a direct product theorem for quantum search. This is a theorem that in its
weakest form says the following: given N items, K of which are marked, if we lack enough
time to find even one marked item, then the probability of finding all K items decreases
exponentially in K. For intuitively, suppose there were a quantum advice state that let us
efficiently find any one of K marked items. Then by “guessing” the advice (i.e. replacing
it by a maximally mixed state), and then using the guessed advice multiple times, we could
efficiently find all K of the items with a success probability that our direct product theorem
shows is impossible. This reduction is formalized in Theorem 64.

But what about the direct product theorem itself? It seems like it should be
trivial to prove—for surely there are no devious correlations by which success in finding
one marked item leads to success in finding all the others! So it is surprising that even
a weak direct product theorem eluded proof for years. In 2001, Klauck [157] gave an
attempted proof using the hybrid method of Bennett et al. [51]. His motivation was to
show a limitation of space-bounded quantum sorting algorithms. Unfortunately, Klauck’s
proof is fallacious.9

In this section I give the first correct proof of a direct product theorem, based on
the polynomial method of Beals et al. [45]. Besides showing that NP 6⊂ BQP/qpoly relative
to an oracle, my result can be used to recover the conclusions in [157] about the hardness
of quantum sorting (see Klauck, Špalek, and de Wolf [158] for details). I expect the result
to have other applications as well.

I will need the following lemma of Beals et al. [45].

Lemma 58 (Beals et al.) Suppose a quantum algorithm makes T queries to an oracle
string X ∈ {0, 1}N , and accepts with probability A (X). Then there exists a real polynomial
p, of degree at most 2T , such that

p (i) = EX
|X|=i

[A (X)]

for all integers i ∈ {0, . . . , N}, where |X| denotes the Hamming weight of X.

9Specifically, the last sentence in the proof of Lemma 5 in [157] (“Clearly this probability is at least
Qx (px − α)”) is not justified by what precedes it.

100

Lemma 58 implies that, to lower-bound the number of queries T made by a quan-
tum algorithm, it suffices to lower-bound deg (p), where p is a real polynomial representing
the algorithm’s expected acceptance probability. As an example, any quantum algorithm
that computes the OR function on N bits, with success probability at least 2/3, yields a
polynomial p such that p (0) ∈ [0, 1/3] and p (i) ∈ [2/3, 1] for all integers i ∈ {1, . . . , N}.
To lower-bound the degree of such a polynomial, one can use an inequality proved by A. A.
Markov in 1890 ([174]; see also [205]):

Theorem 59 (A. A. Markov) Given a real polynomial p and constant N > 0, let r(0) =
maxx∈[0,N] |p (x)| and r(1) = maxx∈[0,N] |p′ (x)|. Then

deg (p) ≥

√
Nr(1)

2r(0)
.

Theorem 59 deals with the entire range [0, N], whereas in our setting p (x) is
constrained only at the integer points x ∈ {0, . . . , N}. But as shown in [106, 186, 206],
this is not a problem. For by elementary calculus, p (0) ≤ 1/3 and p (1) ≥ 2/3 imply that
p′ (x) ≥ 1/3 for some real x ∈ [0, 1], and therefore r(1) ≥ 1/3. Furthermore, let x∗ be a
point in [0, N] where |p (x∗)| = r(0). Then p (bx∗c) ∈ [0, 1] and p (dx∗e) ∈ [0, 1] imply that
r(1) ≥ 2

(
r(0) − 1

)
. Thus

deg (p) ≥

√
Nr(1)

2r(0)
≥

√
N max

{
1/3, 2

(
r(0) − 1

)}

2r(0)
= Ω

(√
N
)
.

This is the proof of Beals et al. [45] that quantum search requires Ω
(√

N
)

queries.

When proving a direct product theorem, one can no longer apply Theorem 59 so
straightforwardly. The reason is that the success probabilities in question are extremely
small, and therefore the maximum derivative r(1) could also be extremely small. For-
tunately, though, one can still prove a good lower bound on the degree of the relevant
polynomial p. The key is to look not just at the first derivative of p, but at higher deriva-
tives.

To start, we need a lemma about the behavior of functions under repeated differ-
entiation.

Lemma 60 Let f : R → R be an infinitely differentiable function such that for some
positive integer K, we have f (i) = 0 for all i ∈ {0, . . . ,K − 1} and f (K) = δ > 0. Also,
let r(m) = maxx∈[0,N]

∣∣f (m) (x)
∣∣, where f (m) (x) is the mth derivative of f evaluated at x

(thus f (0) = f). Then r(m) ≥ δ/m! for all m ∈ {0, . . . ,K}.

Proof. We claim, by induction on m, that there exist K−m+1 points 0 ≤ x
(m)
0 <

· · · < x
(m)
K−m ≤ K such that f (m)

(
x

(m)
i

)
= 0 for all i ≤ K−m−1 and f (m)

(
x

(m)
K−m

)
≥ δ/m!.

If we define x
(0)
i = i, then the base case m = 0 is immediate from the conditions of the

lemma. Suppose the claim is true for m; then by elementary calculus, for all i ≤ K−m−2

101

there exists a point x
(m+1)
i ∈

(
x

(m)
i , x

(m)
i+1

)
such that f (m+1)

(
x

(m+1)
i

)
= 0. Notice that

x
(m+1)
i ≥ x

(m)
i ≥ · · · ≥ x

(0)
i = i. So there is also a point x

(m+1)
K−m−1 ∈

(
x

(m)
K−m−1, x

(m)
K−m

)
such

that

f (m+1)
(
x

(m+1)
K−m−1

)
≥
f (m)

(
x

(m)
K−m

)
− f (m)

(
x

(m)
K−m−1

)

x
(m)
K−m − x

(m)
K−m−1

≥ δ/m! − 0

K − (K −m− 1)

=
δ

(m+ 1)!
.

With the help of Lemma 60, one can sometimes lower-bound the degree of a real
polynomial even its first derivative is small throughout the region of interest. To do so, I
will use the following generalization of A. A. Markov’s inequality (Theorem 59), which was
proved by A. A. Markov’s younger brother V. A. Markov in 1892 ([175]; see also [205]).

Theorem 61 (V. A. Markov) Given a real polynomial p of degree d and positive real
number N , let r(m) = maxx∈[0,N]

∣∣p(m) (x)
∣∣. Then for all m ∈ {1, . . . , d},

r(m) ≤
(

2r(0)

N

)m
T

(m)
d (1)

≤
(

2r(0)

N

)m d2
(
d2 − 12

) (
d2 − 22

)
· · · · ·

(
d2 − (m− 1)2

)

1 · 3 · 5 · · · · · (2m− 1)
.

Here Td (x) = cos (d arccos x) is the dth Chebyshev polynomial of the first kind.

As demonstrated below, combining Theorem 61 with Lemma 60 yields a lower
bound on deg (p).

Lemma 62 Let p be a real polynomial such that

(i) p (x) ∈ [0, 1] at all integer points x ∈ {0, . . . , N}, and

(ii) for some positive integer K ≤ N and real δ > 0, we have p (K) = δ and p (i) = 0 for
all i ∈ {0, . . . ,K − 1}.

Then deg (p) = Ω
(√

Nδ1/K
)
.

Proof. Let p(m) and r(m) be as in Theorem 61. Then for all m ∈ {1, . . . ,deg (p)},
Theorem 61 yields

r(m) ≤
(

2r(0)

N

)m
deg (p)2m

1 · 3 · 5 · · · · · (2m− 1)

102

Rearranging,

deg (p) ≥
√

N

2r(0)
(
1 · 3 · 5 · · · · · (2m− 1) · r(m)

)1/m

for all m ≥ 1 (if m > deg (p) then r(m) = 0 so the bound is trivial).
There are now two cases. First suppose r(0) ≥ 2. Then as discussed previously,

condition (i) implies that r(1) ≥ 2
(
r(0) − 1

)
, and hence that

deg (p) ≥

√
Nr(1)

2r(0)
≥

√
N
(
r(0) − 1

)

r(0)
= Ω

(√
N
)

by Theorem 59. Next suppose r(0) < 2. Then r(m) ≥ δ/m! for all m ≤ K by Lemma 60.
So setting m = K yields

deg (p) ≥
√
N

4

(
1 · 3 · 5 · · · · · (2K − 1) · δ

K!

)1/K

= Ω
(√

Nδ1/K
)
.

Either way we are done.
Strictly speaking, one does not need the full strength of Theorem 61 to prove a

lower bound on deg (p) that suffices for an oracle separation between NP and BQP/qpoly.
For one can show a “rough-and-ready” version of V. A. Markov’s inequality by applying A.
A. Markov’s inequality (Theorem 59) repeatedly, to p, p(1), p(2), and so on. This yields

r(m) ≤ 2

N
deg (p)2 r(m−1) ≤

(
2

N
deg (p)2

)m
r(0)

for all m. If deg (p) is small, then this upper bound on r(m) contradicts the lower bound
of Lemma 60. However, the lower bound on deg (p) that one gets from A. A. Markov’s

inequality is only Ω
(√

Nδ1/K/K
)
, as opposed to Ω

(√
Nδ1/K

)
from Lemma 62.10

Shortly after seeing my proof of a weak direct product theorem, Klauck, Špalek,
and de Wolf [158] managed to improve the lower bound on deg (p) to the essentially tight

Ω
(√

NKδ1/K
)
. In particular, their bound implies that δ decreases exponentially in K

whenever deg (p) = o
(√

NK
)
. They obtained this improvement by factoring p instead of

differentiating it as in Lemma 60.
In any case, a direct product theorem follows trivially from what has already been

said.

Theorem 63 (Direct Product Theorem) Suppose a quantum algorithm makes T queries
to an oracle string X ∈ {0, 1}N . Let δ be the minimum probability, over all X with Ham-

ming weight |X| = K, that the algorithm finds all K of the ‘1’ bits. Then δ ≤
(
cT 2/N

)K
for some constant c.

10An earlier version of this chapter claimed to prove deg (p) = Ω
(√

NK/ log3/2 (1/δ)
)
, by applying

Bernstein’s inequality [56] rather than A. A. Markov’s to all derivatives p(m). I have since discovered a flaw
in that argument. In any case, the Bernstein lower bound is both unnecessary for an oracle separation, and
superseded by the later results of Klauck et al. [158].

103

Proof. Have the algorithm accept if it findsK or more ‘1’ bits and reject otherwise.
Let p (i) be the expected probability of acceptance ifX is drawn uniformly at random subject
to |X| = i. Then we know the following about p:

(i) p (i) ∈ [0, 1] at all integer points i ∈ {0, . . . , N}, since p (i) is a probability.

(ii) p (i) = 0 for all i ∈ {0, . . . ,K − 1}, since there are not K marked items to be found.

(iii) p (K) ≥ δ.

Furthermore, Lemma 58 implies that p is a polynomial in i satisfying deg (p) ≤ 2T .

It follows from Lemma 62 that T = Ω
(√

Nδ1/K
)
, or rearranging, that δ ≤

(
cT 2/N

)K
.

The desired oracle separation can now be proven using standard complexity theory
tricks.

Theorem 64 There exists an oracle relative to which NP 6⊂ BQP/qpoly.

Proof. Given an oracle A : {0, 1}∗ → {0, 1}, define the language LA by (y, z) ∈ LA
if and only if y ≤ z lexicographically and there exists an x such that y ≤ x ≤ z andA (x) = 1.
Clearly LA ∈ NPA for all A. We argue that for some A, no BQP/qpoly machine M with
oracle access to A can decide LA. Without loss of generality we assume M is fixed, so that
only the advice states {|ψn〉}n≥1 depend on A. We also assume the advice is boosted, so

that M ’s error probability on any input (y, z) is 2−Ω(n2).
Choose a set S ⊂ {0, 1}n subject to |S| = 2n/10; then for all x ∈ {0, 1}n, set

A (x) = 1 if and only if x ∈ S. We claim that by using M , an algorithm could find all
2n/10 elements of S with high probability after only 2n/10 poly (n) queries to A. Here is
how: first use binary search (repeatedly halving the distance between y and z) to find the
lexicographically first element of S. By Lemma 52, the boosted advice state |ψn〉 is good

for 2Ω(n2) uses, so this takes only poly (n) queries. Then use binary search to find the
lexicographically second element, and so on until all elements have been found.

Now replace |ψn〉 by the maximally mixed state as in Theorem 56. This yields an
algorithm that uses no advice, makes 2n/10 poly (n) queries, and finds all 2n/10 elements of
S with probability 2−O(poly(n)). But taking δ = 2−O(poly(n)), T = 2n/10 poly (n), N = 2n,

and K = 2n/10, such an algorithm would satisfy δ �
(
cT 2/N

)K
, which violates the bound

of Theorem 63.
Indeed one can show that NP 6⊂ BQP/qpoly relative a random oracle with proba-

bility 1.11

10.4 The Trace Distance Method

This section introduces a new method for proving lower bounds on quantum one-way com-
munication complexity. Unlike in Section 10.2, here I do not try to simulate quantum

11First group the oracle bits into polynomial-size blocks as Bennett and Gill [54] do, then use the techniques
of Chapter 6 to show that the acceptance probability is a low-degree univariate polynomial in the number
of all-0 blocks. The rest of the proof follows Theorem 64.

104

protocols using classical ones. Instead I prove lower bounds for quantum protocols di-
rectly, by reasoning about the trace distance between two possible distributions over Alice’s
quantum message (that is, between two mixed states). The result is a method that works
even if Alice’s and Bob’s inputs are the same size.

I first state the method as a general theorem; then, in Section 10.4.1, I apply the
theorem to prove lower bounds for two problems of Ambainis. Let ‖D − E‖ denote the
variation distance between probability distributions D and E .

Theorem 65 Let f : {0, 1}n × {0, 1}m → {0, 1} be a total Boolean function. For each
y ∈ {0, 1}m, let Ay be a distribution over x ∈ {0, 1}n such that f (x, y) = 1. Let B be

a distribution over y ∈ {0, 1}m, and let Dk be the distribution over ({0, 1}n)k formed by
first choosing y ∈ B and then choosing k samples independently from Ay. Suppose that
Prx∈D1,y∈B [f (x, y) = 0] = Ω (1) and that

∥∥D2 −D2
1

∥∥ ≤ δ. Then Q1
2 (f) = Ω (log 1/δ).

Proof. Suppose that if Alice’s input is x, then she sends Bob the `-qubit mixed
state ρx. Suppose also that for every x ∈ {0, 1}n and y ∈ {0, 1}m, Bob outputs f (x, y)
with probability at least 2/3. Then by amplifying a constant number of times, Bob’s
success probability can be made 1 − ε for any constant ε > 0. So with L = O (`) qubits of
communication, Bob can distinguish the following two cases with constant bias:

Case I. y was drawn from B and x from D1.
Case II. y was drawn from B and x from Ay.
For in Case I, we assumed that f (x, y) = 0 with constant probability, whereas in

Case II, f (x, y) = 1 always. An equivalent way to say this is that with constant probability
over y, Bob can distinguish the mixed states ρ = EXx∈D1 [ρx] and ρy = EXx∈Ay [ρx] with
constant bias. Therefore

EX
y∈B

[
‖ρ− ρy‖tr

]
= Ω (1) .

We need an upper bound on the trace distance ‖ρ− ρy‖tr that is more amenable
to analysis. Let λ1, . . . , λ2L be the eigenvalues of ρ− ρy. Then

‖ρ− ρy‖tr =
1

2

2L∑

i=1

|λi|

≤ 1

2

√√√√2L
2L∑

i=1

λ2
i

= 2L/2−1

√√√√
2L∑

i,j=1

∣∣∣(ρ)ij − (ρy)ij

∣∣∣
2

where (ρ)ij is the (i, j) entry of ρ. Here the second line uses the Cauchy-Schwarz inequality,
and the third line uses the unitary invariance of the Frobenius norm.

We claim that

EX
y∈B




2L∑

i,j=1

∣∣∣(ρ)ij − (ρy)ij

∣∣∣
2


 ≤ 2δ.

105

From this claim it follows that

EX
y∈B

[
‖ρ− ρy‖tr

]
≤ 2L/2−1 EX

y∈B




√√√√
2L∑

i,j=1

∣∣∣(ρ)ij − (ρy)ij

∣∣∣
2




≤ 2L/2−1

√√√√√EX
y∈B




2L∑

i,j=1

∣∣∣(ρ)ij − (ρy)ij

∣∣∣
2




≤
√

2L−1δ.

Therefore the message length L must be Ω (log 1/δ) to ensure that EXy∈B
[
‖ρ− ρy‖tr

]
=

Ω (1).
Let us now prove the claim. We have

EX
y∈B




2L∑

i,j=1

∣∣∣(ρ)ij − (ρy)ij

∣∣∣
2


 =

2L∑

i,j=1

(∣∣∣(ρ)ij
∣∣∣
2
− 2Re

(
(ρ)∗ij EX

y∈B

[
(ρy)ij

])
+ EX
y∈B

[∣∣∣(ρy)ij
∣∣∣
2
])

=
2L∑

i,j=1

(
EX
y∈B

[∣∣∣(ρy)ij
∣∣∣
2
]
−
∣∣∣(ρ)ij

∣∣∣
2
)
,

since EXy∈B
[
(ρy)ij

]
= (ρ)ij. For a given (i, j) pair,

EX
y∈B

[∣∣∣(ρy)ij
∣∣∣
2
]
−
∣∣∣(ρ)ij

∣∣∣
2

= EX
y∈B

[∣∣∣∣ EX
x∈Ay

[
(ρx)ij

]∣∣∣∣
2
]
−
∣∣∣∣ EX
x∈D1

[
(ρx)ij

]∣∣∣∣
2

= EX
y∈B,x,z∈Ay

[
(ρx)

∗
ij (ρz)ij

]
− EX
x,z∈D1

[
(ρx)

∗
ij (ρz)ij

]

=
∑

x,z

(
Pr
D2

[x, z] − Pr
D2

1

[x, z]

)
(ρx)

∗
ij (ρz)ij .

Now for all x, z, ∣∣∣∣∣∣

2L∑

i,j=1

(ρx)
∗
ij (ρz)ij

∣∣∣∣∣∣
≤

2L∑

i,j=1

∣∣∣(ρx)ij
∣∣∣
2
≤ 1.

Hence

∑

x,z

(
Pr
D2

[x, z] − Pr
D2

1

[x, z]

)
2L∑

i,j=1

(ρx)
∗
ij (ρz)ij ≤

∑

x,z

(
Pr
D2

[x, z] − Pr
D2

1

[x, z]

)

= 2
∥∥D2 −D2

1

∥∥
≤ 2δ,

and we are done.
The difficulty in extending Theorem 65 to partial functions is that the distribution

D1 might not make sense, since it might assign a nonzero probability to some x for which
f (x, y) is undefined.

106

10.4.1 Applications

In this subsection I apply Theorem 65 to prove lower bounds for two problems of Ambainis.
To facilitate further research and to investigate the scope of our method, I state the problems
in a more general way than Ambainis did. Given a group G, the coset problem Coset (G)
is defined as follows. Alice is given a left coset C of a subgroup in G, and Bob is given
an element y ∈ G. Bob must output 1 if y ∈ C and 0 otherwise. By restricting the
group G, we obtain many interesting and natural problems. For example, if p is prime
then Coset (Zp) is just the equality problem, so the protocol of Rabin and Yao [194] yields
Q1

2 (Coset (Zp)) = Θ (log log p).

Theorem 66 Q1
2

(
Coset

(
Z2
p

))
= Θ (log p).

Proof. The upper bound is obvious. For the lower bound, it suffices to consider
a function fp defined as follows. Alice is given 〈x, y〉 ∈ F2

p and Bob is given 〈a, b〉 ∈ F2
p;

then

fp (x, y, a, b) =

{
1 if y ≡ ax+ b (mod p)
0 otherwise.

Let B be the uniform distribution over 〈a, b〉 ∈ F2
p, and let Aa,b be the uniform distribution

over 〈x, y〉 such that y ≡ ax+ b (mod p). Thus D1 is the uniform distribution over 〈x, y〉 ∈
F2
p; note that

Pr
〈x,y〉∈D1,〈a,b〉∈B

[fp (x, y, a, b) = 0] = 1 − 1

p
.

But what about the distribution D2, which is formed by first drawing 〈a, b〉 ∈ B, and then
drawing 〈x, y〉 and 〈z,w〉 independently from Aa,b? Given a pair 〈x, y〉 , 〈z,w〉 ∈ F2

p, there
are three cases regarding the probability of its being drawn from D2:

(1) 〈x, y〉 = 〈z,w〉 (p2 pairs). In this case

Pr
D2

[〈x, y〉 , 〈z,w〉] =
∑

〈a,b〉∈F2
p

Pr [〈a, b〉] Pr [〈x, y〉 , 〈z,w〉 | 〈a, b〉]

= p

(
1

p2
· 1

p2

)
=

1

p3
.

(2) x 6= z (p4 − p3 pairs). In this case there exists a unique 〈a∗, b∗〉 such that y ≡
a∗x+ b∗ (mod p) and w ≡ a∗z + b∗ (mod p), so

Pr
D2

[〈x, y〉 , 〈z,w〉] = Pr [〈a∗, b∗〉] Pr [〈x, y〉 , 〈z,w〉 | 〈a∗, b∗〉]

=
1

p2
· 1

p2
=

1

p4
.

(3) x = z but y 6= w (p3 − p2 pairs). In this case PrD2 [〈x, y〉 , 〈z,w〉] = 0.

107

Putting it all together,

∥∥D2 −D2
1

∥∥ =
1

2

(
p2

∣∣∣∣
1

p3
− 1

p4

∣∣∣∣+
(
p4 − p3

) ∣∣∣∣
1

p4
− 1

p4

∣∣∣∣+
(
p3 − p2

) ∣∣∣∣0 − 1

p4

∣∣∣∣
)

=
1

p
− 1

p2
.

So taking δ = 1/p − 1/p2, we have Q1
2

(
Coset

(
Z2
p

))
= Ω (log (1/δ)) = Ω (log p) by Theorem

65.
I now consider Ambainis’ second problem. Given a group G and nonempty set

S ⊂ G with |S| ≤ |G| /2, the subset problem Subset (G,S) is defined as follows. Alice is
given x ∈ G and Bob is given y ∈ G; then Bob must output 1 if xy ∈ S and 0 otherwise.

Let M be the distribution over st−1 ∈ G formed by drawing s and t uniformly
and independently from S. Then let ∆ = ‖M−D1‖, where D1 is the uniform distribution
over G.

Proposition 67 For all G,S such that |S| ≤ |G| /2,

Q1
2 (Subset (G,S)) = Ω (log 1/∆) .

Proof. Let B be the uniform distribution over y ∈ G, and let Ay be the uniform
distribution over x such that xy ∈ S. Thus D1 is the uniform distribution over x ∈ G; note
that

Pr
x∈D1,y∈B

[xy /∈ S] = 1 − |S|
|G| ≥

1

2
.

We have

∥∥D2 −D2
1

∥∥ =
1

2

∑

x,z∈G

∣∣∣∣
|{y ∈ G, s, t ∈ S : xy = s, zy = t}|

|G| |S|2
− 1

|G|2
∣∣∣∣

=
1

2

∑

x,z∈G

∣∣∣∣∣

∣∣{s, t ∈ S : xz−1 = st−1
}∣∣

|S|2
− 1

|G|2

∣∣∣∣∣

=
1

2

∑

x∈G

∣∣∣∣∣

∣∣{s, t ∈ S : x = st−1
}∣∣

|S|2
− 1

|G|

∣∣∣∣∣

=
1

2

∑

x∈G

∣∣∣∣Pr
M

[x] − 1

|G|

∣∣∣∣

= ‖M−D1‖
= ∆.

Therefore log (1/δ) = Ω (log 1/∆).
Having lower-bounded Q1

2 (Subset (G,S)) in terms of 1/∆, it remains only to
upper-bound the variation distance ∆. The following proposition implies that for all
constants ε > 0, if S is chosen uniformly at random subject to |S| = |G|1/2+ε, then
Q1

2 (Subset (G,S)) = Ω (log (|G|)) with constant probability over S.

108

Theorem 68 For all groups G and integers K ∈ {1, . . . , |G|}, if S ⊂ G is chosen uniformly

at random subject to |S| = K, then ∆ = O
(√

|G|/K
)

with Ω (1) probability over S.

Proof. We have

∆ =
1

2

∑

x∈G

∣∣∣∣Pr
M

[x] − 1

|G|

∣∣∣∣ ≤
√

|G|
2

√√√√∑

x∈G

(
Pr
M

[x] − 1

|G|

)2

by the Cauchy-Schwarz inequality. We claim that

EX
S

[
∑

x∈G

(
Pr
M

[x] − 1

|G|

)2
]
≤ c

K2

for some constant c. From this it follows by Markov’s inequality that

Pr
S

[
∑

x∈G

(
Pr
M

[x] − 1

|G|

)2

≥ 2c

K2

]
≤ 1

2

and hence

∆ ≤
√
|G|
2

√
2c

K2
= O

(√
|G|
K

)

with probability at least 1/2.
Let us now prove the claim. We have

Pr
M

[x] = Pr
i,j

[
sis

−1
j = x

]
= Pr

i,j
[si = xsj] ,

where S = {s1, . . . , sK} and i, j are drawn uniformly and independently from {1, . . . ,K}.
So by linearity of expectation,

EX
S

[
∑

x∈G

(
Pr
M

[x] − 1

|G|

)2
]

= EX
S

[
∑

x∈G

((
Pr
i,j

[si = xsj]

)2

− 2

|G| Pr
i,j

[si = xsj] +
1

|G|2

)]

=
∑

x∈G


 1

K4

K∑

i,j,k,l=1

px,ijkl


− 2

|G|
∑

x∈G


 1

K2

K∑

i,j=1

px,ij


+

1

|G|

where

px,ij = Pr
S

[si = xsj] ,

px,ijkl = Pr
S

[si = xsj ∧ sk = xsl] .

First we analyze px,ij. Let ord (x) be the order of x in G. Of the K2 possible
ordered pairs (i, j), there are K pairs with the “pattern” ii (meaning that i = j), and
K (K − 1) pairs with the pattern ij (meaning that i 6= j). If ord (x) = 1 (that is, x is the

109

Pattern Number of such 4-tuples ord (x) = 1 ord (x) = 2 ord (x) > 2

iiii,iikk K2 1 0 0
ijij K (K − 1) 0 1

|G|−1
1

|G|−1

ijji K (K − 1) 0 1
|G|−1 0

iiil,iiki,ijii,ijjj 4K (K − 1) 0 0 0
ijki,ijjk 2K (K − 1) (K − 2) 0 0 1

(|G|−1)(|G|−2)

iikl,ijkk,ijik,ijkj 4K (K − 1) (K − 2) 0 0 0
ijkl K (K − 1) (K − 2) (K − 3) 0 1

(|G|−1)(|G|−3)
1

(|G|−1)(|G|−3)

Table 10.1: Expressions for px,ijkl

identity), then we have px,ij = PrS [si = sj], so px,ij = 1 under the pattern ii, and px,ij = 0
under the pattern ij. On the other hand, if ord (x) > 1, then px,ij = 0 under the pattern
ii, and px,ij = 1

|G|−1 under the pattern ij. So

1

K2

∑

x∈G

K∑

i,j=1

px,ij =
1

K2

(
K + (|G| − 1)

K (K − 1)

|G| − 1

)
= 1.

Though unnecessarily cumbersome, the above analysis was a warmup for the more
complicated case of px,ijkl. Table 10.1 lists the expressions for px,ijkl, given ord (x) and the
pattern of (i, j, k, l).

Let r be the number of x ∈ G such that ord (x) = 2, and let r′ = |G| − r − 1 be
the number such that ord (x) > 2. Then

1

K4

∑

x∈G

K∑

i,j,k,l=1

px,ijkl =
1

K4

(
K2 + (2r + r′) K(K−1)

|G|−1 + 2r′K(K−1)(K−2)
(|G|−1)(|G|−2)

+ (r + r′) K(K−1)(K−2)(K−3)
(|G|−1)(|G|−3)

)

≤ 1

|G| − 3
+O

(
1

K2

)

using the fact that K ≤ |G|.
Putting it all together,

EX
S

[
∑

x∈G

(
Pr
M

[x] − 1

|G|

)2
]
≤ 1

|G| − 3
+O

(
1

K2

)
− 2

|G| +
1

|G| = O

(
1

K2

)

and we are done.
From fingerprinting one also has the following upper bound. Let q be the period-

icity of S, defined as the number of distinct sets gS = {gs : s ∈ S} where g ∈ G.

Proposition 69 R1
2 (Subset (G,S)) = O (log |S| + log log q).

Proof. Assume for simplicity that q = |G|; otherwise we could reduce to a sub-
group H ≤ G with |H| = q. The protocol is as follows: Alice draws a uniform random prime

110

p from the range
[
|S|2 log2 |G| , 2 |S|2 log2 |G|

]
; she then sends Bob the pair (p, xmod p)

where x is interpreted as an integer. This takes O (log |S| + log log |G|) bits. Bob outputs
1 if and only if there exists a z ∈ G such that zy ∈ S and x ≡ z (mod p). To see the
protocol’s correctness, observe that if x 6= z, then there at most log |G| primes p such that

x− z ≡ 0 (mod p), whereas the relevant range contains Ω
(

|S|2 log2|G|
log(|S| log|G|)

)
primes. Therefore,

if xy /∈ S, then by the union bound

Pr
p

[∃z : zy ∈ S, x ≡ z (mod p)] = O

(
|S| log |G| log (|S| log |G|)

|S|2 log2 |G|

)
= o (1) .

10.5 Open Problems

Are R1
2 (f) and Q1

2 (f) polynomially related for every total Boolean function f? Also, can
we exhibit any asymptotic separation between these measures? The best separation I know
of is a factor of 2: for the equality function we have R1

2 (EQ) ≥ (1 − o (1)) log2 n, whereas
Winter [243] has shown that Q1

2 (EQ) ≤ (1/2 + o (1)) log2 n using a protocol involving mixed
states.12 This factor-2 savings is tight for equality: a simple counting argument shows that
Q1

2 (EQ) ≥ (1/2 − o (1)) log2 n; and although the usual randomized protocol for equality
[194] uses (2 + o (1)) log2 n bits, there exist protocols based on error-correcting codes that
use only log2 (cn) = log2 n+O (1) bits. All of this holds for any constant error probability
0 < ε < 1/2.

Can we lower-bound Q1
2 (Coset (G)) for groups other than Z2

p (such as Zn2 , or

nonabelian groups)? Also, can we characterize Q1
2 (Subset (G,S)) for all sets S, closing the

gap between the upper and lower bounds?
Is there an oracle relative to which BQP/poly 6= BQP/qpoly?
Can we give oracles relative to which NP ∩ coNP and SZK are not contained in

BQP/qpoly? Even more ambitiously, can we prove a direct product theorem for quantum
query complexity that applies to any partial or total function (not just search)?

For all f (partial or total), is R1
2 (f) = O (

√
n) whenever Q1

2 (f) = O (log n)? In
other words, is the separation of Bar-Yossef et al. [43] the best possible?

Can the result D1 (f) = O
(
mQ1

2 (f) log Q1
2 (f)

)
for partial f be improved to

D1 (f) = O
(
mQ1

2 (f)
)
? I do not even know how to rule out D1 (f) = O

(
m+ Q1

2 (f)
)
.

In the Simultaneous Messages (SM) model, there is no direct communication be-
tween Alice and Bob; instead, Alice and Bob both send messages to a third party called the
referee, who then outputs the function value. The complexity measure is the sum of the two

message lengths. Let R
||
2 (f) and Q

||
2 (f) be the randomized and quantum bounded-error

SM complexities of f respectively, and let R
||,pub
2 (f) be the randomized SM complexity if

Alice and Bob share an arbitrarily long random string. Building on work by Buhrman et

al. [75], Yao [250] showed that Q
||
2 (f) = O (log n) whenever R

||,pub
2 (f) = O (1). He then

12If we restrict ourselves to pure states, then (1 − o (1)) log2 n qubits are needed. Based on that fact, a
previous version of this chapter claimed incorrectly that Q1

2 (EQ) ≥ (1 − o (1)) log2 n.

111

asked about the other direction: for some ε > 0, does R
||,pub
2 (f) = O

(
n1/2−ε) whenever

Q
||
2 (f) = O (log n), and does R

||
2 (f) = O

(
n1−ε) whenever Q

||
2 (f) = O (log n)? In an earlier

version of this chapter, I showed that R
||
2 (f) = O

(√
n
(
R

||,pub
2 (f) + log n

))
, which means

that a positive answer to Yao’s first question would imply a positive answer to the second.
Later I learned that Yao independently proved the same result [249]. Here I ask a related

question: can Q
||
2 (f) ever be exponentially smaller than R

||,pub
2 (f)? (Buhrman et al. [75]

showed that Q
||
2 (f) can be exponentially smaller than R

||
2 (f).) Iordanis Kerenidis has

pointed out to me that, based on the hidden matching problem of Bar-Yossef et al. [43]

discussed in Section 10.1, one can define a relation for which Q
||
2 (f) is exponentially smaller

than R
||,pub
2 (f). However, as in the case of Q1

2 (f) versus R1
2 (f), it remains to extend that

result to functions.

112

Chapter 11

Summary of Part I

From my unbiased perspective, quantum lower bounds are some of the deepest
results to have emerged from the study of quantum computing and information. These
results tell us that many problems we thought were intractable based on classical intuition,
really are intractable according to our best theory of the physical world. On the other hand,
the reasons for intractability are much more subtle than in the classical case. In some sense,
this has to be true—for otherwise the reasons would apply even to those problems for which
dramatic quantum speedups exist.

We currently have two methods for proving lower bounds on quantum query com-
plexity: the polynomial method of Beals et al. [45], and the adversary method of Ambainis
[27]. The preceding chapters have illustrated what, borrowing from Wigner [242], we might
call the “unreasonable effectiveness” of these methods. Both continue to work far outside
of their original design specs—whether by proving classical lower bounds, lower bounds for
exponentially small success probabilities (as in the direct product theorem), or polynomial
lower bounds for quantities that have “no right” to be polynomials (as in the collision and
set comparison problems). Yet the two methods also have complementary limitations. The
adversary method is useless when the relevant probability gaps are small, or when every
0-input differs from every 1-input in a constant fraction of locations. Likewise, the polyno-
mial method cannot be applied to problems that lack permutation symmetry, at least using
the techniques we currently know. Thus, perhaps the most important open problem in
quantum lower bounds is to develop a new method that overcomes the limitations of both
the polynomial and the adversary methods.1

In keeping with the theme of this thesis, I end Part I by listing some classical
intuitions about computing, that a hypothetical being from Conway’s Game of Life could
safely carry into the quantum universe.

• The collision problem is not that much easier than unordered search. For despite
being extremely far from any one-to-one function, a random two-to-one function still
looks one-to-one unless we do an expensive search for collisions.

• Finding a local minimum of a function is not that much easier than finding a global

1Along these lines, Barnum, Saks, and Szegedy [44] have given what in some sense is a provably optimal
method, but their method (based on semidefinite programming) seems too difficult to apply directly.

113

minimum. This is because the paths leading to local minima could be exponentially
long.

• If we want to distinguish an input X from the set of all Y such that f (Y) 6= f (X),
then there is nothing much better to do than to query nonadaptively according to the
minimax strategy.

• The difficulty of recursive Fourier sampling increases exponentially with the height of
the tree.

• Given n unrelated instances of a problem, but only enough time to solve o (n) of them,
the probability of succeeding on all n instances decreases exponentially with n.

• NP-complete problems are probably hard, even with the help of polynomial-size ad-
vice.

114

Part II

Models and Reality

115

LS: So you believe quantum mechanics?

Me: Of course I do!

LS: So a thousand years from now, people will still be doing quantum mechanics?

Me: Well. . . um. . . I guess so. . .

—Conversation between me and Lee Smolin

116

Chapter 12

Skepticism of Quantum Computing

“QC of the sort that factors long numbers seems firmly rooted in science fiction
. . . The present attitude would be analogous to, say, Maxwell selling the Daemon
of his famous thought experiment as a path to cheaper electricity from heat.”

—Leonid Levin [167]

Quantum computing presents a dilemma: is it reasonable to study a type of com-
puter that has never been built, and might never be built in one’s lifetime? Some researchers
strongly believe the answer is ‘no.’ Their objections generally fall into four categories:

(A) There is a fundamental physical reason why large quantum computers can never be
built.

(B) Even if (A) fails, large quantum computers will never be built in practice.

(C) Even if (A) and (B) fail, the speedup offered by quantum computers is of limited
theoretical interest.

(D) Even if (A), (B), and (C) fail, the speedup is of limited practical value.1

The objections can be classified along two axes, as in Table 12.1.
This chapter focuses on objection (A), that quantum computing is impossible for

a fundamental physical reason. Among computer scientists, this objection is most closely

1Because of the ‘even if’ clauses, the objections seem to me logically independent, so that there are 16
possible positions regarding them (or 15 if one is against quantum computing). I ignore the possibility that
no speedup exists, in other words that BPP = BQP. By ‘large quantum computer’ I mean any computer
much faster than its best classical simulation, as a result of asymptotic complexity rather than the speed of
elementary operations. Such a computer need not be universal; it might be specialized for (say) factoring.

Theoretical Practical
Physical (A) (B)
Algorithmic (C) (D)

Table 12.1: Four objections to quantum computing.

117

associated with Leonid Levin [167].2 The following passage captures much of the flavor of
his critique:

The major problem [with quantum computing] is the requirement that basic
quantum equations hold to multi-hundredth if not millionth decimal positions
where the significant digits of the relevant quantum amplitudes reside. We
have never seen a physical law valid to over a dozen decimals. Typically, every
few new decimal places require major rethinking of most basic concepts. Are
quantum amplitudes still complex numbers to such accuracies or do they become
quaternions, colored graphs, or sick-humored gremlins? [167]

Among other things, Levin argues that quantum computing is analogous to the
unit-cost arithmetic model, and should be rejected for essentially the same reasons; that
claims to the contrary rest on a confusion between metric and topological approximation;
that quantum fault-tolerance theorems depend on extravagant assumptions; and that even
if a quantum computer failed, we could not measure its state to prove a breakdown of
quantum mechanics, and thus would be unlikely to learn anything new.

A few responses to Levin’s arguments can be offered immediately. First, even
classically, one can flip a coin a thousand times to produce probabilities of order 2−1000.
Should one dismiss such probabilities as unphysical? At the very least, it is not obvious
that amplitudes should behave differently than probabilities with respect to error—since
both evolve linearly, and neither is directly observable.

Second, if Levin believes that quantum mechanics will fail, but is agnostic about
what will replace it, then his argument can be turned around. How do we know that the
successor to quantum mechanics will limit us to BPP, rather than letting us solve (say)
PSPACE-complete problems? This is more than a logical point. Abrams and Lloyd [15]
argue that a wide class of nonlinear variants of the Schrödinger equation would allow NP-
complete and even #P-complete problems to be solved in polynomial time. And Penrose
[191], who proposed a model for ‘objective collapse’ of the wavefunction, believes that his
proposal takes us outside the set of computable functions entirely!

Third, to falsify quantum mechanics, it would suffice to show that a quantum
computer evolved to some state far from the state that quantum mechanics predicts. Mea-
suring the exact state is unnecessary. Nobel prizes have been awarded in the past ‘merely’
for falsifying a previously held theory, rather than replacing it by a new one. An example
is the physics Nobel awarded to Fitch [112] and Cronin [89] in 1980 for discovering CP
symmetry violation.

Perhaps the key to understanding Levin’s unease about quantum computing lies
in his remark that “we have never seen a physical law valid to over a dozen decimals.” Here
he touches on a serious epistemological question: How far should we extrapolate from today’s
experiments to where quantum mechanics has never been tested? I will try to address this
question by reviewing the evidence for quantum mechanics. For my purposes it will not

2More recently, Oded Goldreich [130] has also put forward an argument against quantum computing.
Compared to Levin’s arguments, Goldreich’s is easily understood: he believes that states arising in Shor’s
algorithm have exponential “non-degeneracy” and therefore take exponential time to prepare, and that there
is no burden on those who hold this view to suggest a definition of non-degeneracy.

118

suffice to declare the predictions of quantum mechanics “verified to one part in a trillion,”
because we have to distinguish at least three different types of prediction: interference,
entanglement, and Schrödinger cats. Let us consider these in turn.

(1) Interference. If the different paths that an electron could take in its orbit around a
nucleus did not interfere destructively, canceling each other out, then electrons would
not have quantized energy levels. So being accelerating electric charges, they would
lose energy and spiral into their respective nuclei, and all matter would disintegrate.
That this has not happened—together with the results of (for example) single-photon
double-slit experiments—is compelling evidence for the reality of quantum interfer-
ence.

(2) Entanglement. One might accept that a single particle’s position is described by a
wave in three-dimensional phase space, but deny that two particles are described by
a wave in six -dimensional phase space. However, the Bell inequality experiments of
Aspect et al. [37] and successors have convinced all but a few physicists that quantum
entanglement exists, can be maintained over large distances, and cannot be explained
by local hidden-variable theories.

(3) Schrödinger Cats. Accepting two- and three-particle entanglement is not the same
as accepting that whole molecules, cats, humans, and galaxies can be in coherent
superposition states. However, recently Arndt et al. [35] have performed the double-
slit interference experiment using C60 molecules (buckyballs) instead of photons; while
Friedman et al. [121] have found evidence that a superconducting current, consisting of
billions of electrons, can enter a coherent superposition of flowing clockwise around a
coil and flowing counterclockwise (see Leggett [166] for a survey of such experiments).
Though short of cats, these experiments at least allow us to say the following: if
we could build a general-purpose quantum computer with as many components as
have already been placed into coherent superposition, then on certain problems, that
computer would outperform any computer in the world today.

Having reviewed some of the evidence for quantum mechanics, we must now ask
what alternatives have been proposed that might also explain the evidence. The simplest
alternatives are those in which quantum states “spontaneously collapse” with some proba-
bility, as in the GRW (Ghirardi-Rimini-Weber) theory [125].3 The drawbacks of the GRW
theory include violations of energy conservation, and parameters that must be fine-tuned
to avoid conflicting with experiments. More relevant for us, though, is that the collapses
postulated by the theory are only in the position basis, so that quantum information stored
in internal degrees of freedom (such as spin) is unaffected. Furthermore, even if we ex-
tended the theory to collapse those internal degrees, large quantum computers could still
be built. For the theory predicts roughly one collapse per particle per 1015 seconds, with a
collapse affecting everything in a 10−7-meter vicinity. So even in such a vicinity, one could
perform a computation involving (say) 1010 particles for 105 seconds. Finally, as pointed

3Penrose [191] has proposed another such theory, but as mentioned earlier, his theory suggests that the
quantum computing model is too restrictive.

119

out to me by Rob Spekkens, standard quantum error-correction techniques might be used
to overcome even GRW-type decoherence.

A second class of alternatives includes those of ’t Hooft [229] and Wolfram [246],
in which something like a deterministic cellular automaton underlies quantum mechanics.
On the basis of his theory, ’t Hooft predicts that “[i]t will never be possible to construct a
‘quantum computer’ that can factor a large number faster, and within a smaller region of
space, than a classical machine would do, if the latter could be built out of parts at least
as large and as slow as the Planckian dimensions” [229]. Similarly, Wolfram states that
“[i]ndeed within the usual formalism [of quantum mechanics] one can construct quantum
computers that may be able to solve at least a few specific problems exponentially faster
than ordinary Turing machines. But particularly after my discoveries . . . I strongly suspect
that even if this is formally the case, it will still not turn out to be a true representation of
ultimate physical reality, but will instead just be found to reflect various idealizations made
in the models used so far” [246, p.771].

The obvious question then is how these theories account for Bell inequality viola-
tions. I confess to being unable to understand ’t Hooft’s answer to this question, except
that he believes that the usual notions of causality and locality might no longer apply in
quantum gravity. As for Wolfram’s theory, which involves “long-range threads” to account
for Bell inequality violations, I will show in Section 12.1 below that it fails Wolfram’s own
desiderata of causal and relativistic invariance.

12.1 Bell Inequalities and Long-Range Threads

This section is excerpted from my review [1] of Stephen Wolfram’s A New Kind
of Science [246].

The most interesting chapter of A New Kind of Science is the ninth, on ‘Fun-
damental Physics.’ Here Wolfram confronts general relativity and quantum mechanics,
arguably the two most serious challenges to the deterministic, cellular-automaton-based
view of nature that he espouses. Wolfram conjectures that spacetime is discrete at the
Planck scale, of about 10−33 centimeters or 10−43 seconds. This conjecture is not new, and
has received considerable attention recently in connection with the holographic principle
[65] from black hole thermodynamics, which Wolfram does not discuss. But are new ideas
offered to substantiate the conjecture?

For Wolfram, spacetime is a causal network, in which events are vertices and edges
specify the dependence relations between events. Pages 486–496 and 508–515 discuss in
detail how to generate such a network from a simple set of rules. In particular, we could
start with a finite undirected ‘space graph’ G. We then posit a set of update rules, each of
which replaces a subgraph by another subgraph with the same number of outgoing edges.
The new subgraph must preserve any symmetries of the old one. Then each event in
the causal network corresponds to an application of an update rule. If updating event B
becomes possible as a result of event A, then we draw an edge from A to B.

Properties of space are defined in terms of G. For example, if the number of
vertices in G at distance at most n from any given vertex grows as nD, then space can be

120

said to have dimension D. (As for formalizing this definition, Wolfram says only that there
are “some subtleties. For example, to find a definite volume growth rate one does still need
to take some kind of limit—and one needs to avoid sampling too many or too few” vertices
(p. 1030).) Similarly, Wolfram argues that the curvature information needed for general
relativity, in particular the Ricci tensor, can be read from the connectivity pattern of G.
Interestingly, to make the model as simple as possible, Wolfram does not associate a bit to
each vertex of G, representing (say) the presence or absence of a particle. Instead particles
are localized structures, or ‘tangles,’ in G.

An immediate problem is that one might obtain many nonequivalent causal net-
works, depending on the order in which update rules are applied to G. Wolfram calls a set
of rules that allows such nondeterministic evolution a ‘multiway system.’ He recognizes,
but rejects, a possible connection to quantum mechanics:

The notion of ‘many-figured time’ has been discussed since the 1950s in the con-
text of the many-worlds interpretation of quantum mechanics. There are some
similarities to the multiway systems that I consider here. But an important
difference is that while in the many-worlds approach, branchings are associated
with possible observation or measurement events, what I suggest here is that
they could be an intrinsic feature of even the very lowest-level rules for the
universe (p. 1035-6).

It is unclear exactly what distinction is being drawn: is there any physical event
that is not associated with a possible observation or measurement? In any case, Wolfram
opts instead for rule sets that are ‘causal invariant’: that is, that yield the same causal
network regardless of the order in which rules are applied. As noted by Wolfram, a
sufficient (though not necessary) condition for causal invariance is that no ‘replaceable’
subgraph overlaps itself or any other replaceable subgraph.

Wolfram points out an immediate analogy to special relativity, wherein observers
do not in general agree on the order in which spacelike separated events occur, yet agree
on any final outcome of the events. He is vague, though, about how (say) the Lorentz
transformations might be derived in a causal network model:

There are many subtleties here, and indeed to explain the details of what is
going on will no doubt require quite a few new and rather abstract concepts.
But the general picture that I believe will emerge is that when particles move
faster they will appear to have more nodes associated with them (p. 529).

Wolfram is “certainly aware that many physicists will want to know more details,”
he says in the endnotes, about how a discrete model of the sort he proposes can reproduce
known features of physics. But, although he chose to omit technical formalism from the
presentation, “[g]iven my own personal background in theoretical physics it will come as no
surprise that I have often used such formalism in the process of working out what I describe
in these sections” (p. 1043). The paradox is obvious: if technical formalism would help
convince physicists of his ideas, then what could Wolfram lose by including it, say in the
endnotes? If, on the other hand, such formalism is irrelevant, then why does Wolfram even
mention having used it?

121

Physicists’ hunger for details will likely grow further when they read the section on
‘Quantum Phenomena’ (p. 537–545). Here Wolfram maintains that quantum mechanics
is only an approximation to an underlying classical (and most likely deterministic) theory.
Many physicists have sought such a theory, from Einstein to (in modern times) ’t Hooft
[229]. But a series of results, beginning in the 1960’s, has made it clear that such a theory
comes at a price. I will argue that, although Wolfram discusses these results, he has not
understood what they actually entail.

To begin, Wolfram is not advocating a hidden-variable approach such as Bohmian
mechanics, in which the state vector is supplemented by an ‘actual’ eigenstate of a particular
observable. Instead he thinks that, at the lowest level, the state vector is not needed at all;
it is merely a useful construct for describing some (though presumably not all) higher-level
phenomena. Indeterminacy arises because of one’s inability to know the exact state of a
system:

[I]f one knew all of the underlying details of the network that makes up our
universe, it should always be possible to work out the result of any measurement.
I strongly believe that the initial conditions for the universe were quite simple.
But like many of the processes we have seen in this book, the evolution of the
universe no doubt intrinsically generates apparent randomness. And the result
is that most aspects of the network that represents the current state of our
universe will seem essentially random (p. 543).

Similarly, Wolfram explains as follows why an electron has wave properties: “. . . a
network which represents our whole universe must also include us as observers. And this
means that there is no way that we can look at the network from the outside and see the
electron as a definite object” (p. 538). An obvious question then is how Wolfram accounts
for the possibility of quantum computing, assuming BPP 6= BQP. He gives an answer in
the final chapter:

Indeed within the usual formalism [of quantum mechanics] one can construct
quantum computers that may be able to solve at least a few specific problems
exponentially faster than ordinary Turing machines. But particularly after my
discoveries in Chapter 9 [‘Fundamental Physics’], I strongly suspect that even
if this is formally the case, it will still not turn out to be a true representation
of ultimate physical reality, but will instead just be found to reflect various
idealizations made in the models used so far (p. 771).

In the endnotes, though, where he explains quantum computing in more detail,
Wolfram seems to hedge about which idealizations he has in mind:

It does appear that only modest precision is needed for the initial amplitudes.
And it seems that perturbations from the environment can be overcome using
versions of error-correcting codes. But it remains unclear just what might be
needed actually to perform for example the final measurements required (p.
1148).

122

One might respond that, with or without quantum computing, Wolfram’s propos-
als can be ruled out on the simpler ground that they disallow Bell inequality violations.
However, Wolfram puts forward an imaginative hypothesis to account for bipartite entan-
glement. When two particles (or ‘tangles’ in the graph G) collide, long-range ‘threads’ may
form between them, which remain in place even if the particles are later separated:

The picture that emerges is then of a background containing a very large num-
ber of connections that maintain an approximation to three-dimensional space,
together with a few threads that in effect go outside of that space to make direct
connections between particles (p. 544).

The threads can produce Bell correlations, but are somehow too small (i.e. contain
too few edges) to transmit information in a way that violates causality.

There are several objections one could raise against this thread hypothesis. What
I will show is that, if one accepts two of Wolfram’s own desiderata—determinism and causal
invariance—then the hypothesis fails. First, though, let me remark that Wolfram says little
about what, to me, is a more natural possibility than the thread hypothesis. This is an
explicitly quantum cellular automaton or causal network, with a unitary transition rule.
The reason seems to be that he does not want continuity anywhere in a model, not even
in probabilities or amplitudes. In the notes, he describes an experiment with a quantum
cellular automaton as follows:

One might hope to be able to get an ordinary cellular automaton with a limited
set of possible values by choosing a suitable [phase rotation] θ [θ = π/4 and
θ = π/3 are given as examples in an illustration]. But in fact in non-trivial
cases most of the cells generated at each step end up having distinct values (p.
1060).

This observation is unsurprising, given the quantum computing results mentioned
in Chapter 4, to the effect that almost any nontrivial gate set is universal (that is, can
approximate any unitary matrix to any desired precision, or any orthogonal matrix in case
one is limited to reals). Indeed, Shi [219] has shown that a Toffoli gate, plus any gate that
does not preserve the computational basis, or a controlled-NOT gate plus any gate whose
square does not preserve the computational basis, are both universal gate sets. In any
case, Wolfram does not address the fact that continuity in amplitudes seems more ‘benign’
than continuity in measurable quantities: the former, unlike the latter, does not enable an
infinite amount of computation to be performed in a finite time. Also, as observed by
Bernstein and Vazirani [55], the linearity of quantum mechanics implies that tiny errors in
amplitudes will not be magnified during a quantum computation.

I now proceed to the argument that Wolfram’s thread hypothesis is inconsistent
with causal invariance and relativity. Let R be a set of graph updating rules, which
might be probabilistic. Then consider the following four assertions (which, though not
mathematically precise, will be clarified by subsequent discussion).

(1) R satisfies causal invariance. That is, given any initial graph (and choice of random-
ness if R is probabilistic), R yields a unique causal network.

123

(2) R satisfies the relativity postulate. That is, assuming the causal network approx-
imates a flat Minkowski spacetime at a large enough scale, there are no preferred
inertial frames.

(3) R permits Bell inequality violations.

(4) Any updating rule in R is always considered to act on a fixed graph, not on a distri-
bution or superposition over graphs. This is true even if parts of the initial graph
are chosen at random, and even if R is probabilistic.

The goal is to show that, for any R, at least one of these assertions is false. Current
physical theory would suggest that (1)-(3) are true and that (4) is false. Wolfram, if I
understand him correctly, starts with (4) as a premise, and then introduces causal invariance
to satisfy (1) and (2), and long-range threads to satisfy (3). Of course, even to state the
two-party Bell inequalities requires some notion of randomness. And on pages 299–326,
Wolfram discusses three mechanisms for introducing randomness into a system: randomness
in initial conditions, randomness from the environment (i.e. probabilistic updating rules),
and intrinsic randomness (i.e. deterministic rules that produce pseudorandom output).
However, all of these mechanisms are compatible with (4), and so my argument will show
that they are inadequate assuming (1)-(3). The conclusion is that, in a model of the sort
Wolfram considers, randomness must play a more fundamental role than he allows.

In a standard Bell experiment, Alice and Bob are given input bits xA and xB
respectively, chosen uniformly and independently at random. Their goal is, without com-
municating, to output bits yA and yB respectively such that yA ⊕ yB = xA ∧ xB . Under
any ‘local hidden variable’ theory, Alice and Bob can succeed with probability at most 3/4;
the optimal strategy is for them to ignore their inputs and output (say) yA = 0 and yB = 0.
However, suppose Alice has a qubit ρA and Bob a ρB, that are jointly in the Bell state
(|00〉 + |11〉) /

√
2. Then there is a protocol4 by which they can succeed with probability(

5 +
√

2
)
/8 ≈ 0.802.
To model this situation, let A and B, corresponding to Alice and Bob, be disjoint

subgraphs of a graph G. Suppose that, at a large scale, G approximates a Euclidean
space of some dimension; and that any causal network obtained by applying updates to
G approximates a Minkowski spacetime. One can think of G as containing long-range
threads from A to B, though the nature of the threads will not affect the conclusions.
Encode Alice’s input xA by (say) placing an edge between two specific vertices in A if and
only if xA = 1. Encode xB similarly, and also supply Alice and Bob with arbitrarily
many correlated random bits. Finally, let us stipulate that at the end of the protocol,
there is an edge between two specific vertices in A if and only if yA = 1, and similarly for
yB. A technicality is that we need to be able to identify which vertices correspond to xA,
yA, and so on, even as G evolves over time. We could do this by stipulating that (say)
“the xA vertices are the ones that are roots of complete binary trees of depth 3,” and then
choosing the rule set to guarantee that, throughout the protocol, exactly two vertices have
this property.

4If xA = 1 then Alice applies a π/8 phase rotation to ρA, and if xB = 1 then Bob applies a −π/8 rotation
to ρB. Both parties then measure in the standard basis and output whatever they observe.

124

Call a variable ‘touched’ after an update has been applied to a subgraph containing
any of the variable’s vertices. Also, let Z be an assignment to all random variables: that
is, xA, xB , the correlated random bits, and the choice of randomness if R is probabilistic.
Then for all Z we need the following, based on what observers in different inertial frames
could perceive:

(i) There exists a sequence of updates under which yA is output before any of Bob’s
variables are touched.

(ii) There exists another sequence under which yB is output before any of Alice’s variables
are touched.

Now it is easy to see that, if a Bell inequality violation occurs, then causal invari-

ance must be violated. Given Z, let y
(1)
A (Z), y

(1)
B (Z) be the values of yA, yB that are output

under rule sequence (i), and let y
(2)
A (Z), y

(2)
B (Z) be the values output under sequence (ii).

Then there must exist some Z for which either y
(1)
A (Z) 6= y

(2)
A (Z) or y

(1)
B (Z) 6= y

(2)
B (Z)—for

if not, then the entire protocol could be simulated under a local hidden variable model. It
follows that the outcome of the protocol can depend on the order in which updates are
applied.

To obtain a Bell inequality violation, something like the following seems to be
needed. We can encode ‘hidden variables’ into G, representing the outcomes of the possible
measurements Bob could make on ρB . (We can imagine, if we like, that the update rules
are such that observing any one of these variables destroys all the others. Also, we make no
assumption of contextuality.) Then, after Alice measures ρA, using the long-range threads
she updates Bob’s hidden variables conditioned on her measurement outcome. Similarly,
Bob updates Alice’s hidden variables conditioned on his outcome. Since at least one party
must access its hidden variables for there to be Bell inequality violations, causal invariance
is still violated. But a sort of probabilistic causal invariance holds, in the sense that if
we marginalize out A (the ‘Alice’ part of G), then the distribution of values for each of
Bob’s hidden variables is the same before and after Alice’s update. The lesson is that, if
we want both causal invariance and Bell inequality violations, then we need to introduce
probabilities at a fundamental level—not merely to represent Alice and Bob’s subjective
uncertainty about the state of G, but even to define whether a set of rules is or is not causal
invariant.

Note that I made no assumption about how the random bits were generated—i.e.
whether they were ‘truly random’ or were the pseudorandom output of some updating rule.
The conclusion is also unaffected if we consider a ‘deterministic’ variant of Bell’s theorem due
to Greenberger, Horne, and Zeilinger [138]. There three parties, Alice, Bob, and Charlie, are
given input bits xA, xB, and xC respectively, satisfying the promise that xA⊕xB⊕xC = 0.
The goal is to output bits yA, yB, and yC such that yA ⊕ yB ⊕ yC = xA ∨ xB ∨ xC .
Under a local hidden variable model, there is no protocol that succeeds on all four possible
inputs; but if the parties share the GHZ state (|011〉 + |101〉 + |110〉 − |000〉) /2, then such
a protocol exists. However, although the output is correct with certainty, assuming causal
invariance one cannot implement the protocol without introducing randomness into the
underlying rules, exactly as in the two-party case.

125

After a version of the above argument was sent to Wolfram, Todd Rowland, an
employee of Wolfram, sent me email claiming that the argument fails for the following
reason. I assumed that there exist two sequences of updating events, one in which Alice’s
measurement precedes Bob’s and one in which Bob’s precedes Alice’s. But I neglected
the possibility that a single update, call it E, is applied to a subgraph that straddles the
long-range threads. The event E would encompass both Alice and Bob’s measurements, so
that neither would precede the other in any sequence of updates. We could thereby obtain
a rule set R satisfying assertions (1), (3), and (4).

I argue that such an R would nevertheless fail to satisfy (2). For in effect we start
with a flat Minkowski spacetime, and then take two distinct events that are simultaneous
in a particular inertial frame, and identify them as being the same event E. This can be
visualized as ‘pinching together’ two horizontally separated points on a spacetime diagram.
(Actually a whole ‘V’ of points must be pinched together, since otherwise entanglement
could not have been created.) However, what happens in a different inertial frame? It
would seem that E, a single event, is perceived to occur at two separate times. That by
itself might be thought acceptable, but it implies that there exists a class of preferred inertial
frames: those in which E is perceived to occur only once. Of course, even in a flat spacetime,
one could designate as ‘preferred’ those frames in which Alice and Bob’s measurements are
perceived to be simultaneous. A crucial distinction, though, is that there one only obtains
a class of preferred frames after deciding which event at Alice’s location, and which at Bob’s
location, should count as the ‘measurement.’ Under Rowland’s hypothesis, by contrast,
once one decides what counts as the measurement at Alice’s location, the decision at Bob’s
location is made automatically, because of the identification of events that would otherwise
be far apart.

126

Chapter 13

Complexity Theory of Quantum
States

In my view, the central weakness in the arguments of quantum computing skeptics
is their failure to suggest any answer the following question: Exactly what property separates
the quantum states we are sure we can create, from the states that suffice for Shor’s factoring
algorithm?

I call such a property a “Sure/Shor separator.” The purpose of this chapter is
to develop a mathematical theory of Sure/Shor separators, and thereby illustrate what I
think a scientific discussion about the possibility of quantum computing might look like.
In particular, I will introduce tree states, which informally are those states |ψ〉 ∈ H⊗n

2

expressible by a polynomial-size ‘tree’ of addition and tensor product gates. For example,
α |0〉⊗n + β |1〉⊗n and (α |0〉 + β |1〉)⊗n are both tree states. Section 13.1 provides the
philosophical motivation for thinking of tree states as a possible Sure/Shor separator; then
Section 13.2 formally defines tree states and many related classes of quantum states. Next,
Section 13.3 investigates basic properties of tree states. Among other results, it shows
that any tree state is representable by a tree of polynomial size and logarithmic depth; and
that most states do not even have large inner product with any tree state. Then Section
13.4 shows relationships among tree size, circuit size, bounded-depth tree size, Vidal’s χ
complexity [236], and several other measures. It also relates questions about quantum state
classes to more traditional questions about computational complexity classes.

But the main results of the chapter, proved in Section 13.5, are lower bounds
on tree size for various natural families of quantum states. In particular, Section 13.5.1
analyzes “subgroup states,” which are uniform superpositions |S〉 over all elements of a
subgroup S ≤ Zn2 . The importance of these states arises from their central role in sta-
bilizer codes, a type of quantum error-correcting code. I first show that if S is chosen
uniformly at random, then with high probability |S〉 cannot be represented by any tree of
size no(logn). This result has a corollary of independent complexity-theoretic interest: the
first superpolynomial gap between the formula size and the multilinear formula size of a
function f : {0, 1}n → R. I then present two improvements of the basic lower bound. First,
I show that a random subgroup state cannot even be approximated well in trace distance by
any tree of size no(logn). Second, I “derandomize” the lower bound, by using Reed-Solomon

127

codes to construct an explicit subgroup state with tree size nΩ(logn).
Section 13.5.2 analyzes the states that arise in Shor’s factoring algorithm—for

example, a uniform superposition over all multiples of a fixed positive integer p, written in
binary. Originally, I had hoped to show a superpolynomial tree size lower bound for these
states as well. However, I am only able to show such a bound assuming a number-theoretic
conjecture.

The lower bounds use a sophisticated recent technique of Raz [197, 198], which was
introduced to show that the permanent and determinant of a matrix require superpolynomial-
size multilinear formulas. Currently, Raz’s technique is only able to show lower bounds of
the form nΩ(logn), but I conjecture that 2Ω(n) lower bounds hold in all of the cases discussed
above.

One might wonder how superpolynomial tree size relates to more physical proper-
ties of a quantum state. Section 13.5.3 addresses this question, by pointing out how Raz’s
lower bound technique is connected to a notion that physicists call “persistence of entan-
glement” [71, 102]. On the other hand, I also give examples showing that the connection
is not exact.

Section 13.6 studies a weakening of tree size called “manifestly orthogonal tree
size,” and shows that this measure can sometimes be characterized exactly, enabling us to
prove exponential lower bounds. The techniques in Section 13.6 might be of independent
interest to complexity theorists—one reason being that they do not obviously “naturalize”
in the sense of Razborov and Rudich [202].

Section 13.7 addresses the following question. If the state of a quantum computer
at every time step is a tree state, then can the computer be simulated classically? In
other words, letting TreeBQP be the class of languages accepted by such a machine, does
TreeBQP = BPP? A positive answer would make tree states more attractive as a Sure/Shor
separator. For once we admit any states incompatible with the polynomial-time Church-
Turing thesis, it seems like we might as well go all the way, and admit all states preparable
by polynomial-size quantum circuits! Although I leave this question open, I do show that
TreeBQP ⊆ ΣP

3 ∩ΠP
3 , where ΣP

3 ∩ΠP
3 is the third level of the polynomial hierarchy PH. By

contrast, it is conjectured that BQP 6⊂ PH, though admittedly not on strong evidence.
Section 13.8 discusses the implications of these results for experimental physics.

It advocates a dialogue between theory and experiment, in which theorists would propose
a class of quantum states that encompasses everything seen so far, and then experimenters
would try to prepare states not in that class. It also asks whether states with superpolyno-
mial tree size have already been observed in condensed-matter systems; and more broadly,
what sort of evidence is needed to establish a state’s existence. Other issues addressed in
Section 13.8 include how to deal with mixed states and particle position and momentum
states, and the experimental relevance of asymptotic bounds. I conclude in Section 13.9
with some open problems.

13.1 Sure/Shor Separators

Given the discussion in Chapter 12, I believe that the challenge for quantum computing
skeptics is clear. Ideally, come up with an alternative to quantum mechanics—even an

128

Sure States (already
demonstrated)

Shor States (suffice for
nontrivial factoring)

Allowed by local hidden
variable theories

Allowed by GRW theory

Figure 13.1: A Sure/Shor separator must contain all Sure states but no Shor states. That
is why neither local hidden variables nor the GRW theory yields a Sure/Shor separator.

idealized toy theory—that can account for all present-day experiments, yet would not al-
low large-scale quantum computation. Failing that, at least say what you take quantum
mechanics’ domain of validity to be. One way to do this would be to propose a set S of
quantum states that you believe corresponds to possible physical states of affairs.1 The
set S must contain all “Sure states” (informally, the states that have already been demon-
strated in the lab), but no “Shor states” (again informally, the states that can be shown to
suffice for factoring, say, 500-digit numbers). If S satisfies both of these constraints, then
I call S a Sure/Shor separator (see Figure 13.1).

Of course, an alternative theory need not involve a sharp cutoff between possible
and impossible states. So it is perfectly acceptable for a skeptic to define a “complexity
measure” C (|ψ〉) for quantum states, and then say something like the following: If |ψn〉
is a state of n spins, and C (|ψn〉) is at most, say, n2, then I predict that |ψn〉 can be
prepared using only “polynomial effort.” Also, once prepared, |ψn〉 will be governed by
standard quantum mechanics to extremely high precision. All states created to date have
had small values of C (|ψn〉). However, if C (|ψn〉) grows as, say, 2n, then I predict that
|ψn〉 requires “exponential effort” to prepare, or else is not even approximately governed by
quantum mechanics, or else does not even make sense in the context of an alternative theory.
The states that arise in Shor’s factoring algorithm have exponential values of C (|ψn〉). So
as my Sure/Shor separator, I propose the set of all infinite families of states {|ψn〉}n≥1,
where |ψn〉 has n qubits, such that C (|ψn〉) ≤ p (n) for some polynomial p.

To understand the importance of Sure/Shor separators, it is helpful to think
through some examples. A major theme of Levin’s arguments was that exponentially
small amplitudes are somehow unphysical. However, clearly we cannot reject all states
with tiny amplitudes—for would anyone dispute that the state 2−5000 (|0〉 + |1〉)⊗10000 is

1A skeptic might also specify what happens if a state |ψ〉 ∈ S is acted on by a unitary U such that
U |ψ〉 /∈ S, but this will not be insisted upon.

129

+

⊗

|1〉1 |1〉2

⊗

++

|0〉1 |1〉1 |0〉2 |1〉2

1

2

1

2

1

2

1

2

1−1

Figure 13.2: Expressing (|00〉 + |01〉 + |10〉 − |11〉) /2 by a tree of linear combination and
tensor product gates, with scalar multiplication along edges. Subscripts denote the identity
of a qubit.

formed whenever 10, 000 photons are each polarized at 45◦? Indeed, once we accept |ψ〉
and |ϕ〉 as Sure states, we are almost forced to accept |ψ〉⊗ |ϕ〉 as well—since we can imag-
ine, if we like, that |ψ〉 and |ϕ〉 are prepared in two separate laboratories.2 So considering
a Shor state such as

|Φ〉 =
1

2n/2

2n−1∑

r=0

|r〉 |xr modN〉 ,

what property of this state could quantum computing skeptics latch onto as being physically
extravagant? They might complain that |Φ〉 involves entanglement across hundreds or
thousands of particles; but as mentioned in Chapter 12, there are other states with that
same property, namely the “Schrödinger cats”

(
|0〉⊗n + |1〉⊗n

)
/
√

2, that should be regarded
as Sure states. Alternatively, the skeptics might object to the combination of exponentially
small amplitudes with entanglement across hundreds of particles. However, simply viewing
a Schrödinger cat state in the Hadamard basis produces an equal superposition over all
strings of even parity, which has both properties. We seem to be on a slippery slope
leading to all of quantum mechanics! Is there any defensible place to draw a line?

The dilemma above is what led me to propose tree states as a possible Sure/Shor
separator. The idea, which might seem more natural to logicians than to physicists, is this.
Once we accept the linear combination and tensor product rules of quantum mechanics—
allowing α |ψ〉+β |ϕ〉 and |ψ〉⊗|ϕ〉 into our set S of possible states whenever |ψ〉 , |ϕ〉 ∈ S—
one of our few remaining hopes for keeping S a proper subset of the set of all states is to
impose some restriction on how those two rules can be iteratively applied. In particular,
we could let S be the closure of {|0〉 , |1〉} under a polynomial number of linear combinations
and tensor products. That is, S is the set of all infinite families of states {|ψn〉}n≥1 with

|ψn〉 ∈ H⊗n
2 , such that |ψn〉 can be expressed as a “tree” involving at most p (n) addition,

tensor product, |0〉, and |1〉 gates for some polynomial p (see Figure 13.2).

2It might be objected that in some theories, such as Chern-Simons theory, there is no clear tensor product
decomposition. However, the relevant question is whether |ψ〉 ⊗ |ϕ〉 is a Sure state, given that |ψ〉 and |ϕ〉
are both Sure states that are well-described in tensor product Hilbert spaces.

130

To be clear, I am not advocating that “all states in Nature are tree states” as a
serious physical hypothesis. Indeed, even if I believed firmly in a breakdown of quantum
mechanics,3 there are other choices for the set S that seem equally reasonable. For example,
define orthogonal tree states similarly to tree states, except that we can only form the linear
combination α |ψ〉 + β |ϕ〉 if 〈ψ|ϕ〉 = 0. Rather than choose among tree states, orthogonal
tree states, and the other candidate Sure/Shor separators that occurred to me, my approach
will be to prove everything I can about all of them. If I devote more space to tree states
than to others, that is simply because tree states are the subject of the most interesting
results. On the other hand, if one shows (for example) that {|ψn〉} is not a tree state,
then one has also shown that {|ψn〉} is not an orthogonal tree state. So many candidate
separators are related to each other; and indeed, their relationships will be a major theme
of the chapter.

In summary, to debate whether quantum computing is fundamentally impossible,
we need at least one proposal for how it could be impossible. Since even skeptics admit that
quantum mechanics is valid within some “regime,” a key challenge for any such proposal is to
separate the regime of acknowledged validity from the quantum computing regime. Though
others will disagree, I do not see any choice but to identify those two regimes with classes
of quantum states. For gates and measurements that suffice for quantum computing have
already been demonstrated experimentally. Thus, if we tried to identify the two regimes
with classes of gates or measurements, then we could equally well talk about the class of
states on which all 1- and 2-qubit operations behave as expected. A similar argument
would apply if we identified the two regimes with classes of quantum circuits—since any
“memory” that a quantum system retains of the previous gates in a circuit, is part of the
system’s state by definition. So: states, gates, measurements, circuits—what else is there?

I should stress that none of the above depends on the interpretation of quantum
mechanics. In particular, it is irrelevant whether we regard quantum states as “really out
there” or as representing subjective knowledge—since in either case, the question is whether
there can exist systems that we would describe by |ψ〉 based on their observed behavior.

Once we agree to seek a Sure/Shor separator, we quickly find that the obvious
ideas—based on precision in amplitudes, or entanglement across of hundreds of particles—
are nonstarters. The only idea that seems plausible is to limit the class of allowed quantum
states to those with some kind of succinct representation. That still leaves numerous
possibilities; and for each one, it might be a difficult problem to decide whether a given
|ψ〉 is succinctly representable or not. Thus, constructing a useful theory of Sure/Shor
separators is a nontrivial task. This chapter represents a first attempt.

13.2 Classifying Quantum States

In both quantum and classical complexity theory, the objects studied are usually sets of
languages or Boolean functions. However, a generic n-qubit quantum state requires ex-
ponentially many classical bits to describe, and this suggests looking at the complexity of
quantum states themselves. That is, which states have polynomial-size classical descrip-
tions of various kinds? This question has been studied from several angles by Aharonov

3which I don’t

131

Classical

Vidal

Circuit

AmpP

MOTree

OTree

TSH

Tree

ΨP

⊗1

⊗2

Σ1

Σ2

⊄

⊄⊄

Strict containment
Containment
Non-containment⊄

Figure 13.3: Known relations among quantum state classes.

and Ta-Shma [23]; Janzing, Wocjan, and Beth [150]; Vidal [236]; and Green et al. [136].
Here I propose a general framework for the question. For simplicity, I limit myself to pure
states |ψn〉 ∈ H⊗n

2 with the fixed orthogonal basis {|x〉 : x ∈ {0, 1}n}. Also, by ‘states’ I
mean infinite families of states {|ψn〉}n≥1.

Like complexity classes, pure quantum states can be organized into a hierarchy
(see Figure 13.3). At the bottom are the classical basis states, which have the form |x〉 for
some x ∈ {0, 1}n. We can generalize classical states in two directions: to the class ⊗1 of
separable states, which have the form (α1 |0〉 + β1 |1〉) ⊗ · · · ⊗ (αn |0〉 + βn |1〉); and to the
class Σ1, which consists of all states |ψn〉 that are superpositions of at most p (n) classical
states, where p is a polynomial. At the next level, ⊗2 contains the states that can be
written as a tensor product of Σ1 states, with qubits permuted arbitrarily. Likewise, Σ2

contains the states that can be written as a linear combination of a polynomial number of
⊗1 states. We can continue indefinitely to Σ3, ⊗3, etc. Containing the whole ‘tensor-sum
hierarchy’ ∪kΣk = ∪k⊗k is the class Tree, of all states expressible by a polynomial-size tree
of additions and tensor products nested arbitrarily. Formally, Tree consists of all states
|ψn〉 such that TS (|ψn〉) ≤ p (n) for some polynomial p, where the tree size TS (|ψn〉) is
defined as follows.

Definition 70 A quantum state tree over H⊗n
2 is a rooted tree where each leaf vertex is

labeled with α |0〉 + β |1〉 for some α, β ∈ C, and each non-leaf vertex (called a gate) is
labeled with either + or ⊗. Each vertex v is also labeled with a set S (v) ⊆ {1, . . . , n}, such
that

(i) If v is a leaf then |S (v)| = 1,

(ii) If v is the root then S (v) = {1, . . . , n},

132

(iii) If v is a + gate and w is a child of v, then S (w) = S (v),

(iv) If v is a ⊗ gate and w1, . . . , wk are the children of v, then S (w1) , . . . , S (wk) are
pairwise disjoint and form a partition of S (v).

Finally, if v is a + gate, then the outgoing edges of v are labeled with complex
numbers. For each v, the subtree rooted at v represents a quantum state of the qubits in
S (v) in the obvious way. We require this state to be normalized for each v.4

We say a tree is orthogonal if it satisfies the further condition that if v is a +
gate, then any two children w1, w2 of v represent |ψ1〉 , |ψ2〉 with 〈ψ1|ψ2〉 = 0. If the
condition 〈ψ1|ψ2〉 = 0 can be replaced by the stronger condition that for all basis states |x〉,
either 〈ψ1|x〉 = 0 or 〈ψ2|x〉 = 0, then we say the tree is manifestly orthogonal. Manifest
orthogonality is an extremely unphysical definition; I introduce it because it turns out to
be interesting from a lower bounds perspective.

For reasons of convenience, let us define the size |T | of a tree T to be the number
of leaf vertices. Then given a state |ψ〉 ∈ H⊗n

2 , the tree size TS (|ψ〉) is the minimum
size of a tree that represents |ψ〉. The orthogonal tree size OTS (|ψ〉) and manifestly
orthogonal tree size MOTS (|ψ〉) are defined similarly. Then OTree is the class of |ψn〉
such that OTS (|ψn〉) ≤ p (n) for some polynomial p, and MOTree is the class such that
MOTS (|ψn〉) ≤ p (n) for some p.

It is easy to see that

n ≤ TS (|ψ〉) ≤ OTS (|ψ〉) ≤ MOTS (|ψ〉) ≤ n2n

for every |ψ〉, and that the set of |ψ〉 such that TS (|ψ〉) < 2n has measure 0 in H⊗n
2 . Two

other important properties of TS and OTS are as follows:

Proposition 71

(i) TS and OTS are invariant under local5 basis changes, up to a constant factor of 2.

(ii) If |φ〉 is obtained from |ψ〉 by applying a k-qubit unitary, then TS (|φ〉) ≤ k4k TS (|ψ〉)
and OTS (|φ〉) ≤ k4k OTS (|ψ〉).

Proof.

(i) Simply replace each occurrence of |0〉 in the original tree by a tree for α |0〉 + β |1〉,
and each occurrence of |1〉 by a tree for γ |0〉 + δ |1〉, as appropriate.

(ii) Suppose without loss of generality that the gate is applied to the first k qubits. Let
T be a tree representing |ψ〉, and let Ty be the restriction of T obtained by setting

the first k qubits to y ∈ {0, 1}k. Clearly |Ty| ≤ |T |. Furthermore, we can express
|φ〉 in the form

∑
y∈{0,1}k SyTy, where each Sy represents a k-qubit state and hence is

expressible by a tree of size k2k.

4Requiring only the whole tree to represent a normalized state clearly yields no further generality.
5Several people told me that a reasonable complexity measure must be invariant under all basis changes.

Alas, this would imply that all pure states have the same complexity!

133

One can also define the ε-approximate tree size TSε (|ψ〉) to be the minimum size
of a tree representing a state |ϕ〉 such that |〈ψ|ϕ〉|2 ≥ 1 − ε, and define OTSε (|ψ〉) and
MOTSε (|ψ〉) similarly.

Definition 72 An arithmetic formula (over the ring C and n variables) is a rooted bi-
nary tree where each leaf vertex is labeled with either a complex number or a variable in
{x1, . . . , xn}, and each non-leaf vertex is labeled with either + or ×. Such a tree represents
a polynomial p (x1, . . . , xn) in the obvious way. We call a polynomial multilinear if no
variable appears raised to a higher power than 1, and an arithmetic formula multilinear if
the polynomials computed by each of its subtrees are multilinear.

The size |Φ| of a multilinear formula Φ is the number of leaf vertices. Given a
multilinear polynomial p, the multilinear formula size MFS (p) is the minimum size of a
multilinear formula that represents p. Then given a function f : {0, 1}n → C, we define

MFS (f) = min
p : p(x)=f(x) ∀x∈{0,1}n

MFS (p) .

(Actually p turns out to be unique [186].) We can also define the ε-approximate multilinear
formula size of f ,

MFSε (f) = min
p : ‖p−f‖2

2≤ε
MFS (p)

where ‖p− f‖2
2 =

∑
x∈{0,1}n |p (x) − f (x)|2. (This metric is closely related to the inner

product
∑

x p (x)∗ f (x), but is often more convenient to work with.) Now given a state
|ψ〉 =

∑
x∈{0,1}n αx |x〉 in H⊗n

2 , let fψ be the function from {0, 1}n to C defined by fψ (x) =
αx.

Theorem 73 For all |ψ〉,

(i) MFS (fψ) = O (TS (|ψ〉)).

(ii) TS (|ψ〉) = O (MFS (fψ) + n).

(iii) MFSδ (fψ) = O (TSε (|ψ〉)) where δ = 2 − 2
√

1 − ε.

(iv) TS2ε (|ψ〉) = O (MFSε (fψ) + n).

Proof.

(i) Given a tree representing |ψ〉, replace every unbounded fan-in gate by a collection of
binary gates, every ⊗ by ×, every |1〉i vertex by xi, and every |0〉i vertex by a formula
for 1− xi. Push all multiplications by constants at the edges down to × gates at the
leaves.

134

(ii) Given a multilinear formula Φ for fψ, let p (v) be the polynomial computed at vertex v
of Φ, and let S (v) be the set of variables that appears in p (v). First, call Φ syntactic
if at every × gate with children v and w, S (v) ∩ S (w) = ∅. A lemma of Raz [197]
states that we can always make Φ syntactic without increasing its size.

Second, at every + gate u with children v and w, enlarge both S (v) and S (w) to
S (v) ∪ S (w), by multiplying p (v) by xi + (1 − xi) for every xi ∈ S (w) \ S (v), and
multiplying p (w) by xi + (1 − xi) for every xi ∈ S (v) \ S (w). Doing this does
not invalidate any × gate that is an ancestor of u, since by the assumption that
Φ is syntactic, p (u) is never multiplied by any polynomial containing variables in
S (v) ∪ S (w). Similarly, enlarge S (r) to {x1, . . . , xn} where r is the root of Φ.

Third, call v max-linear if |S (v)| = 1 but |S (w)| > 1 where w is the parent of v.
If v is max-linear and p (v) = a + bxi, then replace the tree rooted at v by a tree
computing a |0〉i+(a+ b) |1〉i. Also, replace all multiplications by constants higher in
Φ by multiplications at the edges. (Because of the second step, there are no additions
by constants higher in Φ.) Replacing every × by ⊗ then gives a tree representing
|ψ〉, whose size is easily seen to be O (|Φ| + n) .

(iii) Apply the reduction from part (i). Let the resulting multilinear formula compute
polynomial p; then

∑

x∈{0,1}n

|p (x) − fψ (x)|2 = 2 − 2
∑

x∈{0,1}n

p (x) fψ (x) ≤ 2 − 2
√

1 − ε = δ.

(iv) Apply the reduction from part (ii). Let (βx)x∈{0,1}n be the resulting amplitude vector;

since this vector might not be normalized, divide each βx by
∑

x |βx|2 to produce β′x.
Then

∣∣∣∣∣∣

∑

x∈{0,1}n

β′xαx

∣∣∣∣∣∣

2

= 1 − 1

2

∑

x∈{0,1}n

∣∣β′x − αx
∣∣2

≥ 1 − 1

2



√ ∑

x∈{0,1}n

|β′x − βx|2 +

√ ∑

x∈{0,1}n

|βx − αx|2



2

≥ 1 − 1

2

(
2
√
ε
)2

= 1 − 2ε.

Besides Tree, OTree, and MOTree, four other classes of quantum states deserve
mention:

Circuit, a circuit analog of Tree, contains the states |ψn〉 =
∑

x αx |x〉 such that for
all n, there exists a multilinear arithmetic circuit of size p (n) over the complex numbers
that outputs αx given x as input, for some polynomial p. (Multilinear circuits are the
same as multilinear trees, except that they allow unbounded fanout—that is, polynomials
computed at intermediate points can be reused arbitrarily many times.)

135

AmpP contains the states |ψn〉 =
∑

x αx |x〉 such that for all n, b, there exists a
classical circuit of size p (n+ b) that outputs αx to b bits of precision given x as input, for
some polynomial p.

Vidal contains the states that are ‘polynomially entangled’ in the sense of Vidal
[236]. Given a partition of {1, . . . , n} into A and B, let χA (|ψn〉) be the minimum k
for which |ψn〉 can be written as

∑k
i=1 αi

∣∣ϕAi
〉
⊗
∣∣ϕBi

〉
, where

∣∣ϕAi
〉

and
∣∣ϕBi

〉
are states of

qubits in A and B respectively. (χA (|ψn〉) is known as the Schmidt rank ; see [184] for
more information.) Let χ (|ψn〉) = maxA χA (|ψn〉). Then |ψn〉 ∈ Vidal if and only if
χ (|ψn〉) ≤ p (n) for some polynomial p.

ΨP contains the states |ψn〉 such that for all n and ε > 0, there exists a quantum
circuit of size p (n+ log (1/ε)) that maps the all-0 state to a state some part of which has
trace distance at most 1−ε from |ψn〉, for some polynomial p. Because of the Solovay-Kitaev
Theorem [155, 184], ΨP is invariant under the choice of universal gate set.

13.3 Basic Results

Before studying the tree size of specific quantum states, it would be nice to know in general
how tree size behaves as a complexity measure. In this section I prove three rather nice
properties of tree size.

Theorem 74 For all ε > 0, there exists a tree representing |ψ〉 of size O
(
TS (|ψ〉)1+ε

)
and

depth O (log TS (|ψ〉)), as well as a manifestly orthogonal tree of size O
(
MOTS (|ψ〉)1+ε

)

and depth O (log MOTS (|ψ〉)).

Proof. A classical theorem of Brent [70] says that given an arithmetic formula
Φ, there exists an equivalent formula of depth O (log |Φ|) and size O (|Φ|c), where c is a
constant. Bshouty, Cleve, and Eberly [73] (see also Bonet and Buss [62]) improved Brent’s
theorem to show that c can be taken to be 1 + ε for any ε > 0. So it suffices to show that,
for ‘division-free’ formulas, these theorems preserve multilinearity (and in the MOTS case,
preserve manifest orthogonality).

Brent’s theorem is proven by induction on |Φ|. Here is a sketch: choose a sub-
formula I of Φ size between |Φ| /3 and 2 |Φ| /3 (which one can show always exists). Then
identifying a subformula with the polynomial computed at its root, Φ (x) can be written as
G (x)+H (x) I (x) for some formulas G and H. Furthermore, G and H are both obtainable
from Φ by removing I and then applying further restrictions. So |G| and |H| are both at
most |Φ| − |I| + O (1). Let Φ̂ be a formula equivalent to Φ that evaluates G, H, and I

separately, and then returns G (x) +H (x) I (x). Then
∣∣∣Φ̂
∣∣∣ is larger than |Φ| by at most a

constant factor, while by the induction hypothesis, we can assume the formulas for G, H,
and I have logarithmic depth. Since the number of induction steps is O (log |Φ|), the total
depth is logarithmic and the total blowup in formula size is polynomial in |Φ|. Bshouty,
Cleve, and Eberly’s improvement uses a more careful decomposition of Φ, but the basic
idea is the same.

Now, if Φ is syntactic multilinear, then clearly G, H, and I are also syntactic
multilinear. Furthermore, H cannot share variables with I, since otherwise a subformula

136

of Φ containing I would have been multiplied by a subformula containing variables from I.
Thus multilinearity is preserved. To see that manifest orthogonality is preserved, suppose
we are evaluating G and H ‘bottom up,’ and let Gv and Hv be the polynomials computed
at vertex v of Φ. Let v0 = root (I), let v1 be the parent of v0, let v2 be the parent of v1, and
so on until vk = root (Φ). It is clear that, for every x, either Gv0 (x) = 0 or Hv0 (x) = 0.
Furthermore, suppose that property holds for Gvi−1 ,Hvi−1 ; then by induction it holds for
Gvi ,Hvi . If vi is a × gate, then this follows from multilinearity (if |ψ〉 and |ϕ〉 are manifestly
orthogonal, then |0〉 ⊗ |ψ〉 and |0〉 ⊗ |ϕ〉 are also manifestly orthogonal). If vi is a + gate,
then letting supp (p) be the set of x such that p (x) 6= 0, any polynomial p added to Gvi−1

or Hvi−1 must have

supp (p) ∩
(
supp

(
Gvi−1

)
∪ supp

(
Hvi−1

))
= ∅,

and manifest orthogonality follows.

Theorem 75 Any |ψ〉 can be prepared by a quantum circuit of size polynomial in OTS (|ψ〉).
Thus OTree ⊆ ΨP.

Proof. Let Γ (|ψ〉) be the minimum size of a circuit needed to prepare |ψ〉 ∈ H⊗n
2

starting from |0〉⊗n. The claim, by induction on Γ (|ψ〉), is that Γ (|ψ〉) ≤ q (OTS (|ψ〉))
for some polynomial q. The base case OTS (|ψ〉) = 1 is clear. Let T be an orthogonal
state tree for |ψ〉, and assume without loss of generality that every gate has fan-in 2 (this
increases |T | by at most a constant factor). Let T1 and T2 be the subtrees of root (T),
representing states |ψ1〉 and |ψ2〉 respectively; note that |T | = |T1| + |T2|. First suppose
root (T) is a ⊗ gate; then clearly Γ (|ψ〉) ≤ Γ (|ψ1〉) + Γ (|ψ2〉).

Second, suppose root (T) is a + gate, with |ψ〉 = α |ψ1〉 + β |ψ2〉 and 〈ψ1|ψ2〉 =
0. Let U be a quantum circuit that prepares |ψ1〉, and V be a circuit that prepares
|ψ2〉. Then we can prepare α |0〉 |0〉⊗n + β |1〉U−1V |0〉⊗n. Observe that U−1V |0〉⊗n is
orthogonal to |0〉⊗n, since |ψ1〉 = U |0〉⊗n is orthogonal to |ψ2〉 = V |0〉⊗n. So applying
a NOT to the first register, conditioned on the OR of the bits in the second register,
yields |0〉 ⊗

(
α |0〉⊗n + βU−1V |0〉⊗n

)
, from which we obtain α |ψ1〉 + β |ψ2〉 by applying U

to the second register. The size of the circuit used is O (|U | + |V | + n), with a possible
constant-factor blowup arising from the need to condition on the first register. If we are
more careful, however, we can combine the ‘conditioning’ steps across multiple levels of the
recursion, producing a circuit of size |V | +O (|U | + n). By symmetry, we can also reverse
the roles of U and V to obtain a circuit of size |U | +O (|V | + n). Therefore

Γ (|ψ〉) ≤ min {Γ (|ψ1〉) + cΓ (|ψ2〉) + cn, cΓ (|ψ2〉) + Γ (|ψ1〉) + cn}

for some constant c ≥ 2. Solving this recurrence we find that Γ (|ψ〉) is polynomial in
OTS (|ψ〉).

Theorem 76 If |ψ〉 ∈ H⊗n
2 is chosen uniformly at random under the Haar measure, then

TS1/16 (|ψ〉) = 2Ω(n) with probability 1 − o (1).

137

Proof. To generate a uniform random state |ψ〉 =
∑

x∈{0,1}n αx |x〉, we can choose

α̂x, β̂x ∈ R for each x independently from a Gaussian distribution with mean 0 and variance

1, then let αx =
(
α̂x + iβ̂x

)
/
√
R where R =

∑
x∈{0,1}n

(
α̂2
x + β̂2

x

)
. Let

Λψ =

{
x : (Reαx)

2 <
1

4 · 2n
}
,

and let G be the set of |ψ〉 for which |Λψ| < 2n/5. The claim is that Pr|ψ〉 [|ψ〉 ∈ G] =
1 − o (1). First, EX [R] = 2n+1, so by a standard Hoeffding-type bound, Pr [R < 2n] is
doubly-exponentially small in n. Second, assuming R ≥ 2n, for each x

Pr [x ∈ Λψ] ≤ Pr

[
α̂2
x <

1

4

]
= erf

(
1

4
√

2

)
< 0.198,

and the claim follows by a Chernoff bound.
For g : {0, 1}n → R, let Ag = {x : sgn (g (x)) 6= sgn (Reαx)}, where sgn (y) is 1 if

y ≥ 0 and −1 otherwise. Then if |ψ〉 ∈ G, clearly

∑

x∈{0,1}n

|g (x) − fψ (x)|2 ≥ |Ag| − |Λψ|
4 · 2n

where fψ (x) = Reαx, and thus

|Ag| ≤
(

4 ‖g − fψ‖2
2 +

1

5

)
2n.

Therefore to show that MFS1/15 (fψ) = 2Ω(n) with probability 1− o (1), we need only show
that for almost all Boolean functions f : {0, 1}n → {−1, 1}, there is no arithmetic formula
Φ of size 2o(n) such that

|{x : sgn (Φ (x)) 6= f (x)}| ≤ 0.49 · 2n.

Here an arithmetic formula is real-valued, and can include addition, subtraction, and mul-
tiplication gates of fan-in 2 as well as constants. We do not need to assume multilinearity,
and it is easy to see that the assumption of bounded fan-in is without loss of generality. Let
W be the set of Boolean functions sign-represented by an arithmetic formula Φ of size 2o(n),
in the sense that sgn (Φ (x)) = f (x) for all x. Then it suffices to show that |W | = 22o(n)

,
since the number of functions sign-represented on an 0.51 fraction of inputs is at most
|W | · 22nH(0.51). (Here H denotes the binary entropy function.)

Let Φ be an arithmetic formula that takes as input the binary string x = (x1, . . . , xn)
as well as constants c1, c2, Let Φc denote Φ under a particular assignment c to c1, c2,
Then a result of Gashkov [123] (see also Turán and Vatan [232]), which follows from War-
ren’s Theorem [237] in real algebraic geometry, shows that as we range over all c, Φc

sign-represents at most
(
2n+4 |Φ|

)|Φ|
distinct Boolean functions, where |Φ| is the size of Φ.

Furthermore, excluding constants, the number of distinct arithmetic formulas of size |Φ| is

138

at most
(
3 |Φ|2

)|Φ|
. When |Φ| = 2o(n), this gives

(
3 |Φ|2

)|Φ|
·
(
2n+4 |Φ|

)|Φ|
= 22o(n)

. There-

fore MFS1/15 (fψ) = 2Ω(n); by Theorem 73, part (iii), this implies that TS1/16 (|ψ〉) = 2Ω(n).

A corollary of Theorem 76 is the following ‘nonamplification’ property: there exist
states that can be approximated to within, say, 1% by trees of polynomial size, but that
require exponentially large trees to approximate to within a smaller margin (say 0.01%).

Corollary 77 For all δ ∈ (0, 1], there exists a state |ψ〉 such that TSδ (|ψ〉) = n but
TSε (|ψ〉) = 2Ω(n) where ε = δ/32 − δ2/4096.

Proof. It is clear from Theorem 76 that there exists a state |ϕ〉 =
∑

x∈{0,1}n αx |x〉
such that TS1/16 (|ϕ〉) = 2Ω(n) and α0n = 0. Take |ψ〉 =

√
1 − δ |0〉⊗n +

√
δ |ϕ〉. Since∣∣〈ψ|0〉⊗n

∣∣2 = 1 − δ, we have MOTSδ (|ψ〉) = n. On the other hand, suppose some |φ〉 =∑
x∈{0,1}n βx |x〉 with TS (|φ〉) = 2o(n) satisfies |〈φ|ψ〉|2 ≥ 1 − ε. Then

∑

x 6=0n

(√
δαx − βx

)2
≤ 2 − 2

√
1 − ε.

Thus, letting fϕ (x) = αx, we have MFSc (fϕ) = O (TS (|φ〉)) where c =
(
2 − 2

√
1 − ε

)
/δ.

By Theorem 73, part (iv), this implies that TS2c (|ϕ〉) = O (TS (|φ〉)). But 2c = 1/16 when
ε = δ/32 − δ2/4096, contradiction.

13.4 Relations Among Quantum State Classes

This section presents some results about the quantum state hierarchy introduced in Section
13.2. Theorem 78 shows simple inclusions and separations, while Theorem 79 shows that
separations higher in the hierarchy would imply major complexity class separations (and
vice versa).

Theorem 78

(i) Tree ∪ Vidal ⊆ Circuit ⊆ AmpP.

(ii) All states in Vidal have tree size nO(logn).

(iii) Σ2 ⊆ Vidal but ⊗2 6⊂ Vidal.

(iv) ⊗2 (MOTree.

(v) Σ1, Σ2, Σ3, ⊗1, ⊗2, and ⊗3 are all distinct. Also, ⊗3 6= Σ4 ∩ ⊗4.

Proof.

139

(i) Tree ⊆ Circuit since any multilinear tree is also a multilinear circuit. Circuit ⊆ AmpP

since the circuit yields a polynomial-time algorithm for computing the amplitudes.
For Vidal ⊆ Circuit, we use an idea of Vidal [236]: given |ψn〉 ∈ Vidal, for all j ∈
{1, . . . , n} we can express |ψn〉 as

χ(|ψ〉)∑

i=1

αij

∣∣∣φ[1...j]
i

〉
⊗
∣∣∣φ[j+1...n]
i

〉

where χ (|ψn〉) is polynomially bounded. Furthermore, Vidal showed that each∣∣∣φ[1...j]
i

〉
can be written as a linear combination of states of the form

∣∣∣φ[1...j−1]
i

〉
⊗ |0〉

and
∣∣∣φ[1...j−1]
i

〉
⊗ |1〉—the point being that the set of

∣∣∣φ[1...j−1]
i

〉
states is the same, in-

dependently of
∣∣∣φ[1...j]
i

〉
. This immediately yields a polynomial-size multilinear circuit

for |ψn〉.

(ii) Given |ψn〉 ∈ Vidal, we can decompose |ψn〉 as

χ(|ψ〉)∑

i=1

αi

∣∣∣φ[1...n/2]
i

〉
⊗
∣∣∣φ[n/2+1...n]
i

〉
.

Then χ
(∣∣∣φ[1...n/2]

i

〉)
≤ χ (|ψn〉) and χ

(∣∣∣φ[n/2+1...n]
i

〉)
≤ χ (|ψn〉) for all i, so we can

recursively decompose these states in the same manner. It follows that TS (|ψn〉) ≤
2χ (|ψ〉) TS

(∣∣ψn/2
〉)

; solving this recurrence relation yields TS (|ψn〉) ≤ (2χ (|ψ〉))logn =

nO(logn).

(iii) Σ2 ⊆ Vidal follows since a sum of t separable states has χ ≤ t, while ⊗2 6⊂ Vidal follows

from the example of n/2 Bell pairs: 2−n/4 (|00〉 + |11〉)⊗n/2.

(iv) ⊗2 ⊆ MOTree is obvious, while MOTree 6⊂ ⊗2 follows from the example of
∣∣P in
〉
, an

equal superposition over all n-bit strings of parity i. The following recursive formulas

imply that MOTS
(∣∣P in

〉)
≤ 4MOTS

(∣∣∣P in/2
〉)

= O
(
n2
)
:

∣∣P 0
n

〉
=

1√
2

(∣∣∣P 0
n/2

〉 ∣∣∣P 0
n/2

〉
+
∣∣∣P 1
n/2

〉 ∣∣∣P 1
n/2

〉)
,

∣∣P 1
n

〉
=

1√
2

(∣∣∣P 0
n/2

〉 ∣∣∣P 1
n/2

〉
+
∣∣∣P 1
n/2

〉 ∣∣∣P 0
n/2

〉)
.

On the other hand, |Pn〉 /∈ ⊗2 follows from |Pn〉 /∈ Σ1 together with the fact that |Pn〉
has no nontrivial tensor product decomposition.

(v) ⊗1 6⊂ Σ1 and Σ1 6⊂ ⊗1 are obvious. ⊗2 6⊂ Σ2 (and hence ⊗1 6= ⊗2) follows from part
(iii). Σ2 6⊂ ⊗2 (and hence Σ1 6= Σ2) follows from part (iv), together with the fact
that |Pn〉 has a Σ2 formula based on the Fourier transform:

|Pn〉 =
1√
2

((|0〉 + |1〉√
2

)⊗n
+

(|0〉 − |1〉√
2

)⊗n)
.

140

Σ2 6= Σ3 follows from ⊗2 6⊂ Σ2 and ⊗2 ⊆ Σ3. Also, Σ3 6⊂ ⊗3 follows from Σ2 6= Σ3,
together with the fact that we can easily construct states in Σ3 \ Σ2 that have no
nontrivial tensor product decomposition—for example,

1√
2

(
|0〉⊗n +

(|01〉 + |10〉√
2

)⊗n/2)
.

⊗2 6= ⊗3 follows from Σ2 6⊂ ⊗2 and Σ2 ⊆ ⊗3. Finally, ⊗3 6= Σ4 ∩ ⊗4 follows from
Σ3 6⊂ ⊗3 and Σ3 ⊆ Σ4 ∩ ⊗4.

Theorem 79

(i) BQP = P#P implies AmpP ⊆ ΨP.

(ii) AmpP ⊆ ΨP implies NP ⊆ BQP/poly.

(iii) P = P#P implies ΨP ⊆ AmpP.

(iv) ΨP ⊆ AmpP implies BQP ⊆ P/poly.

Proof.

(i) First, BQP = P#P implies BQP/poly = P#P/poly, since given a P#P/poly machine
M , the language consisting of all (x, a) such that M accepts on input x and advice
a is clearly in BQP. So assume BQP/poly = P#P/poly, and consider a state |ψ〉 =∑

x∈{0,1}n αx |x〉 with |ψ〉 ∈ AmpP. By the result of Bernstein and Vazirani [55] that

BQP ⊆ P#P, for all b there exists a quantum circuit of size polynomial in n and b
that approximates p0 =

∑
y∈{0,1}n−1 |α0y|2, or the probability that the first qubit is

measured to be 0, to b bits of precision. So by uncomputing garbage, we can prepare
a state close to

√
p0 |0〉 +

√
1 − p0 |1〉. Similarly, given a superposition over length-

k prefixes of x, we can prepare a superposition over length-(k + 1) prefixes of x by
approximating the conditional measurement probabilities. We thus obtain a state
close to

∑
x |αx| |x〉. The last step is to approximate the phase of each |x〉, apply that

phase, and uncompute to obtain a state close to
∑

x αx |x〉.

(ii) Given a SAT instance ϕ, first use Valiant-Vazirani [233] to produce a formula ϕ′ that
(with non-negligible probability) has one satisfying assignment if ϕ is satisfiable and
zero otherwise. Then let αx = 1 if x is a satisfying assignment for ϕ′ and αx = 0
otherwise; clearly |ψ〉 =

∑
x αx |x〉 is in AmpP. By the assumption AmpP ⊆ ΨP, there

exists a polynomial-size quantum circuit that approximates |ψ〉, and thereby finds the
unique satisfying assignment for ϕ′ if it exists.

(iii) As in part (i), P = P#P implies P/poly = P#P/poly. The containment ΨP ⊆ AmpP

follows since we can approximate amplitudes to polynomially many bits of precision
in #P.

141

(iv) As is well known [55], any quantum computation can be made ‘clean’ in the sense
that it accepts if and only if a particular basis state (say |0〉⊗n) is measured. The
implication follows easily.

13.5 Lower Bounds

We want to show that certain quantum states of interest to us are not represented by trees
of polynomial size. At first this seems like a hopeless task. Proving superpolynomial
formula-size lower bounds for ‘explicit’ functions is a notoriously hard open problem, as it
would imply complexity class separations such as NC1 6= P.

Here, though, we are only concerned with multilinear formulas. Could this make
it easier to prove a lower bound? The answer is not obvious, but very recently, for reasons
unrelated to quantum computing, Raz [197, 198] showed the first superpolynomial lower
bounds on multilinear formula size. In particular, he showed that multilinear formulas
computing the permanent or determinant of an n×n matrix over any field have size nΩ(logn).

Raz’s technique is a beautiful combination of the Furst-Saxe-Sipser method of ran-
dom restrictions [122], with matrix rank arguments as used in communication complexity.
I now outline the method. Given a function f : {0, 1}n → C, let P be a partition of the
input variables x1, . . . , xn into two collections y =

(
y1, . . . , yn/2

)
and z =

(
z1, . . . , zn/2

)
.

This yields a function fP (y, z) : {0, 1}n/2 ×{0, 1}n/2 → C. Then let Mf |P be a 2n/2 × 2n/2

matrix whose rows are labeled by assignments y ∈ {0, 1}n/2, and whose columns are labeled

by assignments z ∈ {0, 1}n/2. The (y, z) entry of Mf |P is fP (y, z). Let rank
(
Mf |P

)
be

the rank of Mf |P over the complex numbers. Finally, let P be the uniform distribution
over all partitions P .

The following, Corollary 3.6 in [198], is one statement of Raz’s main theorem;
recall that MFS (f) is the minimum size of a multilinear formula for f .

Theorem 80 ([198]) Suppose that

Pr
P∈P

[
rank

(
Mf |P

)
≥ 2n/2−(n/2)1/8/2

]
= n−o(logn).

Then MFS (f) = nΩ(logn).

An immediate corollary yields lower bounds on approximate multilinear formula
size. Given an N ×N matrix M = (mij), let rankε (M) = minL : ‖L−M‖2

2≤ε rank (L) where

‖L−M‖2
2 =

∑N
i,j=1 |`ij −mij|2.

Corollary 81 Suppose that

Pr
P∈P

[
rankε

(
Mf |P

)
≥ 2n/2−(n/2)1/8/2

]
= n−o(logn).

Then MFSε (f) = nΩ(logn).

142

Proof. Suppose MFSε (f) = no(logn). Then for all g such that ‖f − g‖2
2 ≤ ε, we

would have MFS (g) = no(logn), and therefore

Pr
P∈P

[
rank

(
Mg|P

)
≥ 2n/2−(n/2)1/8/2

]
= n−Ω(logn).

by Theorem 80. But rankε
(
Mf |P

)
≤ rank

(
Mg|P

)
, and hence

Pr
P∈P

[
rankε

(
Mf |P

)
≥ 2n/2−(n/2)1/8/2

]
= n−Ω(logn),

contradiction.
Another simple corollary gives lower bounds in terms of restrictions of f . Let

R` be the following distribution over restrictions R: choose 2` variables of f uniformly at
random, and rename them y = (y1, . . . , y`) and z = (z1, . . . , z`). Set each of the remaining
n− 2` variables to 0 or 1 uniformly and independently at random. This yields a restricted
function fR (y, z). Let Mf |R be a 2` × 2` matrix whose (y, z) entry is fR (y, z).

Corollary 82 Suppose that

Pr
R∈R`

[
rank

(
Mf |R

)
≥ 2`−`

1/8/2
]

= n−o(logn)

where ` = nδ for some constant δ ∈ (0, 1]. Then MFS (f) = nΩ(logn).

Proof. Under the hypothesis, clearly there exists a fixed restriction g : {0, 1}2` →
C of f , which leaves 2` variables unrestricted, such that

Pr
P∈P

[
rank

(
Mg|P

)
≥ 2`−`

1/8/2
]

= n−o(logn) = `−o(log `).

Then by Theorem 80,

MFS (f) ≥ MFS (g) = `Ω(log `) = nΩ(logn).

The following sections apply Raz’s theorem to obtain nΩ(logn) tree size lower
bounds for two classes of quantum states: states arising in quantum error-correction in
Section 13.5.1, and (assuming a number-theoretic conjecture) states arising in Shor’s fac-
toring algorithm in Section 13.5.2.

13.5.1 Subgroup States

Let the elements of Zn2 be labeled by n-bit strings. Given a subgroup S ≤ Zn2 , we define
the subgroup state |S〉 as follows:

|S〉 =
1√
|S|
∑

x∈S
|x〉 .

143

Coset states arise as codewords in the class of quantum error-correcting codes known as
stabilizer codes [80, 135, 227]. Our interest in these states, however, arises from their large
tree size rather than their error-correcting properties.

Let E be the following distribution over subgroups S. Choose an n/2 × n ma-
trix A by setting each entry to 0 or 1 uniformly and independently. Then let S =
{x | Ax ≡ 0 (mod 2)}. By Theorem 73, part (i), it suffices to lower-bound the multilin-
ear formula size of the function fS (x), which is 1 if x ∈ S and 0 otherwise.

Theorem 83 If S is drawn from E, then MFS (fS) = nΩ(logn) (and hence TS (|S〉) =
nΩ(logn)), with probability Ω (1) over S.

Proof. Let P be a uniform random partition of the inputs x1, . . . , xn of fS into
two sets y =

(
y1, . . . , yn/2

)
and z =

(
z1, . . . , zn/2

)
. Let MS|P be the 2n/2 × 2n/2 matrix

whose (y, z) entry is fS|P (y, z); then we need to show that rank
(
MS|P

)
is large with high

probability. Let Ay be the n/2 × n/2 submatrix of the n/2 × n matrix A consisting
of all rows that correspond to yi for some i ∈ {1, . . . , n/2}, and similarly let Az be the
n/2 × n/2 submatrix corresponding to z. Then it is easy to see that, so long as Ay and
Az are both invertible, for all 2n/2 settings of y there exists a unique setting of z for which
fS|P (y, z) = 1. This then implies that MS|P is a permutation of the identity matrix, and

hence that rank
(
MS|P

)
= 2n/2. Now, the probability that a random n/2 × n/2 matrix

over Z2 is invertible is
1

2
· 3

4
· · · · · 2n/2 − 1

2n/2
> 0.288.

So the probability that Ay and Az are both invertible is at least 0.2882. By Markov’s
inequality, it follows that for at least an 0.04 fraction of S’s, rank

(
MS|P

)
= 2n/2 for at least

an 0.04 fraction of P ’s. Theorem 80 then yields the desired result.
Aaronson and Gottesman [14] showed how to prepare any n-qubit subgroup state

using a quantum circuit of size O
(
n2/ log n

)
. So a corollary of Theorem 83 is that ΨP 6⊂

Tree. Since fS clearly has a (non-multilinear) arithmetic formula of size O (nk), a second
corollary is the following.

Corollary 84 There exists a family of functions fn : {0, 1}n → R that has polynomial-size
arithmetic formulas, but no polynomial-size multilinear formulas.

The reason Corollary 84 does not follow from Raz’s results is that polynomial-size
formulas for the permanent and determinant are not known; the smallest known formulas
for the determinant have size nO(logn) (see [79]).

We have shown that not all subgroup states are tree states, but it is still conceivable
that all subgroup states are extremely well approximated by tree states. Let us now rule
out the latter possibility. We first need a lemma about matrix rank, which follows from
the Hoffman-Wielandt inequality.

Lemma 85 Let M be an N ×N complex matrix, and let IN be the N ×N identity matrix.
Then ‖M − IN‖2

2 ≥ N − rank (M).

144

Proof. The Hoffman-Wielandt inequality [146] (see also [33]) states that for any
two N ×N matrices M,P ,

N∑

i=1

(σi (M) − σi (P))2 ≤ ‖M − P‖2
2 ,

where σi (M) is the ith singular value of M (that is, σi (M) =
√
λi (M), where λ1 (M) ≥

· · · ≥ λN (M) ≥ 0 are the eigenvalues of MM∗, and M∗ is the conjugate transpose of M).
Clearly σi (IN) = 1 for all i. On the other hand, M has only rank (M) nonzero singular
values, so

N∑

i=1

(σi (M) − σi (IN))2 ≥ N − rank (M) .

Let f̂S (x) = fS (x) /
√

|S| be fS (x) normalized to have
∥∥∥f̂S

∥∥∥
2

2
= 1.

Theorem 86 For all constants ε ∈ [0, 1), if S is drawn from E, then MFSε

(
f̂S

)
= nΩ(logn)

with probability Ω (1) over S.

Proof. As in Theorem 83, we look at the matrix MS|P induced by a random
partition P = (y, z). We already know that for at least an 0.04 fraction of S’s, the y and
z variables are in one-to-one correspondence for at least an 0.04 fraction of P ’s. In that
case |S| = 2n/2, and therefore MS|P is a permutation of I/

√
|S| = I/2n/4 where I is the

identity. It follows from Lemma 85 that for all matrices M such that
∥∥M −MS|P

∥∥2

2
≤ ε,

rank (M) ≥ 2n/2 −
∥∥∥
√
|S|
(
M −MS|P

)∥∥∥
2

2
≥ (1 − ε) 2n/2

and therefore rankε
(
MS|P

)
≥ (1 − ε) 2n/2. Hence

Pr
P∈P

[
rankε

(
Mf |P

)
≥ 2n/2−(n/2)1/8/2

]
≥ 0.04,

and the result follows from Corollary 81.
A corollary of Theorem 86 and of Theorem 73, part (iii), is that TSε (|S〉) =

nΩ(logn) with probability Ω (1) over S, for all ε < 1.
Finally, let me show how to derandomize the lower bound for subgroup states,

using ideas pointed out to me by Andrej Bogdanov. In the proof of Theorem 83, all we
needed about the matrix A was that a random k × k submatrix has full rank with Ω (1)
probability, where k = n/2. If we switch from the field F2 to F2d for some d ≥ log2 n, then
it is easy to construct explicit k × n matrices with this same property. For example, let

V =




10 11 · · · 1k−1

20 21 · · · 2k−1

...
...

...
n0 n1 · · · nk−1




145

be the n× k Vandermonde matrix, where 1, . . . , n are labels of elements in F2d . Any k× k
submatrix of V has full rank, because the Reed-Solomon (RS) code that V represents is
a perfect erasure code.6 Hence, there exists an explicit state of n “qupits” with p = 2d

that has tree size nΩ(logn)—namely the uniform superposition over all elements of the set{
x | V Tx = 0

}
, where V T is the transpose of V .

To replace qupits by qubits, we concatenate the RS and Hadamard codes to obtain
a binary linear erasure code with parameters almost as good as those of the original RS
code. More explicitly, interpret F2d as the field of polynomials over F2, modulo some
irreducible of degree d. Then let m (a) be the d× d Boolean matrix that maps q ∈ F2d to
aq ∈ F2d , where q and aq are encoded by their d × 1 vectors of coefficients. Let H map
a length-d vector to its length-2d Hadamard encoding. Then Hm (a) is a 2d × d Boolean
matrix that maps q ∈ F2d to the Hadamard encoding of aq. We can now define an n2d×kd
“binary Vandermonde matrix” as follows:

Vbin =




Hm
(
10
)

Hm
(
11
)

· · · Hm
(
1k−1

)

Hm
(
20
)

Hm
(
21
)

· · · Hm
(
2k−1

)
...

...
...

Hm
(
n0
)

Hm
(
n1
)

· · · Hm
(
nk−1

)


 .

For the remainder of the section, fix k = nδ for some δ < 1/2 and d = O (log n).

Lemma 87 A (kd+ c) × kd submatrix of Vbin chosen uniformly at random has rank kd
(that is, full rank) with probability at least 2/3, for c a sufficiently large constant.

Proof. The first claim is that |Vbinu| ≥ (n− k) 2d−1 for all nonzero vectors u ∈
Fkd2 , where | | represents the number of ‘1’ bits. To see this, observe that for all nonzero u,
the “codeword vector” V u ∈ Fn

2d must have at least n−k nonzero entries by the Fundamental

Theorem of Algebra, where here u is interpreted as an element of Fk
2d . Furthermore, the

Hadamard code maps any nonzero entry in V u to 2d−1 nonzero bits in Vbinu ∈ Fn2d

2 .
Now let W be a uniformly random (kd+ c)× kd submatrix of Vbin. By the above

claim, for any fixed nonzero vector u ∈ Fkd2 ,

Pr
W

[Wu = 0] ≤
(

1 − (n− k) 2d−1

n2d

)kd+c
=

(
1

2
+

k

2n

)kd+c
.

So by the union bound, Wu is nonzero for all nonzero u (and hence W is full rank) with
probability at least

1 − 2kd
(

1

2
+

k

2n

)kd+c
= 1 −

(
1 +

k

n

)kd(1

2
+

k

2n

)c
.

Since k = n1/2−Ω(1) and d = O (log n), the above quantity is at least 2/3 for sufficiently
large c.

Given an n2d × 1 Boolean vector x, let f (x) = 1 if V T
binx = 0 and f (x) = 0

otherwise. Then:
6In other words, because a degree-(k − 1) polynomial is determined by its values at any k points.

146

Theorem 88 MFS (f) = nΩ(logn).

Proof. Let Vy and Vz be two disjoint kd × (kd+ c) submatrices of V T
bin chosen

uniformly at random. Then by Lemma 87 together with the union bound, Vy and Vz both
have full rank with probability at least 1/3. Letting ` = kd+ c, it follows that

Pr
R∈R`

[
rank

(
Mf |R

)
≥ 2`−c

]
≥ 1

3
= n−o(logn)

by the same reasoning as in Theorem 83. Therefore MFS (f) = nΩ(logn) by Corollary 82.

Let |S〉 be a uniform superposition over all x such that f (x) = 1; then a corollary
of Theorem 88 is that TS (|S〉) = nΩ(logn). Naturally, using the ideas of Theorem 86 one
can also show that TSε (|S〉) = nΩ(logn) for all ε < 1.

13.5.2 Shor States

Since the motivation for this work was to study possible Sure/Shor separators, an obvious
question is, do states arising in Shor’s algorithm have superpolynomial tree size? Unfortu-
nately, I am only able to answer this question assuming a number-theoretic conjecture. To
formalize the question, let

1

2n/2

2n−1∑

r=0

|r〉 |xr modN〉

be a Shor state. It will be convenient to measure the second register, so that the state of
the first register has the form

|a+ pZ〉 =
1√
I

I∑

i=0

|a+ pi〉

for some integers a < p and I = b(2n − a− 1) /pc. Here a+pi is written out in binary using
n bits. Clearly a lower bound on TS (|a+ pZ〉) would imply an equivalent lower bound for
the joint state of the two registers.

To avoid some technicalities, assume p is prime (since the goal is to prove a lower
bound, this assumption is without loss of generality). Given an n-bit string x = xn−1 . . . x0,
let fn,p,a (x) = 1 if x ≡ a (mod p) and fn,p,a (x) = 0 otherwise. Then TS (|a+ pZ〉) =
Θ (MFS (fn,p,a)) by Theorem 73, so from now on we will focus attention on fn,p,a.

Proposition 89

(i) Let fn,p = fn,p,0. Then MFS (fn,p,a) ≤ MFS (fn+log p,p), meaning that we can set
a = 0 without loss of generality.

(ii) MFS (fn,p) = O (min {n2n/p, np}).

Proof.

147

(i) Take the formula for fn+log p,p, and restrict the most significant log p bits to sum
to a number congruent to −amod p (this is always possible since x → 2nx is an
isomorphism of Zp).

(ii) For MFS (fn,p) = O (n2n/p), write out the x’s for which fn,p (x) = 1 explicitly. For
MFS (fn,p) = O (np), use the Fourier transform, similarly to Theorem 78, part (v):

fn,p (x) =
1

p

p−1∑

h=0

n−1∏

j=0

exp

(
2πih

p
· 2jxj

)
.

This immediately yields a sum-of-products formula of size O (np).

I now state the number-theoretic conjecture.

Conjecture 90 There exist constants γ, δ ∈ (0, 1) and a prime p = Ω
(
2n

δ
)

for which the

following holds. Let the set A consist of nδ elements of
{
20, . . . , 2n−1

}
chosen uniformly at

random. Let S consist of all 2n
δ

sums of subsets of A, and let Smod p = {xmod p : x ∈ S}.
Then

Pr
A

[
|Smod p| ≥ (1 + γ)

p

2

]
= n−o(logn).

Theorem 91 Conjecture 90 implies that MFS (fn,p) = nΩ(logn) and hence TS (|pZ〉) =
nΩ(logn).

Proof. Let f = fn,p and ` = nδ. Let R be a restriction of f that renames 2`
variables y1, . . . , y`, z1, . . . , z`, and sets each of the remaining n−2` variables to 0 or 1. This
leads to a new function, fR (y, z), which is 1 if y + z + c ≡ 0 (mod p) and 0 otherwise for
some constant c. Here we are defining y = 2a1y1 + · · · + 2a`y` and z = 2b1z1 + · · · + 2b`z`
where a1, . . . , a`, b1, . . . , b` are the appropriate place values. Now suppose ymod p and
zmod p both assume at least (1 + γ) p/2 distinct values as we range over all x ∈ {0, 1}n.
Then by the pigeonhole principle, for at least γp possible values of ymod p, there exists a
unique possible value of zmod p for which y + z + c ≡ 0 (mod p) and hence fR (y, z) = 1.
So rank

(
Mf |R

)
≥ γp, where Mf |R is the 2` × 2` matrix whose (y, z) entry is fR (y, z). It

follows that assuming Conjecture 90,

Pr
R∈R`

[
rank

(
Mf |R

)
≥ γp

]
= n−o(logn).

Furthermore, γp ≥ 2`−`
1/8/2 for sufficiently large n since p = Ω

(
2n

δ
)
. Therefore MFS (f) =

nΩ(logn) by Corollary 82.
Using the ideas of Theorem 86, one can show that under the same conjecture,

MFSε (fn,p) = nΩ(logn) and TSε (|pZ〉) = nΩ(logn) for all ε < 1—in other words, there exist
Shor states that cannot be approximated by polynomial-size trees.

Originally, I had stated Conjecture 90 without any restriction on how the set S
is formed. The resulting conjecture was far more general than I needed, and indeed was
falsified by Carl Pomerance (personal communication).

148

13.5.3 Tree Size and Persistence of Entanglement

In this section I pursue a deeper understanding of the tree size lower bounds, by discussing
a physical property of quantum states that is related to error-correction as well as to super-
polynomial tree size. Dür and Briegel [102] call a quantum state “persistently entangled,”
if (roughly speaking) it remains highly entangled even after a limited amount of interaction
with its environment. As an illustration, the Schrödinger cat state

(
|0〉⊗n + |1〉⊗n

)
/
√

2 is
in some sense highly entangled, but it is not persistently entangled, since measuring a single
qubit in the standard basis destroys all entanglement.

By contrast, consider the “cluster states” defined by Briegel and Raussendorf
[71]. These states have attracted a great deal of attention because of their application
to quantum computing via 1-qubit measurements only [196]. For our purposes, a two-
dimensional cluster state is an equal superposition over all settings of a

√
n ×√

n array of
bits, with each basis state having a phase of (−1)r, where r is the number of horizontally or
vertically adjacent pairs of bits that are both ‘1’. Dür and Briegel [102] showed that such
states are persistently entangled in a precise sense: one can distill n-partite entanglement
from them even after each qubit has interacted with a heat bath for an amount of time
independent of n.

Persistence of entanglement seems related to how one shows tree size lower bounds
using Raz’s technique. For to apply Corollary 82, one basically “measures” most of a state’s
qubits, then partitions the unmeasured qubits into two subsystems of equal size, and argues
that with high probability those two subsystems are still almost maximally entangled. The
connection is not perfect, though. For one thing, setting most of the qubits to 0 or 1
uniformly at random is not the same as measuring them. For another, Theorem 80 yields
nΩ(logn) tree size lower bounds without the need to trace out a subset of qubits. It suffices
for the original state to be almost maximally entangled, no matter how one partitions it
into two subsystems of equal size.

But what about 2-D cluster states—do they have tree size nΩ(logn)? I strongly
conjecture that the answer is ‘yes.’ However, proving this conjecture will almost certainly
require going beyond Theorem 80. One will want to use random restrictions that respect
the 2-D neighborhood structure of cluster states—similar to the restrictions used by Raz
[197] to show that the permanent and determinant have multilinear formula size nΩ(logn).

I end this section by showing that there exist states that are persistently entangled
in the sense of Dür and Briegel [102], but that have polynomial tree size. In particular,
Dür and Briegel showed that even one-dimensional cluster states are persistently entangled.
On the other hand:

Proposition 92 Let

|ψ〉 =
1

2n/2

∑

x∈{0,1}n

(−1)x1x2+x2x3+···+xn−1xn |x〉 .

Then TS (|ψ〉) = O
(
n4
)
.

Proof. Given bits i, j, k, let
∣∣∣P ijkn

〉
be an equal superposition over all n-bit strings

149

x1 . . . xn such that x1 = i, xn = k, and x1x2 + · · · + xn−1xn ≡ j (mod 2). Then

∣∣∣P i0kn

〉
=

1√
8



∣∣∣P i00n/2

〉 ∣∣∣P 00k
n/2

〉
+
∣∣∣P i10n/2

〉 ∣∣∣P 01k
n/2

〉
+
∣∣∣P i00n/2

〉 ∣∣∣P 10k
n/2

〉
+
∣∣∣P i10n/2

〉 ∣∣∣P 11k
n/2

〉
+∣∣∣P i01n/2

〉 ∣∣∣P 00k
n/2

〉
+
∣∣∣P i11n/2

〉 ∣∣∣P 01k
n/2

〉
+
∣∣∣P i01n/2

〉 ∣∣∣P 11k
n/2

〉
+
∣∣∣P i11n/2

〉 ∣∣∣P 10k
n/2

〉

 ,

∣∣∣P i1kn

〉
=

1√
8



∣∣∣P i00n/2

〉 ∣∣∣P 01k
n/2

〉
+
∣∣∣P i10n/2

〉 ∣∣∣P 00k
n/2

〉
+
∣∣∣P i00n/2

〉 ∣∣∣P 11k
n/2

〉
+
∣∣∣P i10n/2

〉 ∣∣∣P 10k
n/2

〉
+∣∣∣P i01n/2

〉 ∣∣∣P 01k
n/2

〉
+
∣∣∣P i11n/2

〉 ∣∣∣P 00k
n/2

〉
+
∣∣∣P i01n/2

〉 ∣∣∣P 10k
n/2

〉
+
∣∣∣P i11n/2

〉 ∣∣∣P 11k
n/2

〉

 .

Therefore TS
(∣∣∣P ijkn

〉)
≤ 16TS

(∣∣∣P ijkn/2

〉)
, and solving this recurrence relation yields

TS
(∣∣∣P ijkn

〉)
= O

(
n4
)
.

Finally observe that

|ψ〉 =

(|0〉 + |1〉√
2

)⊗n
−
∣∣P 010
n

〉
+
∣∣P 011
n

〉
+
∣∣P 110
n

〉
+
∣∣P 111
n

〉
√

2
.

13.6 Manifestly Orthogonal Tree Size

This section studies the manifestly orthogonal tree size of coset states:7 states having the
form

|C〉 =
1√
|C|

∑

x∈C
|x〉

where C = {x | Ax ≡ b} is a coset in Zn2 . In particular, I present a tight characterization of
MOTS (|C〉), which enables me to prove exponential lower bounds on it, in contrast to the
nΩ(logn) lower bounds for ordinary tree size. This characterization also yields a separation
between orthogonal and manifestly orthogonal tree size; and an algorithm for computing
MOTS (|C〉) whose complexity is only singly exponential in n. My proof technique is
independent of Raz’s, and is highly tailored to take advantage of manifest orthogonality.
However, even if this technique finds no other application, it has two features that I hope will
make it of independent interest to complexity theorists. First, it yields tight lower bounds,
and second, it does not obviously “naturalize” in the sense of Razborov and Rudich [202].
Rather, it takes advantage of certain structural properties of coset states that do not seem
to hold for random states.

Given a state |ψ〉, recall that the manifestly orthogonal tree size MOTS (|ψ〉) is the
minimum size of a tree representing |ψ〉, in which all additions are of two states |ψ1〉 , |ψ2〉
with “disjoint supports”—that is, either 〈ψ1|x〉 = 0 or 〈ψ2|x〉 = 0 for every basis state
|x〉. Here the size |T | of T is the number of leaf vertices. We can assume without loss

7All results apply equally well to the subgroup states of Section 13.5.1; the greater generality of coset
states is just for convenience.

150

of generality that every + or ⊗ vertex has at least one child, and that every child of a +
vertex is a ⊗ vertex and vice versa. Also, given a set S ⊆ {0, 1}n, let

|S〉 =
1√
|S|
∑

x∈S
|x〉

be a uniform superposition over the elements of S, and let M (S) := MOTS (|S〉).
Let C = {x : Ax ≡ b} be a subgroup in Zn2 , for some A ∈ Zk×n2 and b ∈ Zk2. Let

[n] = {1, . . . , n}, and let (I, J) be a nontrivial partition of [n] (one where I and J are both

nonempty). Then clearly there exist distinct cosets C
(1)
I , . . . , C

(H)
I in the I subsystem, and

distinct cosets C
(1)
J , . . . , C

(H)
J in the J subsystem, such that

C =
⋃

h∈[H]

C
(h)
I ⊗ C

(h)
J .

The C
(h)
I ’s and C

(h)
J ’s are unique up to ordering. Furthermore, the quantities

∣∣∣C(h)
I

∣∣∣,
∣∣∣C(h)

J

∣∣∣,

M
(
C

(h)
I

)
, and M

(
C

(h)
J

)
remain unchanged as we range over h ∈ [H]. For this reason I

suppress the dependence on h when mentioning them.
For various sets S, the strategy will be to analyze M (S) / |S|, the ratio of tree size

to cardinality. We can think of this ratio as the “price per pound” of S: the number of
vertices that we have to pay per basis state that we cover. The following lemma says that,
under that cost measure, a coset is “as good a deal” as any of its subsets:

Lemma 93 For all cosets C,

M (C)

|C| = min

(
M (S)

|S|

)

where the minimum is over nonempty S ⊆ C.

Proof. By induction on n. The base case n = 1 is obvious, so assume the lemma
true for n−1. Choose S∗ ⊆ C to minimize M (S∗) / |S∗|. Let T be a manifestly orthogonal
tree for |S∗〉 of minimum size, and let v be the root of T . We can assume without loss of
generality that v is a ⊗ vertex, since otherwise v has some ⊗ child representing a set R ⊂ S∗

such that M (R) / |R| ≤M (S∗) / |S∗|. Therefore for some nontrivial partition (I, J) of [n],

and some S∗
I ⊆ {0, 1}|I| and S∗

J ⊆ {0, 1}|J |, we have

|S∗〉 = |S∗
I 〉 ⊗ |S∗

J〉 ,
|S∗| = |S∗

I | |S∗
J | ,

M (S∗) = M (S∗
I) +M (S∗

J) ,

where the last equality holds because if M (S∗) < M (S∗
I) + M (S∗

J), then T was not a
minimal tree for |S∗〉. Then

M (S∗)
|S∗| =

M (S∗
I) +M (S∗

J)∣∣S∗
I

∣∣ ∣∣S∗
J

∣∣ = min

(
M (SI) +M (SJ)

|SI | |SJ |

)

151

where the minimum is over nonempty SI ⊆ {0, 1}|I| and SJ ⊆ {0, 1}|J | such that SI ⊗SJ ⊆
C. Now there must be an h such that S∗

I ⊆ C
(h)
I and S∗

J ⊆ C
(h)
J , since otherwise some

x /∈ C would be assigned nonzero amplitude. By the induction hypothesis,

M (CI)

|CI |
= min

(
M (SI)

|SI |

)
,

M (CJ)

|CJ |
= min

(
M (SJ)

|SJ |

)
,

where the minima are over nonempty SI ⊆ C
(h)
I and SJ ⊆ C

(h)
J respectively. Define β =

|SI | · |SJ | /M (SJ) and γ = |SJ | · |SI | /M (SI). Then since setting SI := C
(h)
I and SJ := C

(h)
J

maximizes the four quantities |SI |, |SJ |, |SI | /M (SI), and |SJ | /M (SJ) simultaneously, this
choice also maximizes β and γ simultaneously. Therefore it maximizes their harmonic
mean,

βγ

β + γ
=

|SI | |SJ |
M (SI) +M (SJ)

=
|S|

M (S)
.

We have proved that setting S := C
(h)
I ⊗ C

(h)
J maximizes |S| /M (S), or equivalently min-

imizes M (S) / |S|. The one remaining observation is that taking the disjoint sum of

C
(h)
I ⊗C

(h)
J over all h ∈ [H] leaves the ratio M (S) / |S| unchanged. So setting S := C also

minimizes M (S) / |S|, and we are done.
I can now give a recursive characterization of M (C).

Theorem 94 If n ≥ 2, then

M (C) = |C|min

(
M (CI) +M (CJ)

|CI | |CJ |

)

where the minimum is over nontrivial partitions (I, J) of [n].

Proof. The upper bound is obvious; let us prove the lower bound. Let T be a
manifestly orthogonal tree for |C〉 of minimum size, and let v(1), . . . , v(L) be the topmost
⊗ vertices in T . Then there exists a partition

(
S(1), . . . , S(L)

)
of C such that the subtree

rooted at v(i) represents
∣∣S(i)

〉
. We have

|T | = M
(
S(1)

)
+ · · · +M

(
S(L)

)
=
∣∣∣S(1)

∣∣∣
M
(
S(1)

)
∣∣S(1)

∣∣ + · · · +
∣∣∣S(L)

∣∣∣
M
(
S(L)

)
∣∣S(L)

∣∣ .

Now let η = mini
(
M
(
S(i)
)
/
∣∣S(i)

∣∣). We will construct a partition
(
R(1), . . . , R(H)

)
of

C such that M
(
R(h)

)
/
∣∣R(h)

∣∣ = η for all h ∈ [H], which will imply a new tree T ′ with

|T ′| ≤ |T |. Choose j ∈ [L] such that M
(
S(j)

)
/
∣∣S(j)

∣∣ = η, and suppose vertex v(j) of T

expresses
∣∣S(j)

〉
as |SI〉 ⊗ |SJ〉 for some nontrivial partition (I, J). Then

η =
M
(
S(j)

)
∣∣S(j)

∣∣ =
M (SI) +M (SJ)

|SI | |SJ |

where M
(
S(j)

)
= M (SI) + M (SJ) follows from the minimality of T . As in Lemma 93,

there must be an h such that SI ⊆ C
(h)
I and SJ ⊆ C

(h)
J . But Lemma 93 then implies that

152

M (CI) / |CI | ≤ M (SI) / |SI | and that M (CJ) / |CJ | ≤ M (SJ) / |SJ |. Combining these
bounds with |CI | ≥ |SI | and |CJ | ≥ |SJ |, we obtain by a harmonic mean inequality that

M (CI ⊗ CJ)

|CI ⊗CJ |
≤ M (CI) +M (CJ)

|CI | |CJ |
≤ M (S∗

I) +M (S∗
J)∣∣S∗

I

∣∣ ∣∣S∗
J

∣∣ = η.

So setting R(h) := C
(h)
I ⊗C

(h)
J for all h ∈ [H] yields a new tree T ′ no larger than T . Hence

by the minimality of T ,

M (C) = |T | =
∣∣T ′∣∣ = H ·M (CI ⊗ CJ) =

|C|
|CI | |CJ |

· (M (CI) +M (CJ)) .

One can express Theorem 94 directly in terms of the matrix A as follows. Let
M (A) = M (C) = MOTS (|C〉) where C = {x : Ax ≡ b} (the vector b is irrelevant, so long
as Ax ≡ b is solvable). Then

M (A) = min
(
2rank(AI)+rank(AJ)−rank(A) (M (AI) +M (AJ))

)
(*)

where the minimum is over all nontrivial partitions (AI , AJ) of the columns of A. As a
base case, if A has only one column, then M (A) = 2 if A = 0 and M (A) = 1 otherwise.
This immediately implies the following.

Corollary 95 There exists a deterministic O (n3n)-time algorithm that computes M (A),
given A as input.

Proof. First compute rank (A∗) for all 2n−1 matrices A∗ that are formed by
choosing a subset of the columns of A. This takes time O

(
n32n

)
. Then compute M (A∗)

for all A∗ with one column, then for all A∗ with two columns, and so on, applying the
formula (*) recursively. This takes time

n∑

t=1

(
n

t

)
t2t = O (n3n) .

Another easy consequence of Theorem 94 is that the language {A : M (A) ≤ s} is
in NP. I do not know whether this language is NP-complete but suspect it is.

As mentioned above, my characterization makes it possible to prove exponential
lower bounds on the manifestly orthogonal tree size of coset states.

Theorem 96 Suppose the entries of A ∈ Zk×n2 are drawn uniformly and independently at

random, where k ∈
[
4 log2 n,

1
2

√
n ln 2

]
. Then M (A) =

(
n/k2

)Ω(k)
with probability Ω (1)

over A.

Proof. Let us upper-bound the probability that certain “bad events” occur when
A is drawn. The first bad event is that A contains an all-zero column. This occurs
with probability at most 2−kn = o (1). The second bad event is that there exists a k × d

153

submatrix of A with d ≥ 12k that has rank at most 2k/3. This also occurs with probability
o (1). For we claim that, if A∗ is drawn uniformly at random from Zk×d2 , then

Pr
AI

[rank (A∗) ≤ r] ≤
(
d

r

)(
2r

2k

)d−r
.

To see this, imagine choosing the columns of A∗ one by one. For rank (A∗) to be at most r,
there must be at least d− r columns that are linearly dependent on the previous columns.
But each column is dependent on the previous ones with probability at most 2r/2k. The
claim then follows from the union bound. So the probability that any k × d submatrix of
A has rank at most r is at most

(
n

d

)(
d

r

)(
2r

2k

)d−r
≤ nddr

(
2r

2k

)d−r
.

Set r = 2k/3 and d = 12k; then the above is at most

exp

{
12k log n+

2k

3
log (12k) −

(
12k − 2k

3

)
k

3

}
= o (1)

where we have used the fact that k ≥ 4 log n.

Assume that neither bad event occurs, and let
(
A

(0)
I , A

(0)
J

)
be a partition of the

columns of A that minimizes the expression (*). Let A(1) = A
(0)
I if

∣∣∣A(0)
I

∣∣∣ ≥
∣∣∣A(0)

J

∣∣∣ and

A(1) = A
(0)
J otherwise, where

∣∣∣A(0)
I

∣∣∣ and
∣∣∣A(0)

J

∣∣∣ are the numbers of columns in A
(0)
I and A

(0)
J

respectively (so that
∣∣∣A(0)

I

∣∣∣+
∣∣∣A(0)

J

∣∣∣ = n). Likewise, let
(
A

(1)
I , A

(1)
J

)
be an optimal partition

of the columns of A(1), and let A(2) = A
(1)
I if

∣∣∣A(1)
I

∣∣∣ ≥
∣∣∣A(1)

J

∣∣∣ and A(2) = A
(1)
J otherwise.

Continue in this way until an A(t) is reached such that
∣∣A(t)

∣∣ = 1. Then an immediate

consequence of (*) is that M (A) ≥ Z(0) · · · · · Z(t−1) where

Z(`) = 2
rank

(
A

(`)
I

)
+rank

(
A

(`)
J

)
−rank(A(`))

and A(0) = A.
Call ` a “balanced cut” if min

{∣∣∣A(`)
I

∣∣∣ ,
∣∣∣A(`)

J

∣∣∣
}

≥ 12k, and an “unbalanced cut”

otherwise. If ` is a balanced cut, then rank
(
A

(`)
I

)
≥ 2k/3 and rank

(
A

(`)
J

)
≥ 2k/3, so

Z(`) ≥ 2k/3. If ` is an unbalanced cut, then call ` a “freebie” if rank
(
A

(`)
I

)
+rank

(
A

(`)
J

)
=

rank
(
A(`)

)
. There can be at most k freebies, since for each one, rank

(
A(`+1)

)
< rank

(
A(`)

)

by the assumption that all columns of A are nonzero. For the other unbalanced cuts,
Z(`) ≥ 2.

Assume
∣∣A(`+1)

∣∣ =
∣∣A(`)

∣∣ /2 for each balanced cut and
∣∣A(`+1)

∣∣ =
∣∣A(`)

∣∣ − 12k for

each unbalanced cut. Then if the goal is to minimize Z(0) · · · · · Z(t−1), clearly the best
strategy is to perform balanced cuts first, then unbalanced cuts until

∣∣A(`)
∣∣ = 12k2, at which

point we can use the k freebies. Let B be the number of balanced cuts; then

Z(0) · · · · · Z(t−1) =
(
2k/3

)B
2(n/2

B−12k2)/12k.

154

This is minimized by taking B = log2

(
n ln 2
4k2

)
, in which case Z(0) · · · · · Z(t−1) =

(
n/k2

)Ω(k)
.

A final application of my characterization is to separate orthogonal from manifestly
orthogonal tree size.

Corollary 97 There exist states with polynomially-bounded orthogonal tree size, but man-
ifestly orthogonal tree size nΩ(logn). Thus OTree 6= MOTree.

Proof. Set k = 4 log2 n, and let C = {x : Ax ≡ 0} where A is drawn uniformly at
random from Zk×n2 . Then by Theorem 96,

MOTS (|C〉) =
(
n/k2

)Ω(k)
= nΩ(logn)

with probability Ω (1) over A. On the other hand, if we view |C〉 in the Fourier basis (that
is, apply a Hadamard to every qubit), then the resulting state has only 2k = n16 basis states
with nonzero amplitude, and hence has orthogonal tree size at most n17. So by Proposition
71, part (i), OTS (|C〉) ≤ 2n17 as well.

Indeed, the orthogonal tree states of Corollary 97 are superpositions over polyno-
mially many separable states, so it also follows that Σ2 6⊂ MOTree.

13.7 Computing With Tree States

Suppose a quantum computer is restricted to being in a tree state at all times. (We can
imagine that if the tree size ever exceeds some polynomial bound, the quantum computer
explodes, destroying our laboratory.) Does the computer then have an efficient classical
simulation? In other words, letting TreeBQP be the class of languages accepted by such a
machine, does TreeBQP = BPP? A positive answer would make tree states more attractive
as a Sure/Shor separator. For once we admit any states incompatible with the polynomial-
time Church-Turing thesis, it seems like we might as well go all the way, and admit all
states preparable by polynomial-size quantum circuits! The TreeBQP versus BPP problem is
closely related to the problem of finding an efficient (classical) algorithm to learn multilinear
formulas. In light of Raz’s lower bound, and of the connection between lower bounds and
learning noticed by Linial, Mansour, and Nisan [168], the latter problem might be less
hopeless than it looks. In this section I show a weaker result: that TreeBQP is contained in
ΣP

3 ∩ΠP
3 , the third level of the polynomial hierarchy. Since BQP is not known to lie in PH,

this result could be taken as weak evidence that TreeBQP 6= BQP. (On the other hand, we
do not yet have oracle evidence even for BQP 6⊂ AM, though not for lack of trying [5].)

Definition 98 TreeBQP is the class of languages accepted by a BQP machine subject to
the constraint that at every time step t, the machine’s state

∣∣ψ(t)
〉

is exponentially close to

a tree state. More formally, the initial state is
∣∣ψ(0)

〉
= |0〉⊗(p(n)−n) ⊗ |x〉 (for an input

x ∈ {0, 1}n and polynomial bound p), and a uniform classical polynomial-time algorithm
generates a sequence of gates g(1), . . . , g(p(n)). Each g(t) can be either be selected from
some finite universal basis of unitary gates (as will be shown in Theorem 99, part (i), the
choice of gate set does not matter), or can be a 1-qubit measurement. When we perform a

155

measurement, the state evolves to one of two possible pure states, with the usual probabilities,
rather than to a mixed state. We require that the final gate g(p(n)) is a measurement of
the first qubit. If at least one intermediate state

∣∣ψ(t)
〉

had TS1/2Ω(n)

(∣∣ψ(t)
〉)
> p (n), then

the outcome of the final measurement is chosen adversarially; otherwise it is given by the
usual Born probabilities. The measurement must return 1 with probability at least 2/3 if
the input is in the language, and with probability at most 1/3 otherwise.

Some comments on the definition: I allow
∣∣ψ(t)

〉
to deviate from a tree state by

an exponentially small amount, in order to make the model independent of the choice of
gate set. I allow intermediate measurements because otherwise it is unclear even how to
simulate BPP.8 The rule for measurements follows the “Copenhagen interpretation,” in
the sense that if a qubit is measured to be 1, then subsequent computation is not affected
by what would have happened were the qubit measured to be 0. In particular, if measuring
0 would have led to states of tree size greater than p (n), that does not invalidate the results
of the path where 1 is measured.

The following theorem shows that TreeBQP has many of the properties one would
want it to have.

Theorem 99

(i) The definition of TreeBQP is invariant under the choice of gate set.

(ii) The probabilities (1/3, 2/3) can be replaced by any (p, 1 − p) with 2−2
√

log n
< p < 1/2.

(iii) BPP ⊆ TreeBQP ⊆ BQP.

Proof.

(i) The Solovay-Kitaev Theorem [155, 184] shows that given a universal gate set, one can
approximate any k-qubit unitary to accuracy 1/ε using k qubits and a circuit of size

O (polylog (1/ε)). So let
∣∣ψ(0)

〉
, . . . ,

∣∣ψ(p(n))
〉
∈ H⊗p(n)

2 be a sequence of states, with∣∣ψ(t)
〉

produced from
∣∣ψ(t−1)

〉
by applying a k-qubit unitary g(t) (where k = O (1)).

Then using a polynomial-size circuit, one can approximate each
∣∣ψ(t)

〉
to accuracy

1/2Ω(n), as in the definition of TreeBQP. Furthermore, since the approximation
circuit for g(t) acts only on k qubits, any intermediate state |ϕ〉 it produces satisfies
TS1/2Ω(n) (|ϕ〉) ≤ k4k TS1/2Ω(n)

(∣∣ψ(t−1)
〉)

by Proposition 71.

(ii) To amplify to a constant probability, run k copies of the computation in tensor prod-
uct, then output the majority answer. By part (i), outputting the majority can

increase the tree size by a factor of at most 2k+1. To amplify to 2−2
√

log n
, observe

that the Boolean majority function on k bits has a multilinear formula of size kO(log k).
For let T hk (x1, . . . , xk) equal 1 if x1 + · · · + xk ≥ h and 0 otherwise; then

T hk (x1, . . . , xk) = 1 −
h∏

i=0

(
1 − T ibk/2c

(
x1, . . . , xbk/2c

)
T h−idk/2e

(
xbk/2c+1, . . . , xk

))
,

8If we try to simulate BPP in the standard way, we might produce complicated entanglement between
the computation register and the register containing the random bits, and no longer have a tree state.

156

so MFS
(
T hk
)

≤ 2hmaxi MFS
(
T hdk/2e

)
+ O (1), and solving this recurrence yields

MFS
(
T
k/2
k

)
= kO(log k). Substituting k = 2

√
logn into kO(log k) yields nO(1), meaning

the tree size increases by at most a polynomial factor.

(iii) To simulate BPP, just perform a classical reversible computation, applying a Hadamard
followed by a measurement to some qubit whenever we need a random bit. Since the
number of basis states with nonzero amplitude is at most 2, the simulation is clearly
in TreeBQP. The other containment is obvious.

Theorem 100 TreeBQP ⊆ ΣP
3 ∩ ΠP

3 .

Proof. Since TreeBQP is closed under complement, it suffices to show that
TreeBQP ⊆ ΠP

3 . Our proof will combine approximate counting with a predicate to verify
the correctness of a TreeBQP computation. Let C be a uniformly-generated quantum cir-
cuit, and let M =

(
m(1), . . . ,m(p(n))

)
be a sequence of binary measurement outcomes. We

adopt the convention that after making a measurement, the state vector is not rescaled to
have norm 1. That way the probabilities across all ‘measurement branches’ continue to

sum to 1. Let
∣∣∣ψ(0)
M,x

〉
, . . . ,

∣∣∣ψ(p(n))
M,x

〉
be the sequence of unnormalized pure states under

measurement outcome sequence M and input x, where
∣∣∣ψ(t)
M,x

〉
=
∑

y∈{0,1}p(n) α
(t)
y,M,x |y〉.

Also, let Λ (M,x) express that TS1/2Ω(n)

(∣∣∣ψ(t)
M,x

〉)
≤ p (n) for every t. Then C accepts if

Wx =
∑

M : Λ(M,x)

∑

y∈{0,1}p(n)−1

∣∣∣α(p(n))
1y,M,x

∣∣∣
2
≥ 2

3
,

while C rejects if Wx ≤ 1/3. If we could compute each
∣∣∣α(p(n))

1y,M,x

∣∣∣ efficiently (as well as

Λ (M,x)), we would then have a ΠP
2 predicate expressing that Wx ≥ 2/3. This follows

since we can do approximate counting via hashing in AM ⊆ ΠP
2 [133], and thereby verify

that an exponentially large sum of nonnegative terms is at least 2/3, rather than at most
1/3. The one further fact we need is that in our ΠP

2 (∀∃) predicate, we can take the
existential quantifier to range over tuples of ‘candidate solutions’—that is, (M,y) pairs

together with lower bounds β on
∣∣∣α(p(n))

1y,M,x

∣∣∣.

It remains only to show how we verify that Λ (M,x) holds and that
∣∣∣α(p(n))

1y,M,x

∣∣∣ = β.

First, we extend the existential quantifier so that it guesses not only M and y, but also a

sequence of trees T (0), . . . , T (p(n)), representing
∣∣∣ψ(0)
M,x

〉
, . . . ,

∣∣∣ψ(p(n))
M,x

〉
respectively. Second,

using the last universal quantifier to range over ŷ ∈ {0, 1}p(n), we verify the following:

(1) T (0) is a fixed tree representing |0〉⊗(p(n)−n) ⊗ |x〉.

(2)
∣∣∣α(p(n))

1y,M,x

∣∣∣ equals its claimed value to Ω (n) bits of precision.

157

(3) Let g(1), . . . , g(p(n)) be the gates applied by C. Then for all t and ŷ, if g(t) is unitary

then α
(t)
ŷ,M,x = 〈ŷ| ·g(t)

∣∣∣ψ(t−1)
M,x

〉
to Ω (n) bits of precision. Here the right-hand side is a

sum of 2k terms (k being the number of qubits acted on by g(t)), each term efficiently
computable given T (t−1). Similarly, if g(t) is a measurement of the ith qubit, then

α
(t)
ŷ,M,x = α

(t−1)
ŷ,M,x if the ith bit of ŷ equals m(t), while α

(t)
ŷ,M,x = 0 otherwise.

In the proof of Theorem 100, the only fact about tree states I needed was that
Tree ⊆ AmpP; that is, there is a polynomial-time classical algorithm that computes the
amplitude αx of any basis state |x〉. So if we define AmpP-BQP analogously to TreeBQP

except that any states in AmpP are allowed, then AmpP-BQP ⊆ ΣP
3 ∩ ΠP

3 as well.

13.8 The Experimental Situation

The results of this chapter suggest an obvious challenge for experimenters: prepare non-tree
states in the lab. For were this challenge met, it would rule out one way in which quantum
mechanics could fail, just as the Bell inequality experiments of Aspect et al. [37] did twenty
years ago. If they wished, quantum computing skeptics could then propose a new candidate
Sure/Shor separator, and experimenters could try to rule out that one, and so on. The
result would be to divide the question of whether quantum computing is possible into a
series of smaller questions about which states can be prepared. In my view, this would aid
progress in two ways: by helping experimenters set clear goals, and by forcing theorists to
state clear conjectures.

However, my experimental challenge raises some immediate questions. In particu-
lar, what would it mean to prepare a non-tree state? How would we know if we succeeded?
Also, have non-tree states already been prepared (or observed)? The purpose of this section
is to set out my thoughts about these questions.

First of all, when discussing experiments, it goes without saying that we must
convert asymptotic statements into statements about specific values of n. The central
tenet of computational complexity theory is that this is possible. Thus, instead of asking
whether n-qubit states with tree size 2Ω(n) can be prepared, we ask whether 200-qubit states
with tree size at least (say) 280 can be prepared. Even though the second question does
not logically imply anything about the first, the second is closer to what we ultimately
care about anyway. Admittedly, knowing that TS (|ψn〉) = nΩ(logn) tells us little about
TS (|ψ100〉) or TS (|ψ200〉), especially since in Raz’s paper [197], the constant in the exponent
Ω (log n) is taken to be 10−6 (though this can certainly be improved). Thus, proving tight
lower bounds for small n is one of the most important problems left open by this chapter.
In Section 13.6 I show how to solve this problem for the case of manifestly orthogonal tree
size.

A second objection is that my formalism applies only to pure states, but in reality
all states are mixed. However, there are several natural ways to extend the formalism to
mixed states. Given a mixed state ρ, we could minimize tree size over all purifications of
ρ, or minimize the expected tree size

∑
i |αi|2 TS (|ψi〉), or maximum maxiTS (|ψi〉), over

all decompositions ρ =
∑

i αi |ψi〉 〈ψi|.

158

A third objection is a real quantum state might be a “soup” of free-wandering
fermions and bosons, with no localized subsystems corresponding to qubits. How can one
determine the tree size of such a state? The answer is that one cannot. Any complexity
measure for particle position and momentum states would have to be quite different from the
measures considered in this chapter. On the other hand, the states of interest for quantum
computing usually do involve localized qubits. Indeed, even if quantum information is
stored in particle positions, one might force each particle into two sites (corresponding to
|0〉 and |1〉), neither of which can be occupied by any other particle. In that case it again
becomes meaningful to discuss tree size.

But how do we verify that a state with large tree size was prepared? Of course, if
|ψ〉 is preparable by a polynomial-size quantum circuit, then assuming quantum mechanics
is valid (and assuming our gates behave as specified), we can always test whether a given
state |ϕ〉 is close to |ψ〉 or not. Let U map |0〉⊗n to |ψ〉; then it suffices to test whether
U−1 |ϕ〉 is close to |0〉⊗n. However, in the experiments under discussion, the validity of
quantum mechanics is the very point in question. And once we allow Nature to behave in
arbitrary ways, a skeptic could explain any experimental result without having to invoke
states with large tree size.

The above fact has often been urged against me, but as it stands, it is no different
from the fact that one could explain any astronomical observation without abandoning the
Ptolemaic system. The issue here is not one of proof, but of accumulating observations
that are consistent with the hypothesis of large tree size, and inconsistent with alternative
hypotheses if we disallow special pleading. So for example, to test whether the subgroup
state

|S〉 =
1√
|S|
∑

x∈S
|x〉

was prepared, we might use CNOT gates to map |x〉 to |x〉
∣∣vTx

〉
for some vector v ∈ Zn2 .

Based on our knowledge of S, we could then predict whether the qubit
∣∣vTx

〉
should be |0〉,

|1〉, or an equal mixture of |0〉 and |1〉 when measured. Or we could apply Hadamard gates
to all n qubits of |S〉, then perform the same test for the subgroup dual to S. In saying
that a system is in state |S〉, it is not clear if we mean anything more than that it responds
to all such tests in expected ways. Similar remarks apply to Shor states and cluster states.

In my view, tests of the sort described above are certainly sufficient, so the inter-
esting question is whether they are necessary, or whether weaker and more indirect tests
would also suffice. This question rears its head when we ask whether non-tree states have
already been observed. For as pointed out to me by Anthony Leggett, there exist systems
studied in condensed-matter physics that are strong candidates for having superpolynomial
tree size. An example is the magnetic salt LiHoxY1−xF4 studied by Ghosh et al. [126],
which, like the cluster states of Briegel and Raussendorf [71], basically consists of a lattice
of spins subject to pairwise nearest-neighbor Hamiltonians. The main differences are that
the salt lattice is 3-D instead of 2-D, is tetragonal instead of cubic, and is irregular in
that not every site is occupied by a spin. Also, there are weak interactions even between
spins that are not nearest neighbors. But none of these differences seem likely to change a
superpolynomial tree size into a polynomial one.

159

For me, the main issues are (1) how precisely can we characterize9 the quantum
state of the magnetic salt, and (2) how strong the evidence is that that is the state. What
Ghosh et al. [126] did was to calculate bulk properties of the salt, such as its magnetic
susceptibility and specific heat, with and without taking into account the quantum en-
tanglement generated by the nearest-neighbor Hamiltonians. They found that including
entanglement yielded a better fit to the experimentally measured values. However, this is
clearly a far cry from preparing a system in a state of one’s choosing by applying a known
pulse sequence, and then applying any of a vast catalog of tests to verify that the state was
prepared. So it would be valuable to have more direct evidence that states qualitatively
like cluster states can exist in Nature.

In summary, the ideas of this chapter underscore the importance of current ex-
perimental work on large, persistently entangled quantum states; but they also suggest a
new motivation and perspective for this work. They suggest that we reexamine known
condensed-matter systems with a new goal in mind: understanding the complexity of their
associated quantum states. They also suggest that 2-D cluster states and random subgroup
states are interesting in a way that 1-D spin chains and Schrödinger cat states are not. Yet
when experimenters try to prepare states of the former type, they often see it as merely
a stepping stone towards demonstrating error-correction or another quantum computing
benchmark. Thus, Knill et al. [160] prepared10 the 5-qubit state

|ψ〉 =
1

4




|00000〉 + |10010〉 + |01001〉 + |10100〉
+ |01010〉 − |11011〉 − |00110〉 − |11000〉
− |11101〉 − |00011〉 − |11110〉 − |01111〉
− |10001〉 − |01100〉 − |10111〉 + |00101〉


 ,

for which MOTS (|ψ〉) = 40 from the decomposition

|ψ〉 =
1

4

(
(|01〉 + |10〉) ⊗ (|010〉 − |111〉) + (|01〉 − |10〉) ⊗ (|001〉 − |100〉)
− (|00〉 + |11〉) ⊗ (|011〉 + |110〉) + (|00〉 − |11〉) ⊗ (|000〉 + |101〉)

)
,

and for which I conjecture TS (|ψ〉) = 40 as well. However, the sole motivation of the
experiment was to demonstrate a 5-qubit quantum error-correcting code. In my opinion,
whether states with large tree size can be prepared is a fundamental question in its own
right. Were that question studied directly, perhaps we could address it for larger numbers
of qubits.

Let me end by stressing that, in the perspective I am advocating, there is nothing
sacrosanct about tree size as opposed to other complexity measures. This chapter concen-
trated on tree size because it is the subject of our main results, and because it is better to

9By “characterize,” I mean give an explicit formula for the amplitudes at a particular time t, in some
standard basis. If a state is characterized as the ground state of a Hamiltonian, then we first need to solve
for the amplitudes before we can prove tree size lower bounds using Raz’s method.

10Admittedly, what they really prepared is the ‘pseudo-pure’ state ρ = ε |ψ〉 〈ψ|+ (1 − ε) I , where I is the
maximally mixed state and ε ≈ 10−5. Braunstein et al. [69] have shown that, if the number of qubits n is
less than about 14, then such states cannot be entangled. That is, there exists a representation of ρ as a
mixture of pure states, each of which is separable and therefore has tree size O (n). This is a well-known
limitation of the liquid NMR technology used by Knill et al. Thus, a key challenge is to replicate the
successes of liquid NMR using colder qubits.

160

be specific than vague. On the other hand, Sections 13.3, 13.4, and 13.6 contain numerous
results about orthogonal tree size, manifestly orthogonal tree size, Vidal’s χ complexity,
and other measures. Readers dissatisfied with all of these measures are urged to propose
new ones, perhaps motivated directly by experiments. I see nothing wrong with having
multiple ways to quantify the complexity of quantum states, and much wrong with having
no ways.

13.9 Conclusion and Open Problems

A crucial step in quantum computing was to separate the question of whether quantum
computers can be built from the question of what one could do with them. This separation
allowed computer scientists to make great advances on the latter question, despite know-
ing nothing about the former. I have argued, however, that the tools of computational
complexity theory are relevant to both questions. The claim that large-scale quantum com-
puting is possible in principle is really a claim that certain states can exist—that quantum
mechanics will not break down if we try to prepare those states. Furthermore, what distin-
guishes these states from states we have seen must be more than precision in amplitudes, or
the number of qubits maintained coherently. The distinguishing property should instead
be some sort of complexity. That is, Sure states should have succinct representations of a
type that Shor states do not.

I have tried to show that, by adopting this viewpoint, we make the debate about
whether quantum computing is possible less ideological and more scientific. By studying
particular examples of Sure/Shor separators, quantum computing skeptics would strengthen
their case—for they would then have a plausible research program aimed at identifying what,
exactly, the barriers to quantum computation are. I hope, however, that the ‘complexity
theory of quantum states’ initiated here will be taken up by quantum computing proponents
as well. This theory offers a new perspective on the transition from classical to quantum
computing, and a new connection between quantum computing and the powerful circuit
lower bound techniques of classical complexity theory.

I end with some open problems.

(1) Can Raz’s technique be improved to show exponential tree size lower bounds?

(2) Can we prove Conjecture 90, implying an nΩ(logn) tree size lower bound for Shor
states?

(3) Let |ϕ〉 be a uniform superposition over all n-bit strings of Hamming weight n/2. It
is easy to show by divide-and-conquer that TS (|ϕ〉) = nO(logn). Is this upper bound
tight? More generally, can we show a superpolynomial tree size lower bound for any
state with permutation symmetry?

(4) Is Tree = OTree? That is, are there tree states that are not orthogonal tree states?

(5) Is the tensor-sum hierarchy of Section 13.2 infinite? That is, do we have Σk 6= Σk+1

for all k?

161

(6) Is TreeBQP = BPP? That is, can a quantum computer that is always in a tree state
be simulated classically? The key question seems to be whether the concept class of
multilinear formulas is efficiently learnable.

(7) Is there a practical method to compute the tree size of, say, 10-qubit states? Such a
method would have great value in interpreting experimental results.

162

Chapter 14

Quantum Search of Spatial Regions

This chapter represents joint work with Andris Ambainis.

The goal of Grover’s quantum search algorithm [141] is to search an ‘unsorted
database’ of size n in a number of queries proportional to

√
n. Classically, of course, order

n queries are needed. It is sometimes asserted that, although the speedup of Grover’s
algorithm is only quadratic, this speedup is provable, in contrast to the exponential speedup
of Shor’s factoring algorithm [221]. But is that really true? Grover’s algorithm is typically
imagined as speeding up combinatorial search—and we do not know whether every problem
in NP can be classically solved quadratically faster than the “obvious” way, any more than
we know whether factoring is in BPP.

But could Grover’s algorithm speed up search of a physical region? Here the basic
problem, it seems to us, is the time needed for signals to travel across the region. For if we
are interested in the fundamental limits imposed by physics, then we should acknowledge
that the speed of light is finite, and that a bounded region of space can store only a finite
amount of information, according to the holographic principle [65]. We discuss the latter
constraint in detail in Section 14.3; for now, we say only that it suggests a model in which
a ‘quantum robot’ occupies a superposition over finitely many locations, and moving the
robot from one location to an adjacent one takes unit time. In such a model, the time
needed to search a region could depend critically on its spatial layout. For example, if the
n entries are arranged on a line, then even to move the robot from one end to the other
takes n− 1 steps. But what if the entries are arranged on, say, a 2-dimensional square grid
(Figure 14.1)?

14.1 Summary of Results

This chapter gives the first systematic treatment of quantum search of spatial regions,
with ‘regions’ modeled as connected graphs. Our main result is positive: we show that a
quantum robot can search a d-dimensional hypercube with n vertices for a unique marked

vertex in time O
(√

n log3/2 n
)

when d = 2, or O (
√
n) when d ≥ 3. This matches (or in

the case of 2 dimensions, nearly matches) the Ω (
√
n) lower bound for quantum search, and

supports the view that Grover search of a physical region presents no problem of principle.

163

Marked item

Robot

n

n

Marked item

Robot

n

n

Figure 14.1: A quantum robot, in a superposition over locations, searching for a marked
item on a 2D grid of size

√
n×√

n.

d = 2 d > 2

Hypercube, 1 marked item O
(√

n log3/2 n
)

Θ (
√
n)

Hypercube, k or more marked items O
(√

n log5/2 n
)

Θ
(√

n

k1/2−1/d

)

Arbitrary graph, k or more marked items
√
n2O(

√
logn) Θ̃

(√
n

k1/2−1/d

)

Table 14.1: Upper and lower bounds for quantum search on a d-dimensional graph given in
this chapter. The symbol Θ̃ means that the upper bound includes a polylogarithmic term.
Note that, if d = 2, then Ω (

√
n) is always a lower bound, for any number of marked items.

Our basic technique is divide-and-conquer; indeed, once the idea is pointed out, an upper
bound of O

(
n1/2+ε

)
follows readily. However, to obtain the tighter bounds is more difficult;

for that we use the amplitude-amplification framework of Brassard et al. [67].
Section 14.6 presents the main results; Section 14.6.4 shows further that, when

there are k or more marked vertices, the search time becomes O
(√

n log5/2 n
)

when d = 2,

or Θ
(√
n/k1/2−1/d

)
when d ≥ 3. Also, Section 14.7 generalizes our algorithm to arbitrary

graphs that have ‘hypercube-like’ expansion properties. Here the best bounds we can

achieve are
√
n2O(

√
logn) when d = 2, or O (

√
n polylog n) when d > 2 (note that d need

not be an integer). Table 14.1 summarizes the results.
Section 14.8 shows, as an unexpected application of our search algorithm, that

the quantum communication complexity of the well-known disjointness problem is O (
√
n).

This improves an O
(√
nclog

∗ n
)

upper bound of Høyer and de Wolf [148], and matches the
Ω (

√
n) lower bound of Razborov [201].

The rest of the chapter is about the formal model that underlies our results.
Section 14.3 sets the stage for this model, by exploring the ultimate limits on information
storage imposed by properties of space and time. This discussion serves only to motivate
our results; thus, it can be safely skipped by readers unconcerned with the physical universe.
In Section 16.7 we define quantum query algorithms on graphs, a model similar to quantum
query algorithms as defined in Section 5.1, but with the added requirement that unitary
operations be ‘local’ with respect to some graph. In Section 14.4.1 we address the difficult

164

question, which also arises in work on quantum random walks [19] and quantum cellular
automata [238], of what ‘local’ means. Section 14.5 proves general facts about our model,

including an upper bound ofO
(√

nδ
)

for the time needed to search any graph with diameter

δ, and a proof (using the hybrid argument of Bennett et al. [51]) that this upper bound is
tight for certain graphs. We conclude in Section 14.9 with some open problems.

14.2 Related Work

In a paper on ‘Space searches with a quantum robot,’ Benioff [50] asked whether Grover’s
algorithm can speed up search of a physical region, as opposed to a combinatorial search
space. His answer was discouraging: for a 2-D grid of size

√
n × √

n, Grover’s algorithm
is no faster than classical search. The reason is that, during each of the Θ (

√
n) Grover

iterations, the algorithm must use order
√
n steps just to travel across the grid and return

to its starting point for the diffusion step. On the other hand, Benioff noted, Grover’s
algorithm does yield some speedup for grids of dimension 3 or higher, since those grids have
diameter less than

√
n.

Our results show that Benioff’s claim is mistaken: by using Grover’s algorithm

more carefully, one can search a 2-D grid for a single marked vertex in O
(√

n log3/2 n
)

time. To us this illustrates why one should not assume an algorithm is optimal on heuristic
grounds. Painful experience—for example, the “obviously optimal” O

(
n3
)

matrix multi-
plication algorithm [228]—is what taught computer scientists to see the proving of lower
bounds as more than a formality.

Our setting is related to that of quantum random walks on graphs [19, 83, 84, 218].
In an earlier version of this chapter, we asked whether quantum walks might yield an
alternative spatial search algorithm, possibly even one that outperforms our divide-and-
conquer algorithm. Motivated by this question, Childs and Goldstone [86] managed to show
that in the continuous-time setting, a quantum walk can search a d-dimensional hypercube
for a single marked vertex in time O (

√
n log n) when d = 4, or O (

√
n) when d ≥ 5. Our

algorithm was still faster in 3 or fewer dimensions (see Table 14.2). Subsequently, however,
Ambainis, Kempe, and Rivosh [31] gave an algorithm based on a discrete-time quantum
walk, which was as fast as ours in 3 or more dimensions, and faster in 2 dimensions. In
particular, when d = 2 their algorithm used only O (

√
n log n) time to find a unique marked

vertex. Childs and Goldstone [85] then gave a continuous-time quantum walk algorithm
with the same performance, and related this algorithm to properties of the Dirac equation.
It is still open whether O (

√
n) time is achievable in 2 dimensions.

Currently, the main drawback of the quantum walk approach is that all analyses
have relied heavily on symmetries in the underlying graph. If even minor ‘defects’ are
introduced, it is no longer known how to upper-bound the running time. By contrast,
the analysis of our divide-and-conquer algorithm is elementary, and does not depend on
eigenvalue bounds. We can therefore show that the algorithm works for any graphs with
sufficiently good expansion properties.

Childs and Goldstone [86] argued that the quantum walk approach has the advan-
tage of requiring fewer auxiliary qubits than the divide-and-conquer approach. However,

165

d = 2 d = 3 d = 4 d ≥ 5

This chapter O
(√

n log3/2 n
)

O (
√
n) O (

√
n) O (

√
n)

[86] O (n) O
(
n5/6

)
O (

√
n log n) O (

√
n)

[31, 85] O (
√
n log n) O (

√
n) O (

√
n) O (

√
n)

Table 14.2: Time needed to find a unique marked item in a d-dimensional hypercube, using
the divide-and-conquer algorithms of this chapter, the original quantum walk algorithm of
Childs and Goldstone [86], and the improved walk algorithms of Ambainis, Kempe, and
Rivosh [31] and Childs and Goldstone [85].

the need for many qubits was an artifact of how we implemented the algorithm in a previous
version of the chapter. The current version uses only one qubit.

14.3 The Physics of Databases

Theoretical computer science generally deals with the limit as some resource (such as time or
memory) increases to infinity. What is not always appreciated is that, as the resource bound
increases, physical constraints may come into play that were negligible at ‘sub-asymptotic’
scales. We believe theoretical computer scientists ought to know something about such
constraints, and to account for them when possible. For if the constraints are ignored on
the ground that they “never matter in practice,” then the obvious question arises: why use
asymptotic analysis in the first place, rather than restricting attention to those instance
sizes that occur in practice?

A constraint of particular interest for us is the holographic principle [65], which
arose from black-hole thermodynamics. The principle states that the information content
of any spatial region is upper-bounded by its surface area (not volume), at a rate of one
bit per Planck area, or about 1.4 × 1069 bits per square meter. Intuitively, if one tried to
build a spherical hard disk with mass density υ, one could not keep expanding it forever.
For as soon as the radius reached the Schwarzschild bound of r =

√
3/ (8πυ) (in Planck

units, c = G = ~ = k = 1), the hard disk would collapse to form a black hole, and thus its
contents would be irretrievable.

Actually the situation is worse than that: even a planar hard disk of constant
mass density would collapse to form a black hole once its radius became sufficiently large,
r = Θ (1/υ). (We assume here that the hard disk is disc-shaped. A linear or 1-D hard
disk could expand indefinitely without collapse.) It is possible, though, that a hard disk’s
information content could asymptotically exceed its mass. For example, a black hole’s
mass is proportional to the radius of its event horizon, but the entropy is proportional to
the square of the radius (that is, to the surface area). Admittedly, inherent difficulties with
storage and retrieval make a black hole horizon less than ideal as a hard disk. However,
even a weakly-gravitating system could store information at a rate asymptotically exceeding
its mass-energy. For instance, Bousso [65] shows that an enclosed ball of radiation with
radius r can store n = Θ

(
r3/2

)
bits, even though its energy grows only as r. Our results in

Section 14.7.1 will imply that a quantum robot could (in principle!) search such a ‘radiation

166

disk’ for a marked item in time O
(
r5/4

)
= O

(
n5/6

)
. This is some improvement over the

trivial O (n) upper bound for a 1-D hard disk, though it falls short of the desired O (
√
n).

In general, if n = rc bits are scattered throughout a 3-D ball of radius r (where
c ≤ 3 and the bits’ locations are known), we will show in Theorem 130 that the time
needed to search for a ‘1’ bit grows as n1/c+1/6 = r1+c/6 (omitting logarithmic factors). In
particular, if n = Θ

(
r2
)

(saturating the holographic bound), then the time grows as n2/3 or

r4/3. To achieve a search time of O (
√
n polylog n), the bits would need to be concentrated

on a 2-D surface.
Because of the holographic principle, we see that it is not only quantum mechanics

that yields a Ω (
√
n) lower bound on the number of steps needed for unordered search. If

the items to be searched are laid out spatially, then general relativity in 3 + 1 dimensions
independently yields the same bound, Ω (

√
n), up to a constant factor.1 Interestingly, in

d+1 dimensions the relativity bound would be Ω
(
n1/(d−1)

)
, which for d > 3 is weaker than

the quantum mechanics bound. Given that our two fundamental theories yield the same
lower bound, it is natural to ask whether that bound is tight. The answer seems to be that
it is not tight, since (i) the entropy on a black hole horizon is not efficiently accessible2, and
(ii) weakly-gravitating systems are subject to the Bekenstein bound [48], an even stronger
entropy constraint than the holographic bound.

Yet it is still of basic interest to know whether n bits in a radius-r ball can be
searched in time o (min {n, r√n})—that is, whether it is possible to do anything better
than either brute-force quantum search (with the drawback pointed out by Benioff [50]), or
classical search. Our results show that it is possible.

From a physical point of view, several questions naturally arise: (1) whether our
complexity measure is realistic; (2) how to account for time dilation; and (3) whether given
the number of bits we are imagining, cosmological bounds are also relevant. Let us address
these questions in turn.

(1) One could argue that to maintain a ‘quantum database’ of size n requires n
computing elements ([251], though see also [208]). So why not just exploit those elements
to search the database in parallel? Then it becomes trivial to show that the search time is
limited only by the radius of the database, so the algorithms of this chapter are unnecessary.
Our response is that, while there might be n ‘passive’ computing elements (capable of storing
data), there might be many fewer ‘active’ elements, which we consequently wish to place in
a superposition over locations. This assumption seems physically unobjectionable. For a
particle (and indeed any object) really does have an indeterminate location, not merely an
indeterminate internal state (such as spin) at some location. We leave as an open problem,
however, whether our assumption is valid for specific quantum computer architectures such
as ion traps.

(2) So long as we invoke general relativity, should we not also consider the effects
of time dilation? Those effects are indeed pronounced near a black hole horizon. Again,
though, for our upper bounds we will have in mind systems far from the Schwarzschild

1Admittedly, the holographic principle is part of quantum gravity and not general relativity per se.
All that matters for us, though, is that the principle seems logically independent of quantum-mechanical
linearity, which is what produces the “other” Ω (

√
n) bound.

2In the case of a black hole horizon, waiting for the bits to be emitted as Hawking radiation—as recent
evidence suggests that they are [211]—takes time proportional to r3, which is much too long.

167

limit, for which any time dilation is by at most a constant factor independent of n.
(3) How do cosmological considerations affect our analysis? Bousso [64] argues

that, in a spacetime with positive cosmological constant Λ > 0, the total number of bits
accessible to any one experiment is at most 3π/ (Λ ln 2), or roughly 10122 given current
experimental bounds [210] on Λ.3 Intuitively, even if the universe is spatially infinite, most
of it recedes too quickly from any one observer to be harnessed as computer memory.

One response to this result is to assume an idealization in which Λ vanishes,
although Planck’s constant ~ does not vanish. As justification, one could argue that without
the idealization Λ = 0, all asymptotic bounds in computer science are basically fictions.
But perhaps a better response is to accept the 3π/ (Λ ln 2) bound, and then ask how close
one can come to saturating it in different scenarios. Classically, the maximum number
of bits that can be searched is, in a crude model4, actually proportional to 1/

√
Λ ≈ 1061

rather than 1/Λ. The reason is that if a region had much more than 1/
√

Λ bits, then
after 1/

√
Λ Planck times—that is, about 1010 years, or roughly the current age of the

universe—most of the region would have receded beyond one’s cosmological horizon. What
our results suggest is that, using a quantum robot, one could come closer to saturating the
cosmological bound—since, for example, a 2-D region of size 1/Λ can be searched in time

O
(

1√
Λ

polylog 1√
Λ

)
. How anyone could prepare (say) a database of size much greater than

1/
√

Λ remains unclear, but if such a database existed, it could be searched!

14.4 The Model

As discussed in Part I, much of what is known about the power of quantum computing
comes from the black-box or query model—in which one counts only the number of queries
to an oracle, not the number of computational steps. We will take this model as the
starting point for a formal definition of quantum robots. Doing so will focus attention
on our main concern: how much harder is it to evaluate a function when its inputs are
spatially separated? As it turns out, all of our algorithms will be efficient as measured by
the number of gates and auxiliary qubits needed to implement them.

For simplicity, we assume that a robot’s goal is to evaluate a Boolean function
f : {0, 1}n → {0, 1}, which could be partial or total. A ‘region of space’ is a connected
undirected graph G = (V,E) with vertices V = {v1, . . . , vn}. Let X = x1 . . . xn ∈ {0, 1}n
be an input to f ; then each bit xi is available only at vertex vi. We assume the robot
knows G and the vertex labels in advance, and so is ignorant only of the xi bits. We thus
sidestep a major difficulty for quantum walks [19], which is how to ensure that a process
on an unknown graph is unitary.

3Also, Lloyd [172] argues that the total number of bits accessible up till now is at most the square of the

number of Planck times elapsed so far, or about
(
1061

)2
= 10122. Lloyd’s bound, unlike Bousso’s, does not

depend on Λ being positive. The numerical coincidence between the two bounds reflects the experimental
finding [210, 209] that we live in a transitional era, when both Λ and “dust” contribute significantly to the
universe’s net energy balance (ΩΛ ≈ 0.7, Ωdust ≈ 0.3). In earlier times dust (and before that radiation)
dominated, and Lloyd’s bound was tighter. In later times Λ will dominate, and Bousso’s bound will be
tighter. Why we should live in such a transitional era is unknown.

4Specifically, neglecting gravity and other forces that could counteract the effect of Λ.

168

At any time, the robot’s state has the form

∑
αi,z |vi, z〉 .

Here vi ∈ V is a vertex, representing the robot’s location; and z is a bit string (which can
be arbitrarily long), representing the robot’s internal configuration. The state evolves via
an alternating sequence of T algorithm steps and T oracle steps:

U (1) → O(1) → U (1) → · · · → U (T) → O(T).

An oracle step O(t) maps each basis state |vi, z〉 to |vi, z ⊕ xi〉, where xi is exclusive-OR’ed
into the first bit of z. An algorithm step U (t) can be any unitary matrix that (1) does not
depend on X, and (2) acts ‘locally’ on G. How to make the second condition precise is the
subject of Section 14.4.1.

The initial state of the algorithm is |v1, 0〉. Let α
(t)
i,z (X) be the amplitude of |vi, z〉

immediately after the tth oracle step; then the algorithm succeeds with probability 1 − ε if

∑

|vi,z〉 : zOUT =f(X)

∣∣∣α(T)
i,z (X)

∣∣∣
2
≥ 1 − ε

for all inputs X, where zOUT is a bit of z representing the output.

14.4.1 Locality Criteria

Classically, it is easy to decide whether a stochastic matrix acts locally with respect to a
graph G: it does if it moves probability only along the edges of G. In the quantum case,
however, interference makes the question much more subtle. In this section we propose
three criteria for whether a unitary matrix U is local. Our algorithms can be implemented
using the most restrictive of these criteria, whereas our lower bounds apply to all three of
them.

The first criterion we call Z-locality (for zero): U is Z-local if, given any pair of
non-neighboring vertices v1, v2 in G, U “sends no amplitude” from v1 to v2; that is, the
corresponding entries in U are all 0. The second criterion, C-locality (for composability),
says that this is not enough: not only must U send amplitude only between neighboring
vertices, but it must be composed of a product of commuting unitaries, each of which acts
on a single edge. The third criterion is perhaps the most natural one to a physicist: U
is H-local (for Hamiltonian) if it can be obtained by applying a locally-acting, low-energy
Hamiltonian for some fixed amount of time. More formally, let Ui,z→i∗,z∗ be the entry in
the |vi, z〉 column and |vi∗ , z∗〉 row of U .

Definition 101 U is Z-local if Ui,z→i∗,z∗ = 0 whenever i 6= i∗ and (vi, vi∗) is not an edge
of G.

Definition 102 U is C-local if the basis states can be partitioned into subsets P1, . . . , Pq
such that

(i) Ui,z→i∗,z∗ = 0 whenever |vi, z〉 and |vi∗ , z∗〉 belong to distinct Pj ’s, and

169

(ii) for each j, all basis states in Pj are either from the same vertex or from two adjacent
vertices.

Definition 103 U is H-local if U = eiH for some Hermitian H with eigenvalues of absolute
value at most π, such that Hi,z→i∗,z∗ = 0 whenever i 6= i∗ and (vi, vi∗) is not an edge in E.

If a unitary matrix is C-local, then it is also Z-local and H-local. For the latter
implication, note that any unitary U can be written as eiH for some H with eigenvalues of
absolute value at most π. So we can write the unitary Uj acting on each Pj as eiHj ; then
since the Uj ’s commute, ∏

Uj = ei
∑
Hj .

Beyond that, though, how are the locality criteria related? Are they approximately equiva-
lent? If not, then does a problem’s complexity in our model ever depend on which criterion
is chosen? Let us emphasize that these questions are not answered by, for example, the
Solovay-Kitaev theorem (see [184]), that an n×n unitary matrix can be approximated using
a number of gates polynomial in n. For recall that the definition of C-locality requires the
edgewise operations to commute—indeed, without that requirement, one could produce any
unitary matrix at all. So the relevant question, which we leave open, is whether any Z-local
or H-local unitary can be approximated by a product of, say, O (log n) C-local unitaries.
(A product of O (n) such unitaries trivially suffices, but that is far too many.) Again, the
algorithms in this chapter will use C-local unitaries, whereas the lower bounds will apply
even to Z-local and H-local unitaries.

14.5 General Bounds

Given a Boolean function f : {0, 1}n → {0, 1}, the quantum query complexity Q (f) is
the minimum T for which there exists a T -query quantum algorithm that evaluates f
with probability at least 2/3 on all inputs. (We will always be interested in the two-sided,
bounded-error complexity, denoted Q2 (f) elsewhere in this thesis.) Similarly, given a graph
G with n vertices labeled 1, . . . , n, we let Q (f,G) be the minimum T for which there exists
a T -query quantum robot on G that evaluates f with probability 2/3. Here the algorithm
steps must be C-local; we use QZ (f,G) and QH (f,G) to denote the corresponding measure
with Z-local and H-local steps respectively. Clearly Q (f,G) ≥ QZ (f,G) and Q (f,G) ≥
QH (f,G); we do not know whether all three measures are asymptotically equivalent.

Let δG be the diameter of G, and call f nondegenerate if it depends on all n input
bits.

Proposition 104 For all f,G,

(i) Q (f,G) ≤ 2n − 3.

(ii) Q (f,G) ≤ (2δG + 1)Q (f).

(iii) Q (f,G) ≥ Q (f).

(iv) Q (f,G) ≥ δG/2 if f is nondegenerate.

170

Proof.

(i) Starting from the root, a spanning tree for G can be traversed in 2 (n− 1) − 1 steps
(there is no need to return to the root).

(ii) We can simulate a query in 2δG steps, by fanning out from the start vertex v1 and
then returning. Applying a unitary at v1 takes 1 step.

(iii) Obvious.

(iv) There exists a vertex vi whose distance to v1 is at least δG/2, and f could depend on
xi.

We now show that the model is robust.

Proposition 105 For nondegenerate f , the following change Q (f,G) by at most a constant
factor.

(i) Replacing the initial state |v1, 0〉 by an arbitrary (known) |ψ〉.

(ii) Requiring the final state to be localized at some vertex vi with probability at least 1−ε,
for a constant ε > 0.

(iii) Allowing multiple algorithm steps between each oracle step (and measuring the com-
plexity by the number of algorithm steps).

Proof.

(i) We can transform |v1, 0〉 to |ψ〉 (and hence |ψ〉 to |v1, 0〉) in δG = O (Q (f,G)) steps,
by fanning out from v1 along the edges of a minimum-height spanning tree.

(ii) Assume without loss of generality that zOUT is accessed only once, to write the output.
Then after zOUT is accessed, uncompute (that is, run the algorithm backwards) to
localize the final state at v1. The state can then be localized at any vi in δG =
O (Q (f,G)) steps. We can succeed with any constant probability by repeating this
procedure a constant number of times.

(iii) The oracle step O is its own inverse, so we can implement a sequence U1, U2, . . . of
algorithm steps as follows (where I is the identity):

U1 → O → I → O → U2 → · · ·

A function of particular interest is f = OR(x1, . . . , xn), which outputs 1 if and
only if xi = 1 for some i. We first give a general upper bound on Q (OR, G) in terms of
the diameter of G. (Throughout the chapter, we sometimes omit floor and ceiling signs if
they clearly have no effect on the asymptotics.)

171

δδδδ/2δδδδ/2

Figure 14.2: The ‘starfish’ graph G. The marked item is at one of the tip vertices.

Proposition 106

Q (OR, G) = O
(√

nδG

)
.

Proof. Let τ be a minimum-height spanning tree for G, rooted at v1. A depth-
first search on τ uses 2n−2 steps. Let S1 be the set of vertices visited by depth-first search
in steps 1 to δG, S2 be those visited in steps δG + 1 to 2δG, and so on. Then

S1 ∪ · · · ∪ S2n/δG = V .

Furthermore, for each Sj there is a classical algorithm Aj , using at most 3δG steps, that
starts at v1, ends at v1, and outputs ‘1’ if and only if xi = 1 for some vi ∈ Sj. Then we
simply perform Grover search at v1 over all Aj ; since each iteration takes O (δG) steps and

there are O
(√

2n/δG

)
iterations, the number of steps is O

(√
nδG

)
.

The bound of Proposition 106 is tight:

Theorem 107 For all δ, there exists a graph G with diameter δG = δ such that

Q (OR, G) = Ω
(√

nδ
)
.

Indeed, QZ (f,G) and QH (f,G) are also Ω
(√

nδ
)
.

Proof. For simplicity, we first consider the C-local and Z-local cases, and then
discuss what changes in the H-local case. Let G be a ‘starfish’ with central vertex v1 and
M = 2 (n− 1) /δ legs L1, . . . , LM , each of length δ/2 (see Figure 14.2). We use the hybrid
argument of Bennett et al. [51]. Suppose we run the algorithm on the all-zero input X0.

Then define the query magnitude Γ
(t)
j to be the probability of finding the robot in leg Lj

immediately after the tth query:

Γ
(t)
j =

∑

vi∈Lj

∑

z

∣∣∣α(t)
i,z (X0)

∣∣∣
2
.

172

Let T be the total number of queries, and let w = T/ (cδ) for some constant 0 < c < 1/2.
Clearly

w−1∑

q=0

M∑

j=1

Γ
(T−qcδ)
j ≤

w−1∑

q=0

1 = w.

Hence there must exist a leg Lj∗ such that

w−1∑

q=0

Γ
(T−qcδ)
j∗ ≤ w

M
=

wδ

2 (n− 1)
.

Let vi∗ be the tip vertex of Lj∗, and let Y be the input which is 1 at vi∗ and 0 elsewhere.
Then let Xq be a hybrid input, which is X0 during queries 1 to T − qcδ, but Y during
queries T − qcδ + 1 to T . Also, let

∣∣∣ψ(t) (Xq)
〉

=
∑

i,z

α
(t)
i,z (Xq) |vi, z〉

be the algorithm’s state after t queries when run on Xq, and let

D (q, r) =
∥∥∥
∣∣∣ψ(T) (Xq)

〉
−
∣∣∣ψ(T) (Xr)

〉∥∥∥
2

2

=
∑

vi∈G

∑

z

∣∣∣α(T)
i,z (Xq) − α

(T)
i,z (Xr)

∣∣∣
2
.

Then for all q ≥ 1, we claim that D (q − 1, q) ≤ 4Γ
(T−qcδ)
j∗ . For by unitarity, the Euclidean

distance between
∣∣ψ(t) (Xq−1)

〉
and

∣∣ψ(t) (Xq)
〉

can only increase as a result of queries T −
qcδ + 1 through T − (q − 1) cδ. But no amplitude from outside Lj∗ can reach vi∗ during
that interval, since the distance is δ/2 and there are only cδ < δ/2 time steps. Therefore,
switching from Xq−1 to Xq can only affect amplitude that is in Lj∗ immediately after query
T − qcδ:

D (q − 1, q) ≤
∑

vi∈Lj∗

∑

z

∣∣∣α(T−qcδ)
i,z (Xq) −

(
−α(T−qcδ)

i,z (Xq)
)∣∣∣

2

= 4
∑

vi∈Lj∗

∑

z

∣∣∣α(T−qcδ)
i,z (X0)

∣∣∣
2

= 4Γ
(T−qcδ)
j∗ .

It follows that

√
D (0, w) ≤

w∑

q=1

√
D (q − 1, q) ≤ 2

w∑

q=1

√
Γ

(T−qcδ)
j∗ ≤ 2w

√
δ

2 (n− 1)
=
T

c

√
2

δ (n− 1)
.

Here the first inequality uses the triangle inequality, and the third uses the Cauchy-Schwarz
inequality. Now assuming the algorithm is correct we need D (0, w) = Ω (1), which implies

that T = Ω
(√

nδ
)
.

173

In the H-local case, it is no longer true that no amplitude from outside Lj∗ can
reach vi∗ in cδ time steps. But if c is a small enough constant, then the amount of
amplitude that can reach vi∗ decreases exponentially in δ. To see this, assume without
loss of generality that all amplitude not in Lj∗ starts in the state |v0, ψ〉, where |ψ〉 is some
superposition over auxiliary qubits. Let H be the local Hamiltonian that acts between the
tth and (t+ 1)st queries, all of whose eigenvalues have absolute value at most π. Since H
is Hermitian, we can decompose it as V ΛV −1 where V is unitary and Λ is diagonal. So by
Taylor series expansion,

eiH =
∑

j≥0

ij

j!
V ΛjV −1.

Now let S be the set of basis states |vb, zb〉 such that the distance from v0 to vb is `, for
some ` > 4π. Notice that for all j < ` and |vb, zb〉 ∈ S, we have

〈vb, zb|Hj |v0, ψ〉 = 〈vb, zb|V ΛjV −1 |v0, ψ〉 = 0

by the locality of H. Therefore

∑

|vb,zb〉∈S

∣∣〈vb, zb| eiH |v0, ψ〉
∣∣2 =

∑

|vb,zb〉∈S

∣∣∣∣∣∣

∑

j≥`

ij

j!
〈vb, zb|V ΛjV −1 |v0, ψ〉

∣∣∣∣∣∣

2

≤


∑

j≥`

√√√√
∑

|vb,zb〉∈S

∣∣∣∣
ij

j!
〈vb, zb|V ΛjV −1 |v0, ψ〉

∣∣∣∣
2



2

≤


∑

j≥`

√
πj

j!




2

≤ 4π`

`!
.

Here the second line uses the triangle inequality, the third line uses the fact that V ΛjV −1 has
maximum eigenvalue at most πj (and therefore

(
ij/j!

)
V ΛjV −1 has maximum eigenvalue at

most πj/j!), and the fourth line uses the fact that ` > 4π. Intuitively, the probability that
H sends the robot a distance ` from v0 is at most 4π`/`!, which decreases exponentially in
`. One can now use a Chernoff-Hoeffding bound to upper-bound the probability that cδ
local Hamiltonians, applied in succession, ever move the robot a distance δ/2 from v0. It
is clear that the resulting upper bound is 2−Ω(δ) for small enough c. Therefore

D (q − 1, q) ≤ 4Γ
(T−qcδ)
j∗ + 2−Ω(δ)

and the remainder of the proof goes through as before.

14.6 Search on Grids

Let Ld (n) be a d-dimensional grid graph of size n1/d × · · · × n1/d. That is, each vertex
is specified by d coordinates i1, . . . , id ∈

{
1, . . . , n1/d

}
, and is connected to the at most 2d

174

vertices obtainable by adding or subtracting 1 from a single coordinate (boundary vertices
have fewer than 2d neighbors). We write simply Ld when n is clear from context. In
this section we present our main positive results: that Q (OR,Ld) = Θ (

√
n) for d ≥ 3, and

Q (OR,L2) = O (
√
n polylog n) for d = 2.

Before proving these claims, let us develop some intuition by showing weaker
bounds, taking the case d = 2 for illustration. Clearly Q (OR,L2) = O

(
n3/4

)
: we simply

partition L2 (n) into
√
n subsquares, each a copy of L2 (

√
n). In 5

√
n steps, the robot can

travel from the start vertex to any subsquare C, search C classically for a marked vertex,
and then return to the start vertex. Thus, by searching all

√
n of the C’s in superposition

and applying Grover’s algorithm, the robot can search the grid in time O
(
n1/4

)
× 5

√
n =

O
(
n3/4

)
.

Once we know that, we might as well partition L2 (n) into n1/3 subsquares, each a
copy of L2

(
n2/3

)
. Searching any one of these subsquares by the previous algorithm takes

time O
((
n2/3

)3/4)
= O (

√
n), an amount of time that also suffices to travel to the subsquare

and back from the start vertex. So using Grover’s algorithm, the robot can search L2 (n) in

time O
(√

n1/3 · √n
)

= O
(
n2/3

)
. We can continue recursively in this manner to make the

running time approach O (
√
n). The trouble is that, with each additional layer of recursion,

the robot needs to repeat the search more often to upper-bound the error probability. Using
this approach, the best bounds we could obtain are roughly O (

√
npolylog n) for d ≥ 3, or√

n2O(
√

logn) for d = 2. In what follows, we use the amplitude amplification approach
of Brassard et al. [67] to improve these bounds, in the case of a single marked vertex, to

O (
√
n) for d ≥ 3 (Section 14.6.2) and O

(√
n log3/2 n

)
for d = 2 (Section 14.6.3). Section

14.6.4 generalizes these results to the case of multiple marked vertices.
Intuitively, the reason the case d = 2 is special is that there, the diameter of the

grid is Θ (
√
n), which matches exactly the time needed for Grover search. For d ≥ 3, by

contrast, the robot can travel across the grid in much less time than is needed to search it.

14.6.1 Amplitude Amplification

We start by describing amplitude amplification [67], a generalization of Grover search. Let
A be a quantum algorithm that, with probability ε, outputs a correct answer together with
a witness that proves the answer correct. (For example, in the case of search, the algorithm
outputs a vertex label i such that xi = 1.) Amplification generates a new algorithm that
calls A order 1/

√
ε times, and that produces both a correct answer and a witness with

probability Ω (1). In particular, assume A starts in basis state |s〉, and let m be a positive
integer. Then the amplification procedure works as follows:

(1) Set |ψ0〉 = A |s〉.

(2) For i = 1 to m set |ψi+1〉 = ASA−1W |ψi〉, where

• W flips the phase of basis state |y〉 if and only if |y〉 contains a description of a
correct witness, and

• S flips the phase of basis state |y〉 if and only if |y〉 = |s〉.

175

We can decompose |ψ0〉 as sinα |Ψsucc〉 + cosα |Ψfail〉, where |Ψsucc〉 is a superpo-
sition over basis states containing a correct witness and |Ψfail〉 is a superposition over all
other basis states. Brassard et al. [67] showed the following:

Lemma 108 ([67]) |ψi〉 = sin [(2i+ 1)α] |Ψsucc〉 + cos [(2i+ 1)α] |Ψfail〉.

If measuring |ψ0〉 gives a correct witness with probability ε, then |sinα|2 = ε and
|α| ≥ 1/

√
ε. So taking m = O(1/

√
ε) yields sin [(2m+ 1)α] ≈ 1. For our algorithms,

though, the multiplicative constant under the big-O also matters. To upper-bound this
constant, we prove the following lemma.

Lemma 109 Suppose a quantum algorithm A outputs a correct answer and witness with
probability exactly ε. Then by using 2m+ 1 calls to A or A−1, where

m ≤ π

4 arcsin
√
ε
− 1

2
,

we can output a correct answer and witness with probability at least

(
1 − (2m+ 1)2

3
ε

)
(2m+ 1)2 ε.

Proof. We perform m steps of amplitude amplification, which requires 2m + 1
calls A or A−1. By Lemma 108, this yields the final state

sin [(2m+ 1)α] |Ψsucc〉 + cos [(2m+ 1)α] |Ψfail〉 .

where α = arcsin
√
ε. Therefore the success probability is

sin2
[
(2m+ 1) arcsin

√
ε
]
≥ sin2

[
(2m+ 1)

√
ε
]

≥
(

(2m+ 1)
√
ε− (2m+ 1)3

6
ε3/2

)2

≥ (2m+ 1)2 ε− (2m+ 1)4

3
ε2.

Here the first line uses the monotonicity of sin2 x in the interval [0, π/2], and the second
line uses the fact that sinx ≥ x− x3/6 for all x ≥ 0 by Taylor series expansion.

Note that there is no need to uncompute any garbage left by A, beyond the
uncomputation that happens “automatically” within the amplification procedure.

14.6.2 Dimension At Least 3

Our goal is the following:

Theorem 110 If d ≥ 3, then Q (OR,Ld) = Θ (
√
n).

176

In this section, we prove Theorem 110 for the special case of a unique marked
vertex; then, in Sections 14.6.4 and 14.6.5, we will generalize to multiple marked vertices.
Let OR(k) be the problem of deciding whether there are no marked vertices or exactly k of
them, given that one of these is true. Then:

Theorem 111 If d ≥ 3, then Q
(
OR(1),Ld

)
= Θ (

√
n).

Choose constants β ∈ (2/3, 1) and µ ∈ (1/3, 1/2) such that βµ > 1/3 (for example,
β = 4/5 and µ = 5/11 will work). Let `0 be a large positive integer; then for all positive

integers R, let `R = `R−1

⌈
`
1/β−1
R−1

⌉
. Also let nR = `dR. Assume for simplicity that n = nR

for some R; in other words, that the hypercube Ld (nR) to be searched has sides of length
`R. Later we will remove this assumption.

Consider the following recursive algorithm A. If n = n0, then search Ld (n0)
classically, returning 1 if a marked vertex is found and 0 otherwise. Otherwise partition
Ld (nR) into nR/nR−1 subcubes, each one a copy of Ld (nR−1). Take the algorithm that
consists of picking a subcube C uniformly at random, and then running A recursively on
C. Amplify this algorithm (nR/nR−1)

µ times.

The intuition behind the exponents is that nR−1 ≈ nβR, so searching Ld (nR−1)

should take about n
β/2
R steps, which dominates the n

1/d
R steps needed to travel across the

hypercube when d ≥ 3. Also, at level R we want to amplify a number of times that
is less than (nR/nR−1)

1/2 by some polynomial amount, since full amplification would be
inefficient. The reason for the constraint βµ > 1/3 will appear in the analysis.

We now provide a more explicit description of A, which shows that A can be
implemented using C-local unitaries and only a single bit of workspace. At any time, the
quantum robot’s state will have the form

∑
i,z αi,z |vi, z〉, where vi is a vertex of Ld (nR)

and z is a single bit that records whether or not a marked vertex has been found. Given a
subcube C, let v (C) be the “corner” vertex of C; that is, the vertex that is minimal in all d
coordinates. Then the initial state when searching C will be |v (C) , 0〉. Beware, however,
that “initial state” in this context just means the state |s〉 from Section 14.6.1. Because
of the way amplitude amplification works, A will often be invoked on C with other initial
states, and even run in reverse.

Below we give pseudocode for A. Our procedure calls the three unitaries A, W ,
and S from Section 14.6.1 as subroutines. For convenience, we write AR, AR,WR, SR to
denote the level of recursion that is currently active.

Algorithm 112 (AR) Searches a subcube C of size nR for the marked vertex, and amplifies
the result to have larger probability. Default initial state: |v (C) , 0〉.

If R = 0 then:

(1) Use classical C-local operations to visit all n0 vertices of C in any order. At each
vi ∈ C, use a query transformation to map the state |vi, z〉 to |vi, z ⊕ xi〉.

(2) Return to v (C).

If R ≥ 1 then:

177

(1) Let mR be the smallest integer such that 2mR + 1 ≥ (nR/nR−1)
µ.

(2) Call AR.

(3) For i = 1 to mR, call WR, then A−1
R , then SR, then AR.

Suppose AR is run on the initial state |v (C) , 0〉, and let C1, . . . , CnR/n0
be the

minimal subcubes in C—meaning those of size n0. Then the final state after AR terminates
should be

1√
nR/n0

nR/n0∑

i=1

|v (Ci) , 0〉

if C does not contain the marked vertex. Otherwise the final state should have non-
negligible overlap with |v (Ci∗) , 1〉, where Ci∗ is the minimal subcube in C that contains
the marked vertex. In particular, if R = 0, then the final state should be |v (C) , 1〉 if C
contains the marked vertex, and |v (C) , 0〉 otherwise.

The two phase-flip subroutines, WR and SR, are both trivial to implement. To
apply WR, map each basis state |vi, z〉 to (−1)z |vi, z〉. To apply SR, map each basis state
|vi, z〉 to − |vi, z〉 if vi = v (C) for some subcube C of size nR, and to |vi, z〉 otherwise.
Below we give pseudocode for AR.

Algorithm 113 (AR) Searches a subcube C of size nR for the marked vertex. Default
initial state: |v (C) , 0〉.
(1) Partition C into nR/nR−1 smaller subcubes C1, . . . , CnR/nR−1

, each of size nR−1.

(2) For all j ∈ {1, . . . , d}, let Vj be the set of corner vertices v (Ci) that differ from v (C)

only in the first j coordinates. Thus V0 = {v (C)}, and in general |Vj | = `jR. For
j = 1 to d, let |Vj〉 be the state

|Vj〉 =
1

`
j/2
R

∑

v(Ci)∈Vj

|v (Ci) , 0〉

Apply a sequence of transformations U1, U2, . . ., Ud where Uj is a unitary that maps
|Vj−1〉 to |Vj〉 by applying C-local unitaries that move amplitude only along the jth

coordinate.

(3) Call AR−1 recursively, to search C1, . . . , CnR/nR−1
in superposition and amplify the

results.

If AR is run on the initial state |v (C) , 0〉, then the final state should be

1√
nR/nR−1

nR/n0∑

i=1

|φi〉 ,

where |φi〉 is the correct final state when AR−1 is run on subcube Ci with initial state
|v (Ci) , 0〉. A key point is that there is no need for AR to call AR−1 twice, once to compute
and once to uncompute—for the uncomputation is already built in to A. This is what will
enable us to prove an upper bound of O (

√
n) instead of O

(√
n2R

)
= O (

√
n polylog n).

We now analyze the running time of A.

178

Lemma 114 AR uses O
(
nµR
)

steps.

Proof. Let TA (R) and TA (R) be the total numbers of steps used by AR and AR
respectively in searching Ld (nR). Then we have TA (0) = O (1), and

TA (R) ≤ (2mR + 1)TA (R) + 2mR,

TA (R) ≤ dn
1/d
R + TA (R− 1)

for all R ≥ 1. For WR and SR can both be implemented in a single step, while AR uses

d`R = dn
1/d
R steps to move the robot across the hypercube. Combining,

TA (R) ≤ (2mR + 1)
(
dn

1/d
R + TA (R− 1)

)
+ 2mR

≤ ((nR/nR−1)
µ + 2)

(
dn

1/d
R + TA (R− 1)

)
+ (nR/nR−1)

µ + 1

= O
(
(nR/nR−1)

µ n
1/d
R

)
+ ((nR/nR−1)

µ + 2)TA (R− 1)

= O
(
(nR/nR−1)

µ n
1/d
R

)
+ (nR/nR−1)

µ TA (R− 1)

= O
(
(nR/nR−1)

µ n
1/d
R + (nR/nR−2)

µ n
1/d
R−1 + · · · + (nR/n0)

µ n
1/d
1

)

= nµR ·O
(
n

1/d
R

nµR−1

+
n

1/d
R−1

nµR−2

+ · · · + n
1/d
1

nµ0

)

= nµR ·O
(
n

1/d−βµ
R + · · · + n

1/d−βµ
2 + n

1/d−βµ
1

)

= nµR ·O
(
n

1/d−βµ
R +

(
n

1/d−βµ
R

)1/β
+ · · · +

(
n

1/d−βµ
R

)1/βR−1
)

= O
(
nµR
)
.

Here the second line follows because 2mR + 1 ≤ (nR/nR−1)
µ + 2, the fourth because the

(nR/nR−1)
µ terms increase doubly exponentially, so adding 2 to each will not affect the

asymptotics; the seventh because nµi = Ω
((
nµi+1

)β)
, the eighth because nR−1 ≤ nβR; and

the last because βµ > 1/3 ≥ 1/d, hence n
1/d−βµ
1 < 1.

Next we need to lower-bound the success probability. Say that A or A “succeeds”
if a measurement in the standard basis yields the result |v (Ci∗) , 1〉, where Ci∗ is the minimal
subcube that contains the marked vertex. Of course, the marked vertex itself can then be
found in n0 = O (1) steps.

Lemma 115 Assuming there is a unique marked vertex, AR succeeds with probability Ω
(
1/n1−2µ

R

)
.

Proof. Let PA (R) and PA (R) be the success probabilities of AR and AR respec-
tively when searching Ld (nR). Then clearly PA (0) = 1, and PA (R) = (nR−1/nR)PA (R− 1)

179

for all R ≥ 1. So by Lemma 109,

PA (R) ≥
(

1 − 1

3
(2mR + 1)2 PA (R)

)
(2mR + 1)2 PA (R)

=

(
1 − 1

3
(2mR + 1)2

nR−1

nR
PA (R− 1)

)
(2mR + 1)2

nR−1

nR
PA (R− 1)

≥
(

1 − 1

3
(nR/nR−1)

2µ nR−1

nR
PA (R− 1)

)
(nR/nR−1)

2µ nR−1

nR
PA (R− 1)

≥
(

1 − 1

3
(nR−1/nR)1−2µ

)
(nR−1/nR)1−2µ PA (R− 1)

≥ (n0/nR)1−2µ
R∏

r=1

(
1 − 1

3
(nR−1/nR)1−2µ

)

≥ (n0/nR)1−2µ
R∏

r=1

(
1 − 1

3n
(1−β)(1−2µ)
R

)

≥ (n0/nR)1−2µ

(
1 −

R∑

r=1

1

3N
(1−β)(1−2µ)
R

)

= Ω
(
1/n1−2µ

R

)
.

Here the third line follows because 2mR + 1 ≥ nR−1/nR and the function x − 1
3x

2 is
nondecreasing in the interval [0, 1]; the fourth because PA (R− 1) ≤ 1; the sixth because

nR−1 ≤ nβR; and the last because β < 1 and µ < 1/2, the nR’s increase doubly exponentially,
and n0 is sufficiently large.

Finally, take AR itself and amplify it to success probability Ω (1) by running it

O(n
1/2−µ
R) times. This yields an algorithm for searching Ld (nR) with overall running time

O
(
n

1/2
R

)
, which implies that Q

(
OR(1),Ld (nR)

)
= O

(
n

1/2
R

)
.

All that remains is to handle values of n that do not equal nR for any R. The so-

lution is simple: first find the largest R such that nR < n. Then set n′ = nR
⌈
n1/d/`R

⌉d
, and

embed Ld (n) into the larger hypercubeLd (n′). ClearlyQ
(
OR(1),Ld (n)

)
≤ Q

(
OR(1),Ld (n′)

)
.

Also notice that n′ = O (n) and that n′ = O
(
n

1/β
R

)
= O

(
n

3/2
R

)
. Next partition Ld (n′)

into n′/nR subcubes, each a copy of Ld (nR). The algorithm will now have one additional
level of recursion, which chooses a subcube of Ld (n′) uniformly at random, runs AR on

that subcube, and then amplifies the resulting procedure Θ
(√

n′/nR
)

times. The total

time is now

O

(√
n′

nR

((
n′
)1/d

+ n
1/2
R

))
= O

(√
n′

nR
n

1/2
R

)
= O

(√
n
)
,

while the success probability is Ω (1). This completes Theorem 111.

180

14.6.3 Dimension 2

In the d = 2 case, the best we can achieve is the following:

Theorem 116 Q (OR,L2) = O
(√

n log5/2 n
)
.

Again, we start with the single marked vertex case and postpone the general case
to Sections 14.6.4 and 14.6.5.

Theorem 117 Q
(
OR(1),L2

)
= O

(√
n log3/2 n

)
.

For d ≥ 3, we performed amplification on large (greater than O
(
1/n1−2µ

)
) proba-

bilities only once, at the end. For d = 2, on the other hand, any algorithm that we construct
with any nonzero success probability will have running time Ω (

√
n), simply because that

is the diameter of the grid. If we want to keep the running time O (
√
n), then we can

only perform O (1) amplification steps at the end. Therefore we need to keep the success
probability relatively high throughout the recursion, meaning that we suffer an increase in
the running time, since amplification to high probabilities is less efficient.

The procedures AR, AR, WR, and SR are identical to those in Section 14.6.2; all
that changes are the parameter settings. For all integers R ≥ 0, we now let nR = `2R0 , for
some odd integer `0 ≥ 3 to be set later. Thus, AR and AR search the square grid L2 (nR) of
size `R0 × `R0 . Also, let m = (`0 − 1) /2; then AR applies m steps of amplitude amplification
to AR.

We now prove the counterparts of Lemmas 114 and 115 for the two-dimensional
case.

Lemma 118 AR uses O
(
R`R+1

0

)
steps.

Proof. Let TA (R) and TA (R) be the time used by AR and AR respectively in
searching L2 (nR). Then TA (0) = 1, and for all R ≥ 1,

TA (R) ≤ (2m+ 1)TA (R) + 2m,

TA (R) ≤ 2n
1/2
R + TA (R− 1) .

Combining,

TA (R) ≤ (2m+ 1)
(
2n

1/2
R + TA (R− 1)

)
+ 2m

= `0
(
2`R0 + TA (R− 1)

)
+ `0 − 1

= O
(
`R+1
0 + `0TA (R− 1)

)

= O
(
R`R+1

0

)
.

Lemma 119 AR succeeds with probability Ω (1/R).

181

Proof. Let PA (R) and PA (R) be the success probabilities of AR and AR respec-
tively when searching L2 (nR). Then PA (R) = PA (R− 1) /`20 for all R ≥ 1. So by Lemma
109, and using the fact that 2m+ 1 = `0,

PA (R) ≥
(

1 − (2m+ 1)2

3
PA (R)

)
(2m+ 1)2 PA (R)

=

(
1 − `20

3

PA (R− 1)

`20

)
`20
PA (R− 1)

`20

= PA (R− 1) − 1

3
P 2
A (R− 1)

= Ω (1/R) .

This is because Ω (R) iterations of the map xR := xR−1 − 1
3x

2
R−1 are needed to drop from

(say) 2/R to 1/R, and x0 = PA (0) = 1 is greater than 2/R.

We can amplify AR to success probability Ω (1) by repeating it O
(√

R
)

times.

This yields an algorithm for searching L2 (nR) that uses O
(
R3/2`R+1

0

)
= O

(√
nRR

3/2`0
)

steps in total. We can minimize this expression subject to `2R0 = nR by taking `0 to be

constant and R to be Θ (log nR), which yields Q
(
OR(1),L2 (nR)

)
= O

(√
nR log n

3/2
R

)
. If

n is not of the form `2R0 , then we simply find the smallest integer R such that n < `2R0 , and
embed L2 (n) in the larger grid L2

(
`2R0
)
. Since `0 is a constant, this increases the running

time by at most a constant factor. We have now proved Theorem 117.

14.6.4 Multiple Marked Items

What about the case in which there are multiple i’s with xi = 1? If there are k marked
items (where k need not be known in advance), then Grover’s algorithm can find a marked

item with high probability in O
(√

n/k
)

queries, as shown by Boyer et al. [66]. In our

setting, however, this is too much to hope for—since even if there are many marked vertices,
they might all be in a faraway part of the hypercube. Then Ω

(
n1/d

)
steps are needed,

even if
√
n/k < n1/d. Indeed, we can show a stronger lower bound. Recall that OR(k) is

the problem of deciding whether there are no marked vertices or exactly k of them.

Theorem 120 For all constants d ≥ 2,

Q
(
OR(k),Ld

)
= Ω

(√
n

k1/2−1/d

)
.

Proof. For simplicity, we assume that both k1/d and
(
n/3dk

)1/d
are integers. (In

the general case, we can just replace k by
⌈
k1/d

⌉d
and n by the largest number of the form

(
3m
⌈
k1/d

⌉)d
which is less than n. This only changes the lower bound by a lower order

term.)
We use a hybrid argument almost identical to that of Theorem 107. Divide Ld

into n/k subcubes, each having k vertices and side length k1/d. Let S be a regularly-spaced

182

set of M = n/
(
3dk
)

of these subcubes, so that any two subcubes in S have distance at least

2k1/d from one another. Then choose a subcube Cj ∈ S uniformly at random and mark
all k vertices in Cj. This enables us to consider each Cj ∈ S itself as a single vertex (out
of M in total), having distance at least 2k1/d to every other vertex.

More formally, given a subcube Cj ∈ S, let C̃j be the set of vertices consisting of

Cj and the 3d − 1 subcubes surrounding it. (Thus, C̃j is a subcube of side length 3k1/d.)

Then the query magnitude of C̃j after the tth query is

Γ
(t)
j =

∑

vi∈C̃j

∑

z

∣∣∣α(t)
i,z (X0)

∣∣∣
2
,

where X0 is the all-zero input. Let T be the number of queries, and let w = T/
(
ck1/d

)
for

some constant c > 0. Then as in Theorem 107, there must exist a subcube C̃j∗ such that

w−1∑

q=0

Γ
(T−qck1/d)
j∗ ≤ w

M
=

3dkw

n
.

Let Y be the input which is 1 in Cj∗ and 0 elsewhere; then let Xq be a hybrid input which
is X0 during queries 1 to T − qck1/d, but Y during queries T − qck1/d + 1 to T . Next let

D (q, r) =
∑

vi∈G

∑

z

∣∣∣α(T)
i,z (Xq) − α

(T)
i,z (Xr)

∣∣∣
2
.

Then as in Theorem 107, for all c < 1 we have D (q − 1, q) ≤ 4Γ
(T−qck1/d)
j∗ . For in the ck1/d

queries from T − qck1/d+ 1 through T − (q − 1) ck1/d, no amplitude originating outside C̃j∗

can travel a distance k1/d and thereby reach Cj∗ . Therefore switching from Xq−1 to Xq

can only affect amplitude that is in C̃j∗ immediately after query T − qck1/d. It follows that

√
D (0, w) ≤

w∑

q=1

√
D (q − 1, q) ≤ 2

w∑

q=1

√
Γ
(T−qck1/d)
j∗ ≤ 2w

√
3dk

n
=

2
√

3dk1/2−1/dT

c
√
n

.

Hence T = Ω
(√
n/k1/2−1/d

)
for constant d, since assuming the algorithm is correct we need

D (0, w) = Ω (1).
Notice that if k ≈ n, then the bound of Theorem 120 becomes Ω

(
n1/d

)
which is

just the diameter of Ld. Also, if d = 2, then 1/2−1/d = 0 and the bound is simply Ω (
√
n)

independent of k. The bound of Theorem 120 can be achieved (up to a constant factor that
depends on d) for d ≥ 3, and nearly achieved for d = 2. We first construct an algorithm
for the case when k is known.

Theorem 121

(i) For d ≥ 3,

Q
(
OR(k),Ld

)
= O

(√
n

k1/2−1/d

)
.

183

(ii) For d = 2,

Q
(
OR(k),L2

)
= O

(√
n log3/2 n

)
.

To prove Theorem 121, we first divide Ld (n) into n/γ subcubes, each of size
γ1/d× · · · × γ1/d (where γ will be fixed later). Then in each subcube, we choose one vertex
uniformly at random.

Lemma 122 If γ ≥ k, then the probability that exactly one marked vertex is chosen is at
least k/γ − (k/γ)2.

Proof. Let x be a marked vertex. The probability that x is chosen is 1/γ. Given
that x is chosen, the probability that one of the other marked vertices, y, is chosen is 0 if x
and y belong to the same subcube, or 1/γ if they belong to different subcubes. Therefore,
the probability that x alone is chosen is at least

1

γ

(
1 − k − 1

γ

)
≥ 1

γ

(
1 − k

γ

)
.

Since the events “x alone is chosen” are mutually disjoint, we conclude that the probability
that exactly one marked vertex is chosen is at least k/γ − (k/γ)2.

In particular, fix γ so that γ/3 < k < 2γ/3; then Lemma 122 implies that the
probability of choosing exactly one marked vertex is at least 2/9. The algorithm is now as
follows. As in the lemma, subdivide Ld (n) into n/γ subcubes and choose one location at
random from each. Then run the algorithm for the unique-solution case (Theorem 111 or
117) on the chosen locations only, as if they were vertices of Ld (n/γ).

The running time in the unique case was O
(√

n/γ
)

for d ≥ 3 or

O

(√
n

γ
log3/2 (n/γ)

)
= O

(√
n

γ
log3/2 n

)

for d = 2. However, each local unitary in the original algorithm now becomes a unitary
affecting two vertices v and w in neighboring subcubes Cv and Cw. When placed side by
side, Cv and Cw form a rectangular box of size 2γ1/d × γ1/d × · · · × γ1/d. Therefore the
distance between v and w is at most (d+ 1) γ1/d. It follows that each local unitary in the
original algorithm takes O

(
dγ1/d

)
time in the new algorithm. For d ≥ 3, this results in an

overall running time of

O

(√
n

γ
dγ1/d

)
= O

(
d

√
n

γ1/2−1/d

)
= O

(√
n

k1/2−1/d

)
.

For d = 2 we obtain

O

(√
n

γ
γ1/2 log3/2 n

)
= O

(√
n log3/2 n

)
.

184

14.6.5 Unknown Number of Marked Items

We now show how to deal with an unknown k. Let OR(≥k) be the problem of deciding
whether there are no marked vertices or at least k of them, given that one of these is true.

Theorem 123

(i) For d ≥ 3,

Q
(
OR(≥k),Ld

)
= O

(√
n

k1/2−1/d

)
.

(ii) For d = 2,

Q
(
OR(≥k),L2

)
= O

(√
n log5/2 n

)
.

Proof. We use the straightforward ‘doubling’ approach of Boyer et al. [66]:

(1) For j = 0 to log2 (n/k)

• Run the algorithm of Theorem 121 with subcubes of size γj = 2jk.

• If a marked vertex is found, then output 1 and halt.

(2) Query a random vertex v, and output 1 if v is a marked vertex and 0 otherwise.

Let k∗ ≥ k be the number of marked vertices. If k∗ ≤ n/3, then there exists a
j ≤ log2 (n/k) such that γj/3 ≤ k∗ ≤ 2γj/3. So Lemma 122 implies that the jth iteration
of step (1) finds a marked vertex with probability at least 2/9. On the other hand, if
k∗ ≥ n/3, then step (2) finds a marked vertex with probability at least 1/3. For d ≥ 3, the
time used in step (1) is at most

log2(n/k)∑

j=0

√
n

γ
1/2−1/d
j

=

√
n

k1/2−1/d




log2(n/k)∑

j=0

1

2j(1/2−1/d)


 = O

(√
n

k1/2−1/d

)
,

the sum in brackets being a decreasing geometric series. For d = 2, the time isO
(√

n log5/2 n
)
,

since each iteration takes O
(√

n log3/2 n
)

time and there are at most log n iterations. In

neither case does step (2) affect the bound, since k ≤ n implies that n1/d ≤ √
n/k1/2−1/d.

Taking k = 1 gives algorithms for unconstrained OR with running times O(
√
n)

for d ≥ 3 and O(
√
n log5/2 n) for d = 2, thereby establishing Theorems 110 and 116.

185

14.7 Search on Irregular Graphs

In Section 14.2, we claimed that our divide-and-conquer approach has the advantage of
being robust : it works not only for highly symmetric graphs such as hypercubes, but for
any graphs having comparable expansion properties. Let us now substantiate this claim.

Say a family of connected graphs {Gn = (Vn, En)} is d-dimensional if there exists
a κ > 0 such that for all n, ` and v ∈ Vn,

|B (v, `)| ≥ min
(
κ`d, n

)
,

where B (v, `) is the set of vertices having distance at most ` from v in Gn. Intuitively,
Gn is d-dimensional (for d ≥ 2 an integer) if its expansion properties are at least as good
as those of the hypercube Ld (n).5 It is immediate that the diameter of Gn is at most

(n/κ)1/d. Note, though, that Gn might not be an expander graph in the usual sense, since
we have not required that every sufficiently small set of vertices has many neighbors.

Our goal is to show the following.

Theorem 124 If G is d-dimensional, then

(i) For a constant d > 2,
Q (OR, G) = O

(√
npolylog n

)
.

(ii) For d = 2,

Q (OR, G) =
√
n2O(

√
logn).

In proving part (i), the intuition is simple: we want to decompose G recursively
into subgraphs (called clusters), which will serve the same role as subcubes did in the
hypercube case. The procedure is as follows. For some constant n1 > 1, first choose
dn/n1e vertices uniformly at random to be designated as 1-pegs. Then form 1-clusters by
assigning each vertex in G to its closest 1-peg, as in a Voronoi diagram. (Ties are broken
randomly.) Let v (C) be the peg of cluster C. Next, split up any 1-cluster C with more
than n1 vertices into d|C| /n1e arbitrarily-chosen 1-clusters, each with size at most n1 and
with v (C) as its 1-peg. Observe that

dn/n1e∑

i=1

⌈ |Ci|
n1

⌉
≤ 2

⌈
n

n1

⌉
,

where n = |C1| + · · · +
∣∣Cdn/n1e

∣∣. Therefore, the splitting-up step can at most double the
number of clusters.

In the next iteration, set n2 = n
1/β
1 , for some constant β ∈ (2/d, 1). Choose

2 dn/n2e vertices uniformly at random as 2-pegs. Then form 2-clusters by assigning each
1-cluster C to the 2-peg that is closest to the 1-peg v (C). Given a 2-cluster C ′, let |C ′|
be the number of 1-clusters in C ′. Then as before, split up any C ′ with |C ′| > n2/n1

into d|C ′| / (n2/n1)e arbitrarily-chosen 2-clusters, each with size at most n2/n1 and with

5In general, it makes sense to consider non-integer d as well.

186

v (C ′) as its 2-peg. Continue recursively in this manner, setting nR = n
1/β
R−1 and choosing

2R−1 dn/nRe vertices as R-pegs for each R. Stop at the maximum R such that nR ≤ n.
For technical convenience, set n0 = 1, and consider each vertex v to be the 0-peg of the
0-cluster {v}.

At the end we have a tree of clusters, which can be searched recursively just as
in the hypercube case. In more detail, basis states now have the form |v, z, C〉, where v is
a vertex, z is an answer bit, and C is the (label of the) cluster currently being searched.
(Unfortunately, because multiple R-clusters can have the same peg, a single auxiliary qubit
no longer suffices.) Also, let K ′ (C) be the number of (R− 1)-clusters in R-cluster C; then
K ′ (C) ≤ K (R) whereK (R) = 2 dnR/nR−1e. IfK ′ (C) < K (R), then placeK (R)−K ′ (C)
“dummy” (R− 1)-clusters in C, each of which has (R− 1)-peg v (C).

The algorithm AR from Section 14.6.2 now does the following, when invoked on
the initial state |v (C) , 0, C〉, where C is an R-cluster. If R = 0, then AR uses a query trans-
formation to prepare the state |v (C) , 1, C〉 if v (C) is the marked vertex and |v (C) , 0, C〉
otherwise. If R ≥ 1 and C is not a dummy cluster, then AR performsmR steps of amplitude
amplification on AR, where mR is the largest integer such that 2mR + 1 ≤

√
nR/nR−1.

6 If
C is a dummy cluster, then AR does nothing for an appropriate number of steps, and then
returns that no marked item was found.

We now describe the subroutine AR, for R ≥ 1. When invoked with |v (C) , 0, C〉
as its initial state, AR first prepares a uniform superposition

1√
K (R)

K(R)∑

i=1

|v (Ci) , 0, Ci〉 .

It then calls AR−1 recursively, to search C1, . . . , CK(R) in superposition and amplify the
results.

For R ≥ 1, define the radius of an R-cluster C to be the maximum, over all
(R− 1)-clusters C ′ in C, of the distance from v (C) to v (C ′). Also, call an R-cluster good

if it has radius at most `R, where `R =
(

2
κnR lnn

)1/d
.

Lemma 125 With probability 1 − o (1) over the choice of clusters, all clusters are good.

Proof. Let v be the (R− 1)-peg of an (R− 1)-cluster. Then |B (v, `)| ≥ κ`d,
where B (v, `) is the ball of radius ` about v. So the probability that v has distance greater
than `R to the nearest R-peg is at most

(
1 − κ`dR

n

)dn/nRe
≤
(

1 − 2 ln n

n/nR

)n/nR

<
1

n2
.

Furthermore, the total number of pegs is easily seen to be O (n). It follows by the union
bound that every (R− 1)-peg for every R has distance at most `R to the nearest R-peg,
with probability 1 −O (1/n) = 1 − o (1) over the choice of clusters.

We now analyze the running time and success probability of AR.

6In the hypercube case, we performed fewer amplifications in order to lower the running time from√
npolylog n to

√
n. Here, though, the splitting-up step produces a polylog n factor anyway.

187

Lemma 126 AR uses O
(√

nR log1/d n
)

steps, assuming that all clusters are good.

Proof. Let TA (R) and TA (R) be the time used by AR and AR respectively in
searching an R-cluster. Then we have

TA (R) ≤
√
nR/nR−1TA (R) ,

TA (R) ≤ `R + TA (R− 1)

with the base case TA (0) = 1. Combining,

TA (R) ≤
√
nR/nR−1 (`R + TA (R− 1))

≤
√
nR/nR−1`R +

√
nR/nR−2`R−1 + · · · +

√
nR/n0`1

=
√
nR ·O

(
(nR lnn)1/d√

nR−1
+ · · · + (n1 lnn)1/d√

n0

)

=
√
nR

(
ln1/d n

)
·O
(
n

1/d−β/2
R + · · · + n

1/d−β/2
1

)

=
√
nR

(
ln1/d n

)
·O
(
n

1/d−β/2
1 +

(
n

1/d−β/2
1

)1/β
+ · · · +

(
n

1/d−β/2
1

)(1/β)R−1)

= O
(√

nR log1/d n
)
,

where the last line holds because β > 2/d and therefore n
1/d−β/2
1 < 1.

Lemma 127 AR succeeds with probability Ω (1/polylog nR) in searching a graph of size
n = nR, assuming there is a unique marked vertex.

Proof. For all R ≥ 0, let CR be the R-cluster that contains the marked vertex,
and let PA (R) and PA (R) be the success probabilities of AR and AR respectively when
searching CR. Then for all R ≥ 1, we have PA (R) = PA (R− 1) / (2K (R)), and therefore

PA (R) ≥
(

1 − (2mR + 1)2

3
PA (R)

)
(2mR + 1)2 PA (R)

=

(
1 − (2mR + 1)2

3
· PA (R− 1)

2K (R)

)
(2mR + 1)2

PA (R− 1)

2K (R)

= Ω (PA (R− 1))

= Ω (1/polylog nR) .

Here the third line holds because (2mR + 1)2 ≈ nR/nR−1 ≈ K (R) /2, and the last line
because R = Θ (log log nR).

Finally, we repeat AR itself O(polylog nR) times, to achieve success probability
Ω (1) using O

(√
nR polylog nR

)
steps in total. Again, if n is not equal to nR for any

R, then we simply find the largest R such that nR < n, and then add one more level of

recursion that searches a random R-cluster and amplifies the result Θ
(√

n/nR

)
times. The

188

resulting algorithm uses O (
√
npolylog n) steps, thereby establishing part (i) of Theorem

124 for the case of a unique marked vertex. The generalization to multiple marked vertices
is straightforward.

Corollary 128 If G is d-dimensional for a constant d > 2, then

Q
(
OR(≥k), G

)
= O

(√
n polylog n

k

k1/2−1/d

)
.

Proof. Assume without loss of generality that k = o (n), since otherwise a marked
item is trivially found in O

(
n1/d

)
steps. As in Theorem 123, we give an algorithm B con-

sisting of log2 (n/k) + 1 iterations. In iteration j = 0, choose dn/ke vertices w1, . . . , wdn/ke
uniformly at random. Then run the algorithm for the unique marked vertex case, but
instead of taking all vertices in G as 0-pegs, take only w1, . . . , wdn/ke. On the other hand,
still choose the 1-pegs, 2-pegs, and so on uniformly at random from among all vertices in
G. For all R, the number of R-pegs should be d(n/k) /nRe. In general, in iteration j
of B, choose

⌈
n/
(
2jk
)⌉

vertices w1, . . . , wdn/(2jk)e uniformly at random, and then run the
algorithm for a unique marked vertex as if w1, . . . , wdn/(2jk)e were the only vertices in the
graph.

It is easy to see that, assuming there are k or more marked vertices, with proba-
bility Ω (1) there exists an iteration j such that exactly one of w1, . . . , wdn/(2jk)e is marked.
Hence B succeeds with probability Ω (1). It remains only to upper-bound B’s running time.

In iteration j, notice that Lemma 125 goes through if we use `
(j)
R :=

(
2
κ2jknR ln n

k

)1/d
instead of `R. That is, with probability 1−O (k/n) = 1− o (1) over the choice of clusters,

every R-cluster has radius at most `
(j)
R . So letting TA (R) be the running time of AR on

an R-cluster, the recurrence in Lemma 126 becomes

TA (R) ≤
√
nR/nR−1

(
`
(j)
R + TA (R− 1)

)
= O

(√
nR
(
2jk log (n/k)

)1/d)
,

which is

O

(√
n log1/d n

k

(2jk)1/2−1/d

)

if nR = Θ
(
n/
(
2jk
))

. As usual, the case where there is no R such that nR = Θ
(
n/
(
2jk
))

is
trivially handled by adding one more level of recursion. If we factor in the O (1/polylog nR)
repetitions of AR needed to boost the success probability to Ω (1), then the total running
time of iteration j is

O

(√
n polylog n

k

(2jk)1/2−1/d

)
.

Therefore B’s running time is

O




log2(n/k)∑

j=0

√
n polylog n

(2jk)1/2−1/d


 = O

(√
n polylog n

k1/2−1/d

)
.

189

For the d = 2 case, the best upper bound we can show is
√
n2O(

√
logn). This

is obtained by simply modifying AR to have a deeper recursion tree. Instead of taking

nR = n
1/µ
R−1 for some µ, we take nR = 2

√
lognnR−1 = 2R

√
logn, so that the total number of

levels is
⌈√

log n
⌉
. Lemma 125 goes through without modification, while the recurrence for

the running time becomes

TA (R) ≤
√
nR/nR−1 (`R + TA (R− 1))

≤
√
nR/nR−1`R +

√
nR/nR−2`R−1 + · · · +

√
nR/n0`1

= O
(
2
√

logn(R/2)
√

lnn+ · · · + 2
√

logn(R/2)
√

lnn
)

=
√
n2O(

√
logn).

Also, since the success probability decreases by at most a constant factor at each level, we

have that PA (R) = 2−O(
√

logn), and hence 2O(
√

logn) amplification steps suffice to boost
the success probability to Ω (1). Handling multiple marked items adds an additional factor

of log n, which is absorbed into 2O(
√

logn). This completes Theorem 124.

14.7.1 Bits Scattered on a Graph

In Section 14.3, we discussed several ways to pack a given amount of entropy into a spatial
region of given dimensions. However, we said nothing about how the entropy is distributed
within the region. It might be uniform, or concentrated on the boundary, or distributed in
some other way. So we need to answer the following: suppose that in some graph, h out
of the n vertices might be marked, and we know which h those are. Then how much time
is needed to determine whether any of the h is marked? If the graph is the hypercube Ld
for d ≥ 2 or is d-dimensional for d > 2, then the results of the previous sections imply that
O (

√
n polylog n) steps suffice. However, we wish to use fewer steps, taking advantage of

the fact that h might be much smaller than n. Formally, suppose we are given a graph
G with n vertices, of which h are potentially marked. Let OR(h,≥k) be the problem of
deciding whether G has no marked vertices or at least k of them, given that one of these is
the case.

Proposition 129 For all integer constants d ≥ 2, there exists a d-dimensional graph G
such that

Q
(
OR(h,≥k), G

)
= Ω

(
n1/d

(
h

k

)1/2−1/d
)
.

Proof. Let G be the d-dimensional hypercube Ld (n). Create h/k subcubes
of potentially marked vertices, each having k vertices and side length k1/d. Space these

subcubes out in Ld (n) so that the distance between any pair of them is Ω
(
(nk/h)1/d

)
.

Then choose a subcube C uniformly at random and mark all k vertices in C. This enables

us to consider each subcube as a single vertex, having distance Ω
(
(nk/h)1/d

)
to every other

vertex. The lower bound now follows by a hybrid argument essentially identical to that of
Theorem 120.

190

In particular, if d = 2 then Ω (
√
n) time is always needed, since the potentially

marked vertices might all be far from the start vertex. The lower bound of Proposition
129 can be achieved up to a polylogarithmic factor.

Proposition 130 If G is d-dimensional for a constant d > 2, then

Q
(
OR(h,≥k), G

)
= O

(
n1/d

(
h

k

)1/2−1/d

polylog
h

k

)
.

Proof. Assume without loss of generality that k = o (h), since otherwise a marked
item is trivially found. Use algorithm B from Corollary 128, with the following simple
change. In iteration j, choose

⌈
h/
(
2jk
)⌉

potentially marked vertices w1, . . . , wdh/(2jk)e uni-
formly at random, and then run the algorithm for a unique marked vertex as if w1, . . . , wdh/(2jk)e
were the only vertices in the graph. That is, take w1, . . . , wdh/(2jk)e as 0-pegs; then for all

R ≥ 1, choose
⌈
h/
(
2jknR

)⌉
vertices of G uniformly at random as R-pegs. Lemma 125

goes through if we use ̂̀(j)R :=
(

2
κ
n
h2jknR ln h

k

)1/d
instead of `R. So following Corollary 128,

the running time of iteration j is now

O

(√
nR

(n
h

2jk
)1/d

polylog
h

k

)
= O

(
n1/d

(
h

2jk

)1/2−1/d

polylog
h

k

)

if nR = Θ
(
h/
(
2jk
))

. Therefore the total running time is

O




log2(h/k)∑

j=0

n1/d

(
h

2jk

)1/2−1/d

polylog
h

k


 = O

(
n1/d

(
h

k

)1/2−1/d

polylog
h

k

)
.

Intuitively, Proposition 130 says that the worst case for search occurs when the h
potential marked vertices are scattered evenly throughout the graph.

14.8 Application to Disjointness

In this section we show how our results can be used to strengthen a seemingly unrelated
result in quantum computing. Suppose Alice has a string X = x1 . . . xn ∈ {0, 1}n, and
Bob has a string Y = y1 . . . yn ∈ {0, 1}n. In the disjointness problem, Alice and Bob
must decide with high probability whether there exists an i such that xi = yi = 1, using
as few bits of communication as possible. Buhrman, Cleve, and Wigderson [76] observed
that in the quantum setting, Alice and Bob can solve this problem using only O (

√
n log n)

qubits of communication. This was subsequently improved by Høyer and de Wolf [148] to
O
(√
nclog

∗ n
)
, where c is a constant and log∗ n is the iterated logarithm function. Using

the search algorithm of Theorem 110, we can improve this to O (
√
n), which matches the

celebrated Ω (
√
n) lower bound of Razborov [201].

Theorem 131 The bounded-error quantum communication complexity of the disjointness
problem is O (

√
n).

191

A BA B

Figure 14.3: Alice and Bob ‘synchronize’ locations on their respective cubes.

Proof. The protocol is as follows. Alice and Bob both store their inputs in
a 3-D cube L3 (n) (Figure 14.3); that is, they let xjkl = xi and yjkl = yi, where i =
n2/3j+n1/3k+ l+1 and j, k, l ∈

{
0, . . . , n1/3 − 1

}
. Throughout, they maintain a joint state

of the form ∑
αj,k,l,zA,zB,c |vjkl, zA〉 ⊗ |c〉 ⊗ |vjkl, zB〉 , (14.1)

where c is used for communication between the players, and zA and zB store the answers to
queries. Thus, whenever Alice is at location (j, k, l) of her cube, Bob is at location (j, k, l)
of his cube. To decide whether there exists a (j, k, l) with xjkl = yjkl = 1, Alice simply runs
our search algorithm for an unknown number of marked items, but with two changes. First,
after each query, Alice inverts her phase if and only if xjkl = yjkl = 1; this requires 2 qubits
of communication from Bob, to send yjkl to Alice and then to erase it. Second, before
each movement step, Alice tells Bob in which of the six possible directions she is going to
move. That way, Bob can synchronize his location with Alice’s, and thereby maintain the
state in the form (14.1). This requires 6 qubits of communication from Alice, to send the
direction to Bob and then to erase it. Notice that no further communication is necessary,
since there are no auxiliary registers in our algorithm that need to be communicated. Since
the algorithm uses O (

√
n) steps, the number of qubits communicated in the disjointness

protocol is therefore also O (
√
n).

14.9 Open Problems

As discussed in Section 14.4.1, a salient open problem raised by this work is to prove
relationships among Z-local, C-local, and H-local unitary matrices. In particular, can any
Z-local or H-local unitary be approximated by a product of a small number of C-local
unitaries? Also, is it true that Q (f,G) = Θ

(
QZ (f,G)

)
= Θ

(
QH (f,G)

)
for all f,G?

A second problem is to obtain interesting lower bounds in our model. For example,
let G be a

√
n × √

n grid, and suppose f (X) = 1 if and only if every row of G contains a
vertex vi with xi = 1. Clearly Q (f,G) = O

(
n3/4

)
, and we conjecture that this is optimal.

However, we were unable to show any lower bound better than Ω (
√
n).

Finally, what is the complexity of finding a unique marked vertex on a 2-D square
grid? As mentioned in Section 14.2, Ambainis, Kempe, and Rivosh [31] showed that

Q
(
OR(1),L2

)
= O (

√
n log n). Can the remaining factor of log n be removed?

192

Chapter 15

Quantum Computing and
Postselection

“Gill, in his seminal paper on probabilistic complexity classes, defined the class
PP and asked whether the class was closed under intersection. In 1990, Fenner
and Kurtz and later myself, decided to try a new approach to the question:
Consider a class defined like PP but with additional restrictions, show that this
class is closed under intersection and then show the class was really the same as
PP.”

—Lance Fortnow, My Computational Complexity Web Log [115]

(the approach didn’t succeed, though as this chapter will show, all it was missing
was quantum mechanics)

Postselection is the power of discarding all runs of a computation in which a given
event does not occur. Clearly, such an ability would let us solve NP-complete problems in
polynomial time, since we could guess a random solution, and then postselect on its being
correct. But would postselection let us do more than NP? Using a classical computer, the
class of problems we could efficiently solve coincides with a class called BPPpath, which was
defined by Han, Hemaspaandra, and Thierauf [144] and which sits somewhere between MA

and PP.
This chapter studies the power of postselection when combined with quantum

computing. In Section 15.1, I define a new complexity class called PostBQP, which is
similar to BQP except that we can measure a qubit that has some nonzero probability of
being |1〉, and assume the outcome will be |1〉. The main result is that PostBQP equals
the classical complexity class PP.

My original motivation, which I explain in Section 15.2, was to analyze the com-
putational power of “fantasy” versions of quantum mechanics, and thereby gain insight into
why quantum mechanics is the way it is. For example, I show in Section 15.2 that if we
changed the measurement probability rule from |ψ|2 to |ψ|p for some p 6= 2, or allowed linear
but nonunitary gates, then we could simulate postselection, and hence solve PP-complete
problems in polynomial time. I was also motivated by a concept that I call anthropic com-
puting : arranging things so that you’re more likely to exist if a computer produces a desired

193

output than if it doesn’t. As a simple example, under the many-worlds interpretation of
quantum mechanics, you might kill yourself in all universes where a computer’s output is
incorrect. My result implies that, using this “technique,” the class of problems that you
could efficiently solve is exactly PP.

However, it recently dawned on me that the PostBQP = PP result is also in-
teresting for purely classical reasons. In particular, it yields an almost-trivial, quantum
computing based proof that PP is closed under intersection. This proof does not use ra-
tional approximations, threshold polynomials, or any of the other techniques pioneered by
Beigel, Reingold, and Spielman [47] in their justly-celebrated original proof. Another im-
mediate corollary of my new characterization of PP is a result originally due to Fortnow and
Reingold [117]: that PP is closed under polynomial-time truth-table reductions. Indeed, I
can show that PP is closed under BQP truth-table reductions, which is a new result as far
as I know. I conclude in Section 15.3 with some open problems.

15.1 The Class PostBQP

I hereby define a complexity class:

Definition 132 PostBQP (Postselected Bounded-Error Quantum Polynomial-Time) is the
class of languages L for which there exists a uniform family of polynomial-size quantum
circuits such that for all inputs x,

(i) At the end of the computation, the first qubit has a nonzero probability of being mea-
sured to be |1〉.

(ii) If x ∈ L, then conditioned on the first qubit being |1〉, the second qubit is |1〉 with
probability at least 2/3.

(iii) If x /∈ L, then conditioned on the first qubit being |1〉, the second qubit is |1〉 with
probability at most 1/3.

We can think of PostBQP as the “nondeterministic” version of BQP. Admittedly,
there are already three other contenders for that title: QMA, defined by Watrous [239];
QCMA, defined by Aharonov and Naveh [21]; and NQP, defined by Adleman, DeMarrais,
and Huang [16] (which turns out to equal coC=P [109]). As we will see, PostBQP contains
all of these as subclasses.

It is immediate that NP ⊆ PostBQP ⊆ PP. For the latter inclusion, we can use
the same techniques used by Adleman, DeMarrais, and Huang [16] to show that BQP ⊆ PP,
but sum only over paths where the first qubit is |1〉 at the end. This is made explicit in
Theorem 57 of Chapter 10.

How robust is PostBQP? Just as Bernstein and Vazirani [55] showed that in-
termediate measurements don’t increase the power of ordinary quantum computers, so it’s
easy to show that intermediate postselection steps don’t increase the power of PostBQP.
Whenever we want to postselect on a qubit being |1〉, we simply CNOT that qubit into a
fresh ancilla qubit that is initialized to |0〉 and that will never be written to again. Then,
at the end, we compute the AND of all the ancilla qubits, and swap the result into the

194

first qubit. It follows that we can repeat a PostBQP computation a polynomial number of
times, and thereby amplify the probability gap from (1/3, 2/3) to

(
2−p(n), 1 − 2−p(n)

)
for

any polynomial p.
A corollary of the above observations is that PostBQP has strong closure properties.

Proposition 133 PostBQP is closed under union, intersection, and complement. Indeed,
it is closed under BQP truth table reductions, meaning that PostBQP = BQPPostBQP

‖, classical, where

BQPPostBQP
‖, classical is the class of problems solvable by a BQP machine that can make a polynomial

number of nonadaptive classical queries to a PostBQP oracle.

Proof. Clearly PostBQP is closed under complement. To show closure under
intersection, let L1, L2 ∈ PostBQP. Then to decide whether x ∈ L1 ∩ L2, run amplified
computations (with error probability at most 1/6) to decide if x ∈ L1 and if x ∈ L2,
postselect on both computations succeeding, and accept if and only if both accept. It
follows that PostBQP is closed under union as well.

In general, suppose a BQPPostBQP
‖, classical machine M submits queries q1, . . . , qp(n) to the

PostBQP oracle. Then run amplified computations (with error probability at most, say,
1

10p(n)) to decide the answers to these queries, and postselect on all p (n) of them succeeding.
By the union bound, if M had error probability ε with a perfect PostBQP oracle, then its
new error probability is at most ε+1/10, which can easily be reduced through amplification.

One might wonder why Proposition 133 doesn’t go through with adaptive queries.
The reason is subtle: suppose we have two PostBQP computations, the second of which relies
on the output of the first. Then even if the first computation is amplified a polynomial
number of times, it still has an exponentially small probability of error. But since the
second computation uses postselection, any nonzero error probability could be magnified
arbitrarily, and is therefore too large.

I now prove the main result.

Theorem 134 PostBQP = PP.

Proof. We have already observed that PostBQP ⊆ PP. For the other di-
rection, let f : {0, 1}n → {0, 1} be an efficiently computable Boolean function and let
s = |{x : f (x) = 1}|. Then we need to decide in PostBQP whether s < 2n−1 or s ≥ 2n−1.
(As a technicality, we can guarantee using padding that s > 0.)

The algorithm is as follows: first prepare the state 2−n/2
∑

x∈{0,1}n |x〉 |f (x)〉.
Then following Abrams and Lloyd [15], apply Hadamard gates to all n qubits in the first
register and postselect1 on that register being |0〉⊗n, to obtain |0〉⊗n |ψ〉 where

|ψ〉 =
(2n − s) |0〉 + s |1〉√

(2n − s)2 + s2
.

1Postselection is actually overkill here, since the first register has at least 1/4 probability of being |0〉⊗n.

195

+
1

0

Figure 15.1: If s and 2n − 2s are both positive, then as we vary the ratio of β to α, we
eventually get close to |+〉 = (|0〉 + |1〉) /

√
2 (dashed lines). On the other hand, if 2n − 2s

is not positive (dotted line), then we never even get into the first quadrant.

Next, for some positive real numbers α, β to be specified later, prepare α |0〉 |ψ〉+β |1〉H |ψ〉
where

H |ψ〉 =

√
1/2 (2n) |0〉 +

√
1/2 (2n − 2s) |1〉√

(2n − s)2 + s2

is the result of applying a Hadamard gate to |ψ〉. Then postselect on the second qubit
being |1〉. This yields the reduced state

∣∣ϕβ/α
〉

=
αs |0〉 + β

√
1/2 (2n − 2s) |1〉√

α2s2 + (β2/2) (2n − 2s)2

in the first qubit.
Suppose s < 2n−1, so that s and

√
1/2 (2n − 2s) are both at least 1. Then we

claim there exists an integer i ∈ [−n, n] such that, if we set β/α = 2i, then |ϕ2i〉 is close to
the state |+〉 = (|0〉 + |1〉) /

√
2:

|〈+|ϕ2i〉| ≥ 1 +
√

2√
6

> 0.985.

For since
√

1/2 (2n − 2s) /s lies between 2−n and 2n, there must be an integer i ∈ [−n, n− 1]
such that |ϕ2i〉 and |ϕ2i+1〉 fall on opposite sides of |+〉 in the first quadrant (see Figure
15.1). So the worst case is that 〈+|ϕ2i〉 = 〈+|ϕ2i+1〉, which occurs when |ϕ2i〉 =

√
2/3 |0〉+√

1/3 |0〉 and |ϕ2i+1〉 =
√

1/3 |0〉+
√

2/3 |0〉. On the other hand, suppose s ≥ 2n−1, so that√
1/2 (2n − 2s) ≤ 0. Then |ϕ2i〉 never lies in the first or third quadrants, and therefore

|〈+|ϕ2i〉| ≤ 1/
√

2 < 0.985.

196

It follows that, by repeating the whole algorithm n (2n + 1) times (as in Proposi-
tion 133), with n invocations for each integer i ∈ [−n, n], we can learn whether s < 2n−1 or
s ≥ 2n−1 with exponentially small probability of error.

Combining Proposition 133 with Theorem 134 immediately yields that PP is closed
under intersection, as well as under BQP truth-table reductions.

15.2 Fantasy Quantum Mechanics

“It is striking that it has so far not been possible to find a logically consis-
tent theory that is close to quantum mechanics, other than quantum mechanics
itself.”

—Steven Weinberg, Dreams of a Final Theory [241]

Is quantum mechanics an island in theoryspace? By “theoryspace,” I mean the
space of logically conceivable physical theories, with two theories close to each other if they
differ in few respects. An “island” in theoryspace is then a natural and interesting theory,
whose neighbors are all somehow perverse or degenerate. The Standard Model is not an
island, because we do not know of any compelling (non-anthropic) reason why the masses
and coupling constants should have the values they do. Likewise, general relativity is
probably not an island, because of alternatives such as the Brans-Dicke theory.

To many physicists, however, quantum mechanics does seem like an island: change
any one aspect, and the whole theory becomes inconsistent or nonsensical. There are many
mathematical results supporting this opinion: for example, Gleason’s Theorem [129] and
other “derivations” of the |ψ|2 probability rule [95, 252]; arguments for why amplitudes have
to be complex numbers, rather than real numbers or quaternions [81, 145]; and “absurd”
consequences of allowing nonlinear transformations between states [15, 128, 193]. The
point of these results is to provide some sort of explanation for why quantum mechanics
has the properties it does.

In 1998, Abrams and Lloyd [15] suggested that computational complexity could
also be pressed into such an explanatory role. In particular, they showed that under
almost any nonlinear variant of quantum mechanics, one could build a “nonlinear quantum
computer” able to solve NP-complete and even #P-complete problems in polynomial time.2

One interpretation of their result is that we should look very hard for nonlinearities in
experiments! But a different interpretation, the one I prefer, is that their result provides
independent evidence that quantum mechanics is linear.3

2A caveat is that it remains an open problem whether this can be done fault-tolerantly. The answer
might depend on the allowed types of nonlinear gate. On the other hand, if arbitrary 1-qubit nonlinear
gates can be implemented without error, then even PSPACE-complete problems can be solved in polynomial
time. This is tight, since nonlinear quantum computers can also be simulated in PSPACE. I will give more
details in a forthcoming survey paper [12].

3Note that I would not advocate this interpretation if it was merely (say) graph isomorphism that
was efficiently solvable in nonlinear quantum mechanics, just as I do not take Shor’s factoring algorithm as
evidence for the falsehood of ordinary quantum mechanics. I will explain in [12] why I think this distinction,
between NP-complete problems and specific NP-intermediate problems, is a justified one.

197

In this section I build on Theorem 134 to offer similar “evidence” that quantum
mechanics is unitary, and that the measurement rule is |ψ|2.

Let BQPnu be the class of problems solvable by a uniform family of polynomial-size,
bounded-error quantum circuits, where the circuits can consist of arbitrary 1- and 2-qubit
invertible linear transformations, rather than just unitary transformations. Immediately

before a measurement, the amplitude αx of each basis state |x〉 is divided by
√∑

y |αy|2 to

normalize it.

Proposition 135 BQP
nu

= PP.

Proof. The inclusion BQPnu ⊆ PP follows easily from Adleman, DeMarrais, and
Huang’s proof that BQP ⊆ PP [16], which does not depend on unitarity. For the other
direction, by Theorem 134 it suffices to show that PostBQP ⊆ BQPnu. To postselect on a
qubit being |1〉, we simply apply the 1-qubit nonunitary operation

(
2−q(n) 0

0 1

)

for some sufficiently large polynomial q.
Next, for any nonnegative real number p, define BQPp similarly to BQP, except

that when we measure, the probability of obtaining a basis state |x〉 equals |αx|p /
∑

y |αy|p
rather than |αx|2. Thus BQP2 = BQP. Assume that all gates are unitary and that there
are no intermediate measurements, just a single standard-basis measurement at the end.

Theorem 136 PP ⊆ BQPp ⊆ PSPACE for all constants p 6= 2, with BQPp = PP when
p ∈ {4, 6, 8, . . .}.

Proof. To simulate PP in BQPp, run the algorithm of Theorem 134, having

initialized O
(

1
|p−2| poly (n)

)
ancilla qubits to |0〉. Suppose the algorithm’s state at some

point is
∑

x αx |x〉, and we want to postselect on the event |x〉 ∈ S, where S is a subset of
basis states. Here is how: if p < 2, then for some sufficiently large polynomial q, apply
Hadamard gates to c = 2q (n) / (2 − p) fresh ancilla qubits conditioned on |x〉 ∈ S. The
result is to increase the “probability mass” of each |x〉 ∈ S from |αx|p to

2c ·
∣∣∣2−c/2αx

∣∣∣
p

= 2(2−p)c/2 |αx|p = 2q(n) |αx|p ,

while the probability mass of each |x〉 /∈ S remains unchanged. Similarly, if p > 2, then
apply Hadamard gates to c = 2q (n) / (p− 2) fresh ancilla qubits conditioned on |x〉 /∈
S. This decreases the probability mass of each |x〉 /∈ S from |αx|p to 2c ·

∣∣2−c/2αx
∣∣p =

2−q(n) |αx|p, while the probability mass of each |x〉 ∈ S remains unchanged. The final
observation is that Theorem 134 still goes through if p 6= 2. For it suffices to distinguish
the case |〈+|ϕ2i〉| > 0.985 from |〈+|ϕ2i〉| ≤ 1/

√
2 with exponentially small probability of

error, using polynomially many copies of the state |ϕ2i〉. But we can do this for any p,
since all |ψ|p rules behave well under tensor products (in the sense that |αβ|p = |α|p |β|p).

198

The inclusion BQPp ⊆ PSPACE follows easily from the techniques used by Bern-
stein and Vazirani [55] to show BQP ⊆ PSPACE. Let S be the set of accepting states; then
simply compute

∑
x∈S |αx|p and

∑
x/∈S |αx|p and see which is greater.

To simulate BQPp in PP when p ∈ {4, 6, 8, . . .}, we generalize the technique of
Adleman, DeMarrais, and Huang [16], which handled the case p = 2. As in Theorem 57 in
Chapter 10, assume that all gates are Hadamard or Toffoli gates; then we can write each
amplitude αx as a sum of exponentially many contributions, ax,1 + · · · + ax,N , where each
ax,i is a rational real number computable in classical polynomial time. Then letting S be
the set of accepting states, it suffices to test whether

∑

x∈S
|αx|p =

∑

x∈S
αpx

=
∑

x∈S


 ∑

i∈{1,...,N}
ax,i



p

=
∑

x∈S

∑

B⊆{1,...,N},|B|=p

∏

i∈B
ax,i

is greater than
∑

x/∈S |αx|p, which we can do in PP.

15.3 Open Problems

The new proof that PP is closed under intersection came as a total surprise to me. But on
reflection, it goes a long way toward convincing me of a thesis expressed in Chapter 1: that
quantum computing offers a new perspective from which to revisit the central questions of
classical complexity theory. What other classical complexity classes can we characterize in
quantum terms, and what other questions can we answer by that means?

A first step might be to prove even stronger closure properties for PP. Recall
from Proposition 133 that PostBQP is closed under polynomial-time truth-table reductions.
Presumably this can’t be generalized to closure under Turing reductions, since if it could
then we would have PP = PPP, which is considered unlikely.4 But can we show closure
under nonadaptive quantum reductions? More formally, let BQPPostBQP

‖ be the class of
problems solvable by a BQP machine that can make a single quantum query, which consists
of a list of polynomially many questions for a PostBQP oracle. Then does BQPPostBQP

‖
equal PostBQP? The difficulty in showing this seems to be uncomputing garbage after the
PostBQP oracle is simulated.

As for fantasy quantum mechanics, an interesting open question is whether BQPp =
PP for all nonnegative real numbers p 6= 2. An obvious idea for simulating BQPp in PP

would be to use a Taylor series expansion for the probability masses |αx|p. Unfortunately,
I have no idea how to get fast enough convergence.

4Indeed, Beigel [46] gave an oracle relative to which PNP 6⊂ PP.

199

Chapter 16

The Power of History

Quantum mechanics lets us calculate the probability that (say) an electron will
be found in an excited state if measured at a particular time. But it is silent about
multiple-time or transition probabilities: that is, what is the probability that the electron
will be in an excited state at time t1, given that it was in its ground state at an earlier
time t0? The usual response is that this question is meaningless, unless of course the
electron was measured (or otherwise known with probability 1) to be in its ground state
at t0. A different response—pursued by Schrödinger [215], Bohm [59], Bell [49], Nelson
[183], Dieks [99], and others—treats the question as provisionally meaningful, and then
investigates how one might answer it mathematically. Specific attempts at answers are
called “hidden-variable theories.”

The appeal of hidden-variable theories is that they provide one possible solution to
the measurement problem. For they allow us to apply unitary quantum mechanics to the
entire universe (including ourselves), yet still discuss the probability of a future observation
conditioned on our current observations. Furthermore, they let us do so without making
any assumptions about decoherence or the nature of observers. For example, even if an
observer were placed in coherent superposition, that observer would still have a sequence
of definite experiences, and the probability of any such sequence could be calculated.

This chapter initiates the study of hidden variables from a quantum computing
perspective. I restrict attention to the simplest possible setting: that of discrete time,
a finite-dimensional Hilbert space, and a fixed orthogonal basis. Within this setting, I
reformulate known hidden-variable theories due to Dieks [99] and Schrödinger [215], and also
introduce a new theory based on network flows. However, a more important contribution
is the axiomatic approach that I use. I propose five axioms for hidden-variable theories,
and then compare theories against each other based on which of the axioms they satisfy. A
central question in this approach is which subsets of axioms can be satisfied simultaneously.

In a second part of the chapter, I make the connection to quantum computing
explicit, by studying the computational complexity of simulating hidden-variable theories.
Below I describe the computational results.

200

16.1 The Complexity of Sampling Histories

It is often stressed that hidden-variable theories yield exactly the same predictions as ordi-
nary quantum mechanics. On the other hand, these theories describe a different picture of
physical reality, with an additional layer of dynamics beyond that of a state vector evolving
unitarily. I address a question that, to my knowledge, had never been raised before: what
is the computational complexity of simulating that additional dynamics? In other words,
if we could examine a hidden variable’s entire history, then could we solve problems in
polynomial time that are intractable even for quantum computers?

I present strong evidence that the answer is yes. The Graph Isomorphism problem
asks whether two graphs G and H are isomorphic; while given a basis for a lattice L ∈ Rn,
the Approximate Shortest Vector problem asks for a nonzero vector in L within a

√
n

factor of the shortest one. I show that both problems are efficiently solvable by sampling a
hidden variable’s history, provided the hidden-variable theory satisfies a reasonable axiom.
By contrast, despite a decade of effort, neither problem is known to lie in BQP. Thus,
if we let DQP (Dynamical Quantum Polynomial-Time) be the class of problems solvable
in the new model, then this already provides circumstantial evidence that BQP is strictly
contained in DQP.

However, the evidence is stronger than this. For I actually show that DQP contains
the entire class Statistical Zero Knowledge, or SZK. Furthermore, Chapter 6 showed that
relative to an oracle, SZK is not contained in BQP. Combining the result that SZK ⊆ DQP

with the oracle separation of Chapter 6, one obtains that BQP 6= DQP relative to an oracle
as well.

Besides solving SZK problems, I also show that by sampling histories, one could
search an unordered database of N items for a single “marked item” using only O

(
N1/3

)

database queries. By comparison, Grover’s quantum search algorithm [141] requires Θ
(
N1/2

)

queries, while classical algorithms require Θ (N) queries. On the other hand, I also show
that the N1/3 upper bound is the best possible—so even in the histories model, one cannot
search an N -item database in (logN)c steps for some fixed power c. This implies that
NP 6⊂ DQP relative to an oracle, which in turn suggests that DQP is still not powerful
enough to solve NP-complete problems in polynomial time.

At this point I should address a concern that many readers will have. Once we
extend quantum mechanics by positing the “unphysical” ability to sample histories, isn’t it
completely unsurprising if we can then solve problems that were previously intractable? I
believe the answer is no, for three reasons.

First, almost every change that makes the quantum computing model more pow-
erful, seems to make it so much more powerful that NP-complete and even harder problems
become solvable efficiently. To give some examples, NP-complete problems can be solved
in polynomial time using a nonlinear Schrödinger equation, as shown by Abrams and Lloyd
[15]; using closed timelike curves, as shown by Brun [72] and Bacon [40] (and conjectured
by Deutsch [93]); or using a measurement rule of the form |ψ|p for any p 6= 2, as shown in
Chapter 15. It is also easy to see that we could solve NP-complete problems if, given a
quantum state |ψ〉, we could request a classical description of |ψ〉, such as a list of ampli-

201

tudes or a preparation procedure.1 By contrast, the DQP model is the first independently
motivated model I know of that seems more powerful than quantum computing, but only
slightly so.2 Moreover, the striking fact that unordered search takes about N1/3 steps in
the DQP model, as compared to N steps classically and N1/2 quantum-mechanically, sug-
gests that DQP somehow “continues a sequence” that begins with P and BQP. It would
be interesting to find a model in which search takes N1/4 or N1/5 steps.

The second reason the results are surprising is that, given a hidden variable, the
distribution over its possible values at any single time is governed by standard quantum
mechanics, and is therefore efficiently samplable on a quantum computer. So if examining
the variable’s history confers any extra computational power, then it can only be because
of correlations between the variable’s values at different times.

The third reason is the criterion for success. I am not saying merely that one
can solve Graph Isomorphism under some hidden-variable theory; or even that, under any
theory satisfying the indifference axiom, there exists an algorithm to solve it; but rather that
there exists a single algorithm that solves Graph Isomorphism under any theory satisfying
indifference. Thus, we must consider even theories that are specifically designed to thwart
such an algorithm.

But what is the motivation for these results? The first motivation is that, within
the community of physicists who study hidden-variable theories such as Bohmian mechan-
ics, there is great interest in actually calculating the hidden-variable trajectories for specific
physical systems [192, 142]. My results show that, when many interacting particles are
involved, this task might be fundamentally intractable, even if a quantum computer were
available. The second motivation is that, in classical computer science, studying “unreal-
istic” models of computation has often led to new insights into realistic ones; and likewise I
expect that the DQP model could lead to new results about standard quantum computation.
Indeed, in a sense this has already happened—for the collision lower bound of Chapter 6
grew out of work on the BQP versus DQP question.

16.2 Outline of Chapter

Sections 16.3 through 16.6 develop the axiomatic approach to hidden variables; then Sec-
tions 16.7 through 16.10 study the computational complexity of sampling hidden-variable
histories.

Section 16.3 formally defines hidden-variable theories in my sense; then Section
16.3.1 contrasts these theories with related ideas such as Bohmian mechanics and modal
interpretations. Section 16.3.2 addresses the most common objections to my approach: for
example, that the implicit dependence on a fixed basis is unacceptable.

In Section 16.4, I introduce five possible axioms for hidden-variable theories. These
are indifference to the identity operation; robustness to small perturbations; commutativity

1For as Abrams and Lloyd [15] observed, we can so arrange things that |ψ〉 = |0〉 if an NP-complete
instance of interest to us has no solution, but |ψ〉 =

√
1 − ε |0〉 +

√
ε |1〉 for some tiny ε if it has a solution.

2One can define other, less motivated, models with the same property by allowing “non-collapsing mea-
surements” of quantum states, but these models are very closely related to DQP. Indeed, a key ingredient
in the results of this chapter will be to show that certain kinds of non-collapsing measurements can be
simulated using histories.

202

with respect to spacelike-separated unitaries; commutativity for the special case of product
states; and invariance under decomposition of mixed states into pure states. Ideally, a
theory would satisfy all of these axioms. However, I show in Section 16.5 that no theory
satisfies both indifference and commutativity; no theory satisfies both indifference and a
stronger version of robustness; no theory satisfies indifference, robustness, and decomposi-
tion invariance; and no theory satisfies a stronger version of decomposition invariance.

In Section 16.6 I shift from negative to positive results. Section 16.6.1 presents a
hidden-variable theory called the flow theory or FT , which is based on the Max-Flow-Min-
Cut theorem from combinatorial optimization. The idea is to define a network of “pipes”
from basis states at an initial time to basis states at a final time, and then route as much
probability mass as possible through these pipes. The capacity of each pipe depends on
the corresponding entry of the unitary acting from the initial to final time. To find the
probability of transitioning from basis state |i〉 to basis state |j〉, we then determine how
much of the flow originating at |i〉 is routed along the pipe to |j〉. The main results are
that FT is well-defined and that it is robust to small perturbations. Since FT trivially
satisfies the indifference axiom, this implies that the indifference and robustness axioms can
be satisfied simultaneously, which was not at all obvious a priori.

Section 16.6.2 presents a second theory that I call the Schrödinger theory or ST ,
since it is based on a pair of integral equations introduced in a 1931 paper of Schrödinger
[215]. Schrödinger conjectured, but was unable to prove, the existence and uniqueness of a
solution to these equations; the problem was not settled until the work of Nagasawa [181]
in the 1980’s. In the discrete setting the problem is simpler, and I give a self-contained
proof of existence using a matrix scaling technique due to Sinkhorn [223]. The idea is as
follows: we want to convert a unitary matrix that maps one quantum state to another, into
a nonnegative matrix whose ith column sums to the initial probability of basis state |i〉, and
whose jth row sums to the final probability of basis state |j〉. To do so, we first replace each
entry of the unitary matrix by its absolute value, then normalize each column to sum to the
desired initial probability, then normalize each row to sum to the desired final probability.
But then the columns are no longer normalized correctly, so we normalize them again, then
normalize the rows again, and so on. I show that this iterative process converges, from
which it follows that ST is well-defined. I also observe that ST satisfies the indifference
and product commutativity axioms, and violates the decomposition invariance axiom. I
conjecture that ST satisfies the robustness axiom; proving that conjecture is one of the
main open problems of the chapter.

In Section 16.7 I shift attention to the complexity of sampling histories. I formally
define DQP as the class of problems solvable by a classical polynomial-time algorithm with
access to a “history oracle.” Given a sequence of quantum circuits as input, this oracle
returns a sample from a corresponding distribution over histories of a hidden variable,
according to some hidden-variable theory T . The oracle can choose T “adversarially,”
subject to the constraint that T satisfies the indifference and robustness axioms. Thus,
a key result from Section 16.7 that I rely on is that there exists a hidden-variable theory
satisfying indifference and robustness.

Section 16.7.1 establishes the most basic facts about DQP: for example, that
BQP ⊆ DQP, and that DQP is independent of the choice of gate set. Then Section 16.8

203

presents the “juggle subroutine,” a crucial ingredient in both of the main hidden-variable
algorithms. Given a state of the form (|a〉 + |b〉) /

√
2 or (|a〉 − |b〉) /

√
2, the goal of this

subroutine is to “juggle” a hidden variable between |a〉 and |b〉, so that when we inspect the
hidden variable’s history, both |a〉 and |b〉 are observed with high probability. The difficulty
is that this needs to work under any indifferent hidden-variable theory.

Next, Section 16.9 combines the juggle subroutine with a technique of Valiant and
Vazirani [233] to prove that SZK ⊆ DQP, from which it follows in particular that Graph
Isomorphism and Approximate Shortest Vector are in DQP. Then Section 16.10 applies
the juggle subroutine to search an N -item database in O

(
N1/3

)
queries, and also proves

that this N1/3 bound is optimal.
I conclude in Section 16.11 with some directions for further research.

16.3 Hidden-Variable Theories

Suppose we have an N ×N unitary matrix U , acting on a state

|ψ〉 = α1 |1〉 + · · · + αN |N〉 ,

where |1〉 , . . . , |N〉 is a standard orthogonal basis. Let

U |ψ〉 = β1 |1〉 + · · · + βN |N〉 .

Then can we construct a stochastic matrix S, which maps the vector of probabilities

−→p =




|α1|2
...

|αN |2




induced by measuring |ψ〉, to the vector

−→q =




|β1|2
...

|βN |2




induced by measuring U |ψ〉? Trivially yes. The following matrix maps any vector of
probabilities to −→q , ignoring the input vector −→p entirely:

SPT =




|β1|2 · · · |β1|2
...

...

|βN |2 · · · |βN |2


 .

Here PT stands for product theory. The product theory corresponds to a strange picture
of physical reality, in which memories and records are completely unreliable, there being no
causal connection between states of affairs at earlier and later times.

So we would like S to depend on U itself somehow, not just on |ψ〉 and U |ψ〉.
Indeed, ideally S would be a function only of U , and not of |ψ〉. But this is impossible, as

204

the following example shows. Let U be a π/4 rotation, and let |+〉 = (|0〉 + |1〉) /
√

2 and
|−〉 = (|0〉 − |1〉) /

√
2. Then U |+〉 = |1〉 implies that

S (|+〉 , U) =

[
0 0
1 1

]
,

whereas U |−〉 = |0〉 implies that

S (|−〉 , U) =

[
1 1
0 0

]
.

On the other hand, it is easy to see that, if S can depend on |ψ〉 as well as U ,
then there are infinitely many choices for the function S (|ψ〉 , U). Every choice reproduces
the predictions of quantum mechanics perfectly when restricted to single-time probabilities.
So how can we possibly choose among them? My approach in Sections 16.4 and 16.6 will
be to write down axioms that we would like S to satisfy, and then investigate which of the
axioms can be satisfied simultaneously.

Formally, a hidden-variable theory is a family of functions {SN}N≥1, where each
SN maps an N -dimensional mixed state ρ and an N ×N unitary matrix U onto a singly
stochastic matrix SN (ρ, U). I will often suppress the dependence on N , ρ, and U , and
occasionally use subscripts such as PT or FT to indicate the theory in question. Also, if
ρ = |ψ〉 〈ψ| is a pure state I may write S (|ψ〉 , U) instead of S (|ψ〉 〈ψ| , U).

Let (M)ij denote the entry in the ith column and jth row of matrix M . Then (S)ij
is the probability that the hidden variable takes value |j〉 after U is applied, conditioned
on it taking value |i〉 before U is applied. At a minimum, any theory must satisfy the
following marginalization axiom: for all j ∈ {1, . . . , N},

∑

i

(S)ij (ρ)ii =
(
UρU−1

)
jj

.

This says that after U is applied, the hidden variable takes value |j〉 with probability(
UρU−1

)
jj

, which is the usual Born probability.

Often it will be convenient to refer, not to S itself, but to the matrix P (ρ, U) of
joint probabilities whose (i, j) entry is (P)ij = (S)ij (ρ)ii. The ith column of P must sum

to (ρ)ii, and the jth row must sum to
(
UρU−1

)
jj

. Indeed, I will define the theories FT and

ST by first specifying the matrix P , and then setting (S)ij := (P)ij / (ρ)ii. This approach

has the drawback that if (ρ)ii = 0, then the ith column of S is undefined. To get around
this, I adopt the convention that

S (ρ, U) := lim
ε→0+

S (ρε, U)

where ρε = (1 − ε) ρ + εI and I is the N × N maximally mixed state. Technically, the
limits

lim
ε→0+

(P (ρε, U))ij
(ρε)ii

might not exist, but in the cases of interest it will be obvious that they do.

205

16.3.1 Comparison with Previous Work

Before going further, I should contrast my approach with previous approaches to hidden
variables, the most famous of which is Bohmian mechanics [59]. My main difficulty with
Bohmian mechanics is that it commits itself to a Hilbert space of particle positions and
momenta. Furthermore, it is crucial that the positions and momenta be continuous, in
order for particles to evolve deterministically. To see this, let |L〉 and |R〉 be discrete
positions, and suppose a particle is in state |L〉 at time t0, and state (|L〉 + |R〉) /

√
2 at

a later time t1. Then a hidden variable representing the position would have entropy 0
at t1, since it is always |L〉 then; but entropy 1 at t1, since it is |L〉 or |R〉 both with
1/2 probability. Therefore the earlier value cannot determine the later one.3 It follows
that Bohmian mechanics is incompatible with the belief that all physical observables are
discrete. But in my view, there are strong reasons to hold that belief, which include black
hole entropy bounds; the existence of a natural minimum length scale (10−33 cm); results
on area quantization in quantum gravity [207]; the fact that many physical quantities once
thought to be continuous have turned out to be discrete; the infinities of quantum field
theory; the implausibility of analog “hypercomputers”; and conceptual problems raised by
the independence of the continuum hypothesis.

Of course there exist stochastic analogues of Bohmian mechanics, among them
Nelsonian mechanics [183] and Bohm and Hiley’s “stochastic interpretation” [60]. But it is
not obvious why we should prefer these to other stochastic hidden-variable theories. From
a quantum-information perspective, it is much more natural to take an abstract approach—
one that allows arbitrary finite-dimensional Hilbert spaces, and that does not rule out any
transition rule a priori.

Stochastic hidden variables have also been considered in the context of modal
interpretations; see Dickson [98], Bacciagaluppi and Dickson [39], and Dieks [99] for example.
However, the central assumptions in that work are extremely different from mine. In
modal interpretations, a pure state evolving unitarily poses no problems at all: one simply
rotates the hidden-variable basis along with the state, so that the state always represents
a “possessed property” of the system in the current basis. Difficulties arise only for mixed
states; and there, the goal is to track a whole set of possessed properties. By contrast, my
approach is to fix an orthogonal basis, then track a single hidden variable that is an element
of that basis. The issues raised by pure states and mixed states are essentially the same.

Finally I should mention the consistent-histories interpretation of Griffiths [139]
and Gell-Mann and Hartle [124]. This interpretation assigns probabilities to various his-
tories through a quantum system, so long as the “interference” between those histories is
negligible. Loosely speaking, then, the situations where consistent histories make sense are
precisely the ones where the question of transition probabilities can be avoided.

3Put differently, Bohm’s conservation of probability result breaks down because the “wavefunctions” at
t0 and t1 are degenerate, with all amplitude concentrated on finitely many points. But in a discrete Hilbert
space, every wavefunction is degenerate in this sense!

206

16.3.2 Objections

Hidden-variable theories, as I define them, are open to several technical objections. For
example, I required transition probabilities for only one orthogonal observable. What
about other observables? The problem is that, according to the Kochen-Specker theorem,
we cannot assign consistent values to all observables at any single time, let alone give
transition probabilities for those values. This is an issue in any setting, not just mine. The
solution I prefer is to postulate a fixed orthogonal basis of “distinguishable experiences,”
and to interpret a measurement in any other basis as a unitary followed by a measurement
in the fixed basis. As mentioned in Section 16.3.1, modal interpretations opt for a different
solution, which involves sets of bases that change over time with the state itself.

Another objection is that the probability of transitioning from basis state |i〉 at
time t1 to basis state |j〉 at time t2 might depend on how finely we divide the time interval
between t1 and t2. In other words, for some state |ψ〉 and unitaries V,W , we might have

S (|ψ〉 ,WV) 6= S (V |ψ〉 ,W)S (|ψ〉 , V)

(a similar point was made by Gillespie [127]). Indeed, this is true for any hidden-variable
theory other than the product theory PT . To see this, observe that for all unitaries U and
states |ψ〉, there exist unitaries V,W such that U = WV and V |ψ〉 = |1〉. Then applying
V destroys all information in the hidden variable (that is, decreases its entropy to 0); so
if we then apply W , then the variable’s final value must be uncorrelated with the initial
value. In other words, S (V |ψ〉 ,W)S (|ψ〉 , V) must equal SPT (|ψ〉 , U). It follows that to
any hidden-variable theory we must associate a time scale, or some other rule for deciding
when the transitions take place.

In response, it should be noted that exactly the same problem arises in continuous-
time stochastic hidden-variable theories. For if a state |ψ〉 is governed by the Schrödinger
equation d |ψ〉 /dt = iHt |ψ〉, and a hidden variable’s probability distribution −→p is governed
by the stochastic equation d−→p /dτ = Aτ

−→p , then there is still an arbitrary parameter dτ/dt
on which the dynamics depend.

Finally, it will be objected that I have ignored special relativity. In Section 16.4
I will define a commutativity axiom, which informally requires that the stochastic matrix
S not depend on the temporal order of spacelike separated events. Unfortunately, we will
see that when entangled states are involved, commutativity is irreconcilable with another
axiom that seems even more basic. The resulting nonlocality has the same character as the
nonlocality of Bohmian mechanics—that is, one cannot use it to send superluminal signals
in the usual sense, but it is unsettling nonetheless.

16.4 Axioms for Hidden-Variable Theories

I now state five axioms that we might like hidden-variable theories to satisfy.
Indifference. The indifference axiom says that if U is block-diagonal, then S

should also be block-diagonal with the same block structure or some refinement thereof.
Formally, let a block be a subset B ⊆ {1, . . . , N} such that (U)ij = 0 for all i ∈ B, j /∈ B
and i /∈ B, j ∈ B. Then for all blocks B, we should have (S)ij = 0 for all i ∈ B, j /∈ B and

207

i /∈ B, j ∈ B. In particular, indifference implies that given any state ρ in a tensor product
space HA⊗HB , and any unitary U that acts only on HA (that is, never maps a basis state
|iA〉⊗ |iB〉 to |jA〉⊗ |jB〉 where iB 6= jB), the stochastic matrix S (ρ, U) acts only on HA as
well.

Robustness. A theory is robust if it is insensitive to small errors in a state or
unitary (which, in particular, implies continuity). Suppose we obtain ρ̃ and Ũ by perturbing
ρ and U respectively. Then for all polynomials p, there should exist a polynomial q such
that for all N , ∥∥∥P

(
ρ̃, Ũ

)
− P (ρ, U)

∥∥∥
∞

≤ 1

p (N)

where ‖M‖∞ = maxij

∣∣∣(M)ij

∣∣∣, whenever ‖ρ̃− ρ‖∞ ≤ 1/q (N) and
∥∥∥Ũ − U

∥∥∥
∞

≤ 1/q (N).

Robustness has an important advantage for quantum computing: if a hidden-variable theory
is robust then the set of gates used to define the unitaries U1, . . . , UT is irrelevant, since by
the Solovay-Kitaev Theorem (see [155, 184]), any universal quantum gate set can simulate
any other to a precision ε with O (logc 1/ε) overhead.

Commutativity. Let ρAB be a bipartite state, and let UA and UB act only on
subsystems A and B respectively. Then commutativity means that the order in which UA
and UB are applied is irrelevant:

S
(
UAρABU

−1
A , UB

)
S (ρAB , UA) = S

(
UBρABU

−1
B , UA

)
S (ρAB, UB) .

Product Commutativity. A theory is product commutative if it satisfies com-
mutativity for all separable pure states |ψ〉 = |ψA〉 ⊗ |ψB〉.

Decomposition Invariance. A theory is decomposition invariant if

S (ρ, U) =

N∑

i=1

piS (|ψi〉 〈ψi| , U)

for every decomposition

ρ =
N∑

i=1

pi |ψi〉 〈ψi|

of ρ into pure states. Theorem 138, part (ii) will show that the analogous axiom for P (ρ, U)
is unsatisfiable.

16.4.1 Comparing Theories

To fix ideas, let us compare some hidden-variable theories with respect to the above axioms.
We have already seen the product theory PT in Section 16.3. It is easy to show that PT
satisfies robustness, commutativity, and decomposition invariance. However, I consider
PT unsatisfactory because it violates indifference: even if a unitary U acts only on the first
of two qubits, SPT (ρ, U) will readily produce transitions involving the second qubit.

Recognizing this problem, Dieks [99] proposed an alternative theory that amounts
to the following.4 First partition the set of basis states into minimal blocks B1, . . . , Bm

4Dieks (personal communication) says he would no longer defend this theory.

208

PT (Product) DT (Dieks) FT (Flow) ST (Schrödinger)
Indifference No Yes Yes Yes
Robustness Yes No Yes ?
Commutativity Yes No No No
Product Commutativity Yes Yes No Yes
Decomposition Invariance Yes Yes No No

Table 16.1: Four hidden-variable theories and the axioms they satisfy

between which U never sends amplitude. Then apply the product theory separately to
each block; that is, if i and j belong to the same block Bk then set

(S)ij =

(
UρU−1

)
jj∑

ĵ∈Bk
(UρU−1)ĵĵ

,

and otherwise set (S)ij = 0. The resulting Dieks theory, DT , satisfies indifference by
construction. However, it does not satisfy robustness (or even continuity), since the set of
blocks can change if we replace ‘0’ entries in U by arbitrarily small nonzero entries.

In Section 16.6 I will introduce two other hidden-variable theories, the flow theory
FT and the Schrödinger theory ST . Table 16.1 lists which axioms the four theories satisfy.

If we could prove that ST satisfies robustness, then Table 1 together with the
impossibility results of Section 16.5 would completely characterize which of the axioms can
be satisfied simultaneously.

16.5 Impossibility Results

This section shows that certain sets of axioms cannot be satisfied by any hidden-variable
theory. I first show that the failure of DT , FT , and ST to satisfy commutativity is
inherent, and not a fixable technical problem.

Theorem 137 No hidden-variable theory satisfies both indifference and commutativity.

Proof. Assume indifference holds, and let our initial state be |ψ〉 = |00〉+|11〉√
2

.

Suppose UA applies a π/8 rotation to the first qubit, and UB applies a −π/8 rotation to
the second qubit. Then

UA |ψ〉 = UB |ψ〉 =
1√
2

(
cos

π

8
|00〉 − sin

π

8
|01〉 + sin

π

8
|10〉 + cos

π

8
|11〉

)
,

UAUB |ψ〉 = UBUA |ψ〉 =
1

2
(|00〉 − |01〉 + |10〉 + |11〉) .

Let vt be the value of the hidden variable after t unitaries have been applied. Let E be the
event that v0 = |00〉 initially, and v2 = |10〉 at the end. If UA is applied before UB , then
the unique ‘path’ from v0 to v2 consistent with indifference sets v1 = |10〉. So

Pr [E] ≤ Pr [v1 = |10〉] =
1

2
sin2 π

8
.

209

But if UB is applied before UA, then the probability that v0 = |11〉 and v2 = |10〉 is at most
1
2 sin2 π

8 , by the same reasoning. Thus, since v2 must equal |10〉 with probability 1/4, and
since the only possibilities for v0 are |00〉 and |11〉,

Pr [E] ≥ 1

4
− 1

2
sin2 π

8
>

1

2
sin2 π

8
.

We conclude that commutativity is violated.
Let me remark on the relationship between Theorem 137 and Bell’s Theorem.

Any hidden-variable theory that is “local” in Bell’s sense would immediately satisfy both
indifference and commutativity. However, the converse is not obvious, since there might
be nonlocal information in the states UA |ψ〉 or UB |ψ〉, which an indifferent commutative
theory could exploit but a local one could not. Theorem 137 rules out this possibility, and
in that sense is a strengthening of Bell’s Theorem.

The next result places limits on decomposition invariance.

Theorem 138

(i) No theory satisfies indifference, robustness, and decomposition invariance.

(ii) No theory has the property that

P (ρ, U) =
N∑

i=1

piP (|ψi〉 〈ψi| , U)

for every decomposition
∑N

i=1 pi |ψi〉 〈ψi| of ρ.

Proof.

(i) Suppose the contrary. Let

Rθ =

[
cos θ − sin θ
sin θ cos θ

]
,

|ϕθ〉 = cos θ |0〉 + sin θ |1〉 .

Then for every θ not a multiple of π/2, we must have

S (|ϕ−θ〉 , Rθ) =

[
1 1
0 0

]
,

S
(∣∣ϕπ/2−θ

〉
, Rθ

)
=

[
0 0
1 1

]
.

So by decomposition invariance, letting I = (|0〉 〈0| + |1〉 〈1|) /2 denote the maximally
mixed state,

S (I,Rθ) = S

(
|ϕ−θ〉 〈ϕ−θ| +

∣∣ϕπ/2−θ
〉 〈
ϕπ/2−θ

∣∣
2

, Rθ

)
=

[
1
2

1
2

1
2

1
2

]

210

and therefore

P (I,Rθ) =

[
(ρ)00

2
(ρ)11

2
(ρ)00

2
(ρ)11

2

]
=

[
1
4

1
4

1
4

1
4

]
.

By robustness, this holds for θ = 0 as well. But this is a contradiction, since by
indifference P (I,R0) must be half the identity.

(ii) Suppose the contrary; then

P
(
I,Rπ/8

)
=
P
(
|0〉 , Rπ/8

)
+ P

(
|1〉 , Rπ/8

)

2
.

So considering transitions from |0〉 to |1〉,

(
P
(
I,Rπ/8

))
01

=

(
P
(
|0〉 , Rπ/8

))
11

+ 0

2
=

1

2
sin2 π

8
.

But

P
(
I,Rπ/8

)
=
P
(∣∣ϕπ/8

〉
, Rπ/8

)
+ P

(∣∣ϕ5π/8

〉
, Rπ/8

)

2

also. Since Rπ/8
∣∣ϕπ/8

〉
=
∣∣ϕπ/4

〉
, we have

(
P
(
I,Rπ/8

))
01

≥ 1

2

(
P
(∣∣ϕπ/8

〉
, Rπ/8

))
01

≥ 1

2

(
1

2
−
(
P
(∣∣ϕπ/8

〉
, Rπ/8

))
11

)

≥ 1

2

(
1

2
− sin2 π

8

)

>
1

2
sin2 π

8

which is a contradiction.

Notice that all three conditions in Theorem 138, part (i) were essential—for PT
satisfies robustness and decomposition invariance, DT satisfies indifference and decomposi-
tion invariance, and FT satisfies indifference and robustness.

The last impossibility result says that no hidden-variable theory satisfies both
indifference and “strong continuity,” in the sense that for all ε > 0 there exists δ > 0 such
that ‖ρ̃− ρ‖ ≤ δ implies ‖S (ρ̃, U) − S (ρ, U)‖ ≤ ε. To see this, let

U =




1 0 0
0 1√

2
− 1√

2

0 1√
2

1√
2


 ,

ρ =
√

1 − 2δ2 |0〉 + δ |1〉 + δ |2〉 ,
ρ̃ =

√
1 − 2δ2 |0〉 + δ |1〉 − δ |2〉 .

211

2

1α

2

Nα2

Nβ

2

1β
�

�

st

1

N

ij

1

N

()11
U

()NN
U

�

�

Figure 16.1: A network (weighted directed graph with source and sink) corresponding to
the unitary U and state |ψ〉

Then by indifference,

S (ρ, U) =




1 0 0
0 0 0
0 1 1


 , S (ρ̃, U) =




1 0 0
0 1 1
0 0 0


 .

This is the reason why I defined robustness in terms of the joint probabilities matrix P rather
than the stochastic matrix S. On the other hand, note that by giving up indifference, one
can satisfy strong continuity, as is shown by PT .

16.6 Specific Theories

This section presents two nontrivial examples of hidden-variable theories: the flow theory
in Section 16.6.1, and the Schrödinger theory in Section 16.6.2.

16.6.1 Flow Theory

The idea of the flow theory is to convert a unitary matrix into a weighted directed graph,
and then route probability mass through that graph like oil through pipes. Given a unitary
U , let 


β1
...
βN


 =




(U)11 · · · (U)N1
...

...
(U)1N · · · (U)NN






α1
...
αN


 ,

where for the time being

|ψ〉 = α1 |1〉 + · · · + αN |N〉 ,
U |ψ〉 = β1 |1〉 + · · · + βN |N〉

are pure states. Then consider the network G shown in Figure 16.1. We have a source vertex
s, a sink vertex t, and N input and N output vertices labeled by basis states |1〉 , . . . , |N〉.

212

Each edge of the form (s, |i〉) has capacity |αi|2, each edge (|i〉 , |j〉) has capacity
∣∣∣(U)ij

∣∣∣,
and each edge (|j〉 , t) has capacity |βj |2. A natural question is how much probability mass
can flow from s to t without violating the capacity constraints. Rather surprisingly, I will
show that one unit of mass (that is, all of it) can. Interestingly, this result would be false

if edge (|i〉 , |j〉) had capacity
∣∣∣(U)ij

∣∣∣
2

(or even
∣∣∣(U)ij

∣∣∣
1+ε

) instead of
∣∣∣(U)ij

∣∣∣. I will also

show that there exists a mapping from networks to maximal flows in those networks, that
is robust in the sense that a small change in edge capacities produces only a small change
in the amount of flow through any edge.

The proofs of these theorems use classical results from the theory of network flows
(see [88] for an introduction). In particular, let a cut be a set of edges that separates s from
t; the value of a cut is the sum of the capacities of its edges. Then a fundamental result
called the Max-Flow-Min-Cut Theorem [113] says that the maximum possible amount of
flow from s to t equals the minimum value of any cut. Using that result I can show the
following.

Theorem 139 One unit of flow can be routed from s to t in G.

Proof. By the above, it suffices to show that any cut C in G has value at least 1.
Let A be the set of i ∈ {1, . . . , N} such that (s, |i〉) /∈ C, and let B be the set of j such that
(|j〉 , t) /∈ C. Then C must contain every edge (|i〉 , |j〉) such that i ∈ A and j ∈ B, and we
can assume without loss of generality that C contains no other edges. So the value of C is

∑

i/∈A
|αi|2 +

∑

j /∈B
|βj |2 +

∑

i∈A, j∈B

∣∣∣(U)ij

∣∣∣ .

Therefore we need to prove the matrix inequality

(
1 −

∑

i∈A
|αi|2

)
+


1 −

∑

j∈B
|βj |2


+

∑

i∈A, j∈B

∣∣∣(U)ij

∣∣∣ ≥ 1,

or
1 +

∑

i∈A, j∈B

∣∣∣(U)ij

∣∣∣ ≥
∑

i∈A
|αi|2 +

∑

j∈B
|βj |2 . (16.1)

Let U be fixed, and consider the maximum of the right-hand side of equation (16.1) over
all |ψ〉. Since

βj =
∑

i

(U)ij αi,

this maximum is equal to the largest eigenvalue λ of the positive semidefinite matrix

∑

i∈A
|i〉 〈i| +

∑

j∈B
|uj〉 〈uj|

where for each j,
|uj〉 = (U)1j |1〉 + · · · + (U)Nj |N〉 .

213

Let HA be the subspace of states spanned by {|i〉 : i ∈ A}, and let HB be the subspace
spanned by {|uj〉 : j ∈ B}. Also, let LA (|ψ〉) be the length of the projection of |ψ〉 onto
HA, and let LB (|ψ〉) be the length of the projection of |ψ〉 onto HB . Then since the |i〉’s
and |uj〉’s form orthogonal bases for HA and HB respectively, we have

λ = max
|ψ〉


∑

i∈A
|〈i|ψ〉|2 +

∑

j∈B
|〈uj|ψ〉|2




= max
|ψ〉

(
LA (|ψ〉)2 + LB (|ψ〉)2

)
.

So letting θ be the angle between HA and HB,

λ = 2cos2 θ

2
= 1 + cos θ

≤ 1 + max
|a〉∈HA, |b〉∈HB

|〈a|b〉|

= 1 + max
|γ1|2+···+|γN |2=1

|δ1|2+···+|δN |2=1

∣∣∣∣∣∣

(
∑

i∈A
γi 〈i|

)
∑

j∈B
δj |uj〉



∣∣∣∣∣∣

≤ 1 +
∑

i∈A, j∈B

∣∣∣(U)ij

∣∣∣

which completes the theorem.
Observe that Theorem 139 still holds if U acts on a mixed state ρ, since we

can write ρ as a convex combination of pure states |ψ〉 〈ψ|, construct a flow for each |ψ〉
separately, and then take a convex combination of the flows.

Using Theorem 139, I now define the flow theory FT . Let F (ρ, U) be the set
of maximal flows for ρ, U—representable by N × N arrays of real numbers fij such that

0 ≤ fij ≤
∣∣∣(U)ij

∣∣∣ for all i, j, and also

∑

j

fij = (ρ)ii ,
∑

i

fij =
(
UρU−1

)
jj
.

Clearly F (ρ, U) is a convex polytope, which Theorem 139 asserts is nonempty. Form a
maximal flow f∗ (ρ, U) ∈ F (ρ, U) as follows: first let f∗11 be the maximum of f11 over
all f ∈ F (ρ, U). Then let f∗12 be the maximum of f12 over all f ∈ F (ρ, U) such that
f11 = f∗11. Continue to loop through all i, j pairs in lexicographic order, setting each f∗ij to
its maximum possible value consistent with the (i− 1)N + j − 1 previous values. Finally,
let (P)ij = f∗ij for all i, j. As discussed in Section 16.3, given P we can easily obtain the

stochastic matrix S by dividing the ith column by (ρ)ii, or taking a limit in case (ρ)ii = 0.
It is easy to check that FT so defined satisfies the indifference axiom. Showing

that FT satisfies robustness is harder. Our proof is based on the Ford-Fulkerson algorithm
[113], a classic algorithm for computing maximal flows that works by finding a sequence of
“augmenting paths,” each of which increases the flow from s to t by some positive amount.

214

Theorem 140 FT satisfies robustness.

Proof. Let G be an arbitrary flow network with source s, sink t, and directed
edges e1, . . . , em, where each ei has capacity ci and leads from vi to wi. It will be convenient
to introduce a fictitious edge e0 from t to s with unlimited capacity; then maximizing the
flow through G is equivalent to maximizing the flow through e0. Suppose we produce a
new network G̃ by increasing a single capacity ci∗ by some ε > 0. Let f∗ be the optimal
flow for G, obtained by first maximizing the flow f0 through e0, then maximizing the flow
f1 through e1 holding f0 fixed, and so on up to fm. Let f̃∗ be the maximal flow for G̃
produced in the same way. We claim that for all i ∈ {0, . . . ,m},

∣∣∣f̃∗i − f∗i
∣∣∣ ≤ ε.

To see that the theorem follows from this claim: first, if f∗ is robust under adding ε to
ci∗ , then it must also be robust under subtracting ε from ci∗ . Second, if we change ρ, U

to ρ̃, Ũ such that ‖ρ̃− ρ‖∞ ≤ 1/q (N) and
∥∥∥Ũ − U

∥∥∥
∞

≤ 1/q (N), then we can imagine the

N2 + 2N edge capacities are changed one by one, so that

∥∥∥f∗
(
ρ̃, Ũ

)
− f∗ (ρ, U)

∥∥∥
∞

≤
∑

ij

∣∣∣∣
∣∣∣∣
(
Ũ
)
ij

∣∣∣∣−
∣∣∣(U)ij

∣∣∣
∣∣∣∣+
∑

i

|(ρ̃)ii − (ρ)ii|

+
∑

j

∣∣∣∣
(
Ũ ρ̃Ũ−1

)
jj
−
(
UρU−1

)
jj

∣∣∣∣

≤ 4N2

q (N)
.

(Here we have made no attempt to optimize the bound.)
We now prove the claim. To do so we describe an iterative algorithm for computing

f∗. First maximize the flow f0 through e0, by using the Ford-Fulkerson algorithm to find
a maximal flow from s to t. Let f (0) be the resulting flow, and let G(1) be the residual
network that corresponds to f (0). For each i, that is, G(1) has an edge ei = (vi, wi) of

capacity c
(1)
i = ci − f

(0)
i , and an edge ei = (wi, vi) of capacity c

(1)
i = f

(0)
i . Next maximize

f1 subject to f0 by using the Ford-Fulkerson algorithm to find “augmenting cycles” from
w1 to v1 and back to w1 in G(1) \{e0, e0}. Continue in this manner until each of f1, . . . , fm
has been maximized subject to the previous fi’s. Finally set f∗ = f (m).

Now, one way to compute f̃∗ is to start with f∗, then repeatedly “correct” it
by applying the same iterative algorithm to maximize f̃0, then f̃1, and so on. Let εi =∣∣∣f̃∗i − f∗i

∣∣∣; then we need to show that εi ≤ ε for all i ∈ {0, . . . ,m}. The proof is by induction

on i. Clearly ε0 ≤ ε, since increasing ci∗ by ε can increase the value of the minimum cut
from s to t by at most ε. Likewise, after we maximize f̃0, the value of the minimum cut
from w1 to v1 can increase by at most ε−ε0 +ε0 = ε. For of the at most ε new units of flow
from w1 to v1 that increasing ci∗ made available, ε0 of them were “taken up” in maximizing
f̃0, but the process of maximizing f̃0 could have again increased the minimum cut from w1

to v1 by up to ε0. Continuing in this way,

ε2 ≤ ε− ε0 + ε0 − ε1 + ε1 = ε,

215

and so on up to εm. This completes the proof.
That FT violates decomposition invariance now follows from Theorem 138, part

(i). One can also show that FT violates product commutativity, by considering the fol-
lowing example: let |ψ〉 =

∣∣ϕπ/4
〉
⊗
∣∣ϕ−π/8

〉
be a 2-qubit initial state, and let RAπ/4 and RBπ/4

be π/4 rotations applied to the first and second qubits respectively. Then

S
(
RAπ/4 |ψ〉 , RBπ/4

)
S
(
|ψ〉 , RAπ/4

)
6= S

(
RBπ/4 |ψ〉 , RAπ/4

)
S
(
|ψ〉 , RBπ/4

)
.

We omit a proof for brevity.

16.6.2 Schrödinger Theory

The final hidden-variable theory, which I call the Schrödinger theory or ST , is the most
interesting one mathematically. The idea—to make a matrix into a stochastic matrix via
row and column rescaling—is natural enough that we came upon it independently, only later
learning that it originated in a 1931 paper of Schrödinger [215]. The idea was subsequently
developed by Fortet [114], Beurling [58], Nagasawa [181], and others. My goal is to give
what (to my knowledge) is the first self-contained, reasonably accessible presentation of the
main result in this area; and to interpret that result in what I think is the correct way: as
providing one example of a hidden-variable theory, whose strengths and weaknesses should
be directly compared to those of other theories.

Most of the technical difficulties in [58, 114, 181, 215] arise because the stochastic
process being constructed involves continuous time and particle positions. Here I eliminate
those difficulties by restricting attention to discrete time and finite-dimensional Hilbert
spaces. I thereby obtain a generalized version5 of a problem that computer scientists know
as (r, c)-scaling of matrices [223, 120, 169].

As in the case of the flow theory, given a unitary U acting on a state ρ, the first
step is to replace each entry of U by its absolute value, obtaining a nonnegative matrix

U (0) defined by
(
U (0)

)
ij

:=
∣∣∣(U)ij

∣∣∣. We then wish to find nonnegative column multipliers

α1, . . . , αN and row multipliers β1, . . . , βN such that for all i, j,

αiβ1

(
U (0)

)
i1

+ · · · + αiβN

(
U (0)

)
iN

= (ρ)ii , (16.2)

α1βj

(
U (0)

)
1j

+ · · · + αNβj

(
U (0)

)
Nj

=
(
UρU−1

)
jj
. (16.3)

If we like, we can interpret the αi’s and βj ’s as dynamical variables that reach equilibrium
precisely when equations (16.2) and (16.3) are satisfied. Admittedly, it might be thought
physically implausible that such a complicated dynamical process should take place at every
instant of time. On the other hand, it is hard to imagine a more “benign” way to convert
U (0) into a joint probabilities matrix, than by simply rescaling its rows and columns.

I will show that multipliers satisfying (16.2) and (16.3) always exist. The intuition
of a dynamical process reaching equilibrium turns out to be key to the proof. For all t ≥ 0,

5In (r, c)-scaling, we are given an invertible real matrix, and the goal is to rescale all rows and columns
to sum to 1. The generalized version is to rescale the rows and columns to given values (not necessarily 1).

216

let

(
U (2t+1)

)
ij

=
(ρ)ii∑

k

(
U (2t)

)
ik

(
U (2t)

)
ij
,

(
U (2t+2)

)
ij

=

(
UρU−1

)
jj∑

k

(
U (2t+1)

)
kj

(
U (2t+1)

)
ij
.

In words, we obtain U (2t+1) by normalizing each column i of U (2t) to sum to (ρ)ii; likewise
we obtain U (2t+2) by normalizing each row j of U (2t+1) to sum to

(
UρU−1

)
jj

. The crucial

fact is that the above process always converges to some P (ρ, U) = limt→∞ U (t). We can
therefore take

αi =

∞∏

t=0

(ρ)ii∑
k

(
U (2t)

)
ik

,

βj =

∞∏

t=0

(
UρU−1

)
jj∑

k

(
U (2t+1)

)
kj

for all i, j. Although I will not prove it here, it turns out that this yields the unique solution
to equations (16.2) and (16.3), up to a global rescaling of the form αi → αic for all i and
βj → βj/c for all j [181].

The convergence proof will reuse a result about network flows from Section 16.6.1,
in order to define a nondecreasing “progress measure” based on Kullback-Leibler distance.

Theorem 141 The limit P (ρ, U) = limt→∞ U (t) exists.

Proof. A consequence of Theorem 139 is that for every ρ, U , there exists an N×N
array of nonnegative real numbers fij such that

(1) fij = 0 whenever
∣∣∣(U)ij

∣∣∣ = 0,

(2) fi1 + · · · + fiN = (ρ)ii for all i, and

(3) f1j + · · · + fNj =
(
UρU−1

)
jj

for all j.

Given any such array, define a progress measure

Z(t) =
∏

ij

(
U (t)

)fij

ij
,

where we adopt the convention 00 = 1. We claim that Z(t+1) ≥ Z(t) for all t ≥ 1. To
see this, assume without loss of generality that we are on an odd step 2t + 1, and let

217

C
(2t)
i =

∑
j

(
U (2t)

)
ij

be the ith column sum before we normalize it. Then

Z(2t+1) =
∏

ij

(
U (2t+1)

)fij

ij

=
∏

ij

(
(ρ)ii

C
(2t)
i

(
U (2t)

)
ij

)fij

=


∏

ij

(
U (2t)

)fij

ij




∏

i

(
(ρ)ii

C
(2t)
i

)fi1+···+fiN



= Z(2t) ·
∏

i

(
(ρ)ii

C
(2t)
i

)(ρ)ii

.

As a result of the 2tth normalization step, we had
∑

iC
(2t)
i = 1. Subject to that constraint,

the maximum of ∏

i

(
C

(2t)
i

)(ρ)ii

over the C
(2t)
i ’s occurs when C

(2t)
i = (ρ)ii for all i—a simple calculus fact that follows

from the nonnegativity of Kullback-Leibler distance. This implies that Z(2t+1) ≥ Z(2t).
Similarly, normalizing rows leads to Z(2t+2) ≥ Z(2t+1).

It follows that the limit P (ρ, U) = limt→∞ U (t) exists. For suppose not; then some

C
(t)
i is bounded away from (ρ)ii, so there exists an ε > 0 such that Z(t+1) ≥ (1 + ε)Z(t) for

all even t. But this is a contradiction, since Z(0) > 0 and Z(t) ≤ 1 for all t.
Besides showing that P (ρ, U) is well-defined, Theorem 141 also yields a procedure

to calculate P (ρ, U) (as well as the αi’s and βj ’s). It can be shown that this procedure
converges to within entrywise error ε after a number steps polynomial in N and 1/ε. Also,
once we have P (ρ, U), the stochastic matrix S (ρ, U) is readily obtained by normalizing
each column of P (ρ, U) to sum to 1. This completes the definition of the Schrödinger
theory ST .

It is immediate that ST satisfies indifference. Also:

Proposition 142 ST satisfies product commutativity.

Proof. Given a state |ψ〉 = |ψA〉⊗|ψB〉, let UA⊗I act only on |ψA〉 and let I⊗UB
act only on |ψB〉. Then we claim that

S (|ψ〉 , UA ⊗ I) = S (|ψA〉 , UA) ⊗ I.

The reason is simply that multiplying all amplitudes in |ψA〉 and UA |ψA〉 by a constant
factor αx, as we do for each basis state |x〉 of |ψB〉, has no effect on the scaling procedure
that produces S (|ψA〉 , UA). Similarly

S (|ψ〉 , I ⊗ UB) = I ⊗ S (|ψB〉 , UB) .

218

It follows that

S (|ψA〉 , UA) ⊗ S (|ψB〉 , UB) = S (UA |ψA〉 ⊗ |ψB〉 , I ⊗ UB)S (|ψ〉 , UA ⊗ I)

= S (|ψA〉 ⊗ UB |ψB〉 , UA ⊗ I)S (|ψ〉 , I ⊗ UB) .

On the other hand, numerical simulations readily show that ST violates decom-
position invariance, even when N = 2 (I omit a concrete example for brevity).

16.7 The Computational Model

I now explain the histories model of computation, building up to the complexity class DQP.
From now on, the states ρ that we consider will always be pure states of ` = log2N qubits.
That is, ρ = |ψ〉 〈ψ| where

|ψ〉 =
∑

x∈{0,1}`

αx |x〉 .

The algorithms of this chapter will work under any hidden-variable theory that
satisfies the indifference axiom. On the other hand, if we take into account that even in
theory (let alone in practice), a generic unitary cannot be represented exactly with a finite
universal gate set, only approximated arbitrarily well, then we also need the robustness
axiom. Thus, it is reassuring that there exists a hidden-variable theory (namely FT) that
satisfies both indifference and robustness.

Let a quantum computer have the initial state |0〉⊗`, and suppose we apply a
sequence U = (U1, . . . , UT) of unitary operations, each of which is implemented by a
polynomial-size quantum circuit. Then a history of a hidden variable through the com-
putation is a sequence H = (v0, . . . , vT) of basis states, where vt is the variable’s value
immediately after Ut is applied (thus v0 = |0〉⊗`). Given any hidden-variable theory T , we
can obtain a probability distribution Ω (U ,T) over histories by just applying T repeatedly,
once for each Ut, to obtain the stochastic matrices

S
(
|0〉⊗` , U1

)
, S

(
U1 |0〉⊗` , U2

)
, . . . S

(
UT−1 · · ·U1 |0〉⊗` , UT

)
.

Note that Ω (U ,T) is a Markov distribution; that is, each vt is independent of the other vi’s
conditioned on vt−1 and vt+1. Admittedly, Ω (U ,T) could depend on the precise way in
which the combined circuit UT · · ·U1 is “sliced” into component circuits U1, . . . , UT . But
as noted in Section 16.3.2, such dependence on the granularity of unitaries is unavoidable
in any hidden-variable theory other than PT .

Given a hidden-variable theory T , let O (T) be an oracle that takes as input a
positive integer `, and a sequence of quantum circuits U = (U1, . . . , UT) that act on ` qubits.
Here each Ut is specified by a sequence

(
gt,1, . . . , gt,m(t)

)
of gates chosen from some finite

universal gate set G. The oracle O (T) returns as output a sample (v0, . . . , vT) from the
history distribution Ω (U ,T) defined previously. Now let A be a deterministic classical
Turing machine that is given oracle access to O (T). The machine A receives an input x,
makes a single oracle query to O (T), then produces an output based on the response. We

219

say a set of strings L is in DQP if there exists an A such that for all sufficiently large n and
inputs x ∈ {0, 1}n, and all theories T satisfying the indifference and robustness axioms, A
correctly decides whether x ∈ L with probability at least 2/3, in time polynomial in n.

Let me make some remarks about the above definition. There is no real signifi-
cance in the requirement that A be deterministic and classical, and that it be allowed only
one query to O (T). I made this choice only because it suffices for the upper bounds; it
might be interesting to consider the effects of other choices. However, other aspects of the
definition are not arbitrary. The order of quantifiers matters; we want a single A that works
for any hidden-variable theory satisfying indifference and robustness. Also, we require A
to succeed only for sufficiently large n since by choosing a large enough polynomial q (N)
in the statement of the robustness axiom, an adversary might easily make A incorrect on a
finite number of instances.

16.7.1 Basic Results

Having defined the complexity class DQP, in this subsection I establish its most basic
properties. First of all, it is immediate that BQP ⊆ DQP; that is, sampling histories is at
least as powerful as standard quantum computation. For v1, the first hidden-variable value
returned by O (T), can be seen as simply the result of applying a polynomial-size quantum
circuit U1 to the initial state |0〉⊗` and then measuring in the standard basis. A key further
observation is the following.

Theorem 143 Any universal gate set yields the same complexity class DQP. By universal,
we mean that any unitary matrix (real or complex) can be approximated, without the need
for ancilla qubits.

Proof. Let G and G′ be universal gate sets. Also, let U = (U1, . . . , UT) be a
sequence of `-qubit unitaries, each specified by a polynomial-size quantum circuit over G.
We have T, ` = O (poly (n)) where n is the input length. We can also assume without loss
of generality that ` ≥ n, since otherwise we simply insert n−` dummy qubits that are never
acted on (by the indifference axiom, this will not affect the results). We want to approximate
U by another sequence of `-qubit unitaries, U ′ = (U ′

1, . . . , U
′
T), where each U ′

t is specified

by a quantum circuit over G′. In particular, for all t we want ‖U ′
t − Ut‖∞ ≤ 2−`

2T . By
the Solovay-Kitaev Theorem [155, 184], we can achieve this using poly

(
n, `2T

)
= poly (n)

gates from G′; moreover, the circuit for U ′
t can be constructed in polynomial time given the

circuit for Ut.
Let |ψt〉 = Ut · · ·U1 |0〉⊗` and |ψ′

t〉 = U ′
t · · ·U ′

1 |0〉⊗`. Notice that for all t ∈
{1, . . . , T},

∥∥∣∣ψ′
t

〉
− |ψt〉

∥∥
∞ ≤ 2`

(∥∥∣∣ψ′
t−1

〉
− |ψt−1〉

∥∥
∞ + 2−`

2T
)

≤ T2`T
(
2−`

2T
)

= T2−`(`−1)T ,

since ‖|ψ′
0〉 − |ψ0〉‖∞ = 0. Here ‖ ‖∞ denotes the maximum entrywise difference between

two vectors in C2`
. Also, given a theory T , let Pt and P ′

t be the joint probabilities matrices

220

corresponding to Ut and U ′
t respectively. Then by the robustness axiom, there exists

a polynomial q such that if ‖U ′
t − Ut‖∞ ≤ 1/q

(
2`
)

and
∥∥∣∣ψ′

t−1

〉
− |ψt−1〉

∥∥
∞ ≤ 1/q

(
2`
)
,

then ‖Pt − P ′
t‖∞ ≤ 2−3`. For all such polynomials q, we have 2−`

2T ≤ 1/q
(
2`
)

and

T2−`(`−1)T ≤ 1/q
(
2`
)

for sufficiently large n ≤ `. Therefore ‖Pt − P ′
t‖∞ ≤ 2−3` for all t

and sufficiently large n.
Now assume n is sufficiently large, and consider the distributions Ω (U ,T) and

Ω (U ′,T) over classical histories H = (v0, . . . , vT). For all t ∈ {1, . . . , T} and x ∈ {0, 1}`,
we have ∣∣∣∣ Pr

Ω(U ,T)
[vt = |x〉] − Pr

Ω(U ′,T)
[vt = |x〉]

∣∣∣∣ ≤ 2`
(
2−3`

)
= 2−2`.

It follows by the union bound that the variation distance ‖Ω (U ′,T) − Ω (U ,T)‖ is at most

T2`
(
2−2`

)
=
T

2`
≤ T

2n
.

In other words, Ω (U ′,T) can be distinguished from Ω (U ,T) with bias at most T/2n, which
is exponentially small. So any classical postprocessing algorithm that succeeds with high
probability given H ∈ Ω (U ,T), also succeeds with high probability given H ∈ Ω (U ′,T).
This completes the theorem.

Unfortunately, the best upper bound on DQP I have been able to show is DQP ⊆
EXP; that is, any problem in DQP is solvable in deterministic exponential time. The proof
is trivial: let T be the flow theory FT . Then by using the Ford-Fulkerson algorithm, we can
clearly construct the requisite maximum flows in time polynomial in 2` (hence exponential
in n), and thereby calculate the probability of each possible history (v1, . . . , vT) to suitable
precision.

16.8 The Juggle Subroutine

This section presents a crucial subroutine that will be used in both main algorithms: the
algorithm for simulating statistical zero knowledge in Section 16.9, and the algorithm for
search in N1/3 queries in Section 16.10. Given an `-qubit state (|a〉 + |b〉) /

√
2, where |a〉

and |b〉 are unknown basis states, the goal of the juggle subroutine is to learn both a and
b. The name arises because the strategy will be to “juggle” a hidden variable, so that if
it starts out at |a〉 then with non-negligible probability it transitions to |b〉, and vice versa.
Inspecting the entire history of the hidden variable will then reveal both a and b, as desired.

To produce this behavior, we will exploit a basic feature of quantum mechanics:
that observable information in one basis can become unobservable phase information in a
different basis. We will apply a sequence of unitaries that hide all information about a and
b in phases, thereby forcing the hidden variable to “forget” whether it started at |a〉 or |b〉.
We will then invert those unitaries to return the state to (|a〉 + |b〉) /

√
2, at which point the

hidden variable, having “forgotten” its initial value, must be unequal to that value with
probability 1/2.

I now give the subroutine. Let |ψ〉 = (|a〉 + |b〉) /
√

2 be the initial state. The
first unitary, U1, consists of Hadamard gates on `− 1 qubits chosen uniformly at random,
and the identity operation on the remaining qubit, i. Next U2 consists of a Hadamard gate

221

on qubit i. Finally U3 consists of Hadamard gates on all ` qubits. Let a = a1 . . . a` and
b = b1 . . . b`. Then since a 6= b, we have ai 6= bi with probability at least 1/`. Assuming
that occurs, the state

U1 |ψ〉 =
1

2`/2


 ∑

z∈{0,1}` : zi=ai

(−1)a·z−aizi |z〉 +
∑

z∈{0,1}` : zi=bi

(−1)b·z−bizi |z〉




assigns nonzero amplitude to all 2` basis states. Then U2U1 |ψ〉 assigns nonzero amplitude
to 2`−1 basis states |z〉, namely those for which a·z ≡ b·z (mod 2). Finally U3U2U1 |ψ〉 = |ψ〉.

Let vt be the value of the hidden variable after Ut is applied. Then assuming
ai 6= bi, I claim that v3 is independent of v0. So in particular, if v0 = |a〉 then v3 = |b〉 with
1/2 probability, and if v0 = |b〉 then v3 = |a〉 with 1/2 probability. To see this, observe
that when U1 is applied, there is no interference between basis states |z〉 such that zi = ai,
and those such that zi = bi. So by the indifference axiom, the probability mass at |a〉 must
spread out evenly among all 2`−1 basis states that agree with a on the ith bit, and similarly
for the probability mass at |b〉. Then after U2 is applied, v2 can differ from v1 only on the ith

bit, again by the indifference axiom. So each basis state of U2U1 |ψ〉 must receive an equal
contribution from probability mass originating at |a〉, and probability mass originating at
|b〉. Therefore v2 is independent of v0, from which it follows that v3 is independent of v0
as well.

Unfortunately, the juggle subroutine only works with probability 1/ (2`)—for it
requires that ai 6= bi, and even then, inspecting the history (v0, v1, . . .) only reveals both
|a〉 and |b〉 with probability 1/2. Furthermore, the definition of DQP does not allow more
than one call to the history oracle. However, all we need to do is pack multiple subroutine
calls into a single oracle call. That is, choose U4 similarly to U1 (except with a different
value of i), and set U5 = U2 and U6 = U3. Do the same with U7, U8, and U9, and so
on. Since U3, U6, U9, . . . all return the quantum state to |ψ〉, the effect is that of multiple
independent juggle attempts. With 2`2 attempts, we can make the failure probability at

most (1 − 1/ (2`))2`
2

< e−`.
As a final remark, it is easy to see that the juggle subroutine works equally well

with states of the form |ψ〉 = (|a〉 − |b〉) /
√

2. This will prove useful in Section 16.10.

16.9 Simulating SZK

This section shows that SZK ⊆ DQP. Here SZK, or Statistical Zero Knowledge, was
originally defined as the class of problems that possess a certain kind of “zero-knowledge
proof protocol”—that is, a protocol between an omniscient prover and a verifier, by which
the verifier becomes convinced of the answer to a problem, yet without learning anything
else about the problem. However, for present purposes this cryptographic definition of
SZK is irrelevant. For Sahai and Vadhan [211] have given an alternate and much simpler
characterization: a problem is in SZK if and only if it can be reduced to a problem called
Statistical Difference, which involves deciding whether two probability distributions are
close or far.

222

More formally, let P0 and P1 be functions that map n-bit strings to q (n)-bit strings
for some polynomial q, and that are specified by classical polynomial-time algorithms. Let
Λ0 and Λ1 be the probability distributions over P0 (x) and P1 (x) respectively, if x ∈ {0, 1}n
is chosen uniformly at random. Then the problem is to decide whether ‖Λ0 − Λ1‖ is less
than 1/3 or greater than 2/3, given that one of these is the case. Here

‖Λ0 − Λ1‖ =
1

2

∑

y∈{0,1}q(n)

∣∣∣∣ Pr
x∈{0,1}n

[P0 (x) = y] − Pr
x∈{0,1}n

[P1 (x) = y]

∣∣∣∣

is the variation distance between Λ0 and Λ1.
To illustrate, let us see why Graph Isomorphism is in SZK. Given two graphs

G0 and G1, take Λ0 to be the uniform distribution over all permutations of G0, and Λ1 to
be uniform over all permutations of G1. This way, if G0 and G1 are isomorphic, then Λ0

and Λ1 will be identical, so ‖Λ0 − Λ1‖ = 0. On the other hand, if G0 and G1 are non-
isomorphic, then Λ0 and Λ1 will be perfectly distinguishable, so ‖Λ0 − Λ1‖ = 1. Since Λ0

and Λ1 are clearly samplable by polynomial-time algorithms, it follows that any instance
of Graph Isomorphism can be expressed as an instance of Statistical Difference. For a
proof that Approximate Shortest Vector is in SZK, the reader is referred to Goldreich and
Goldwasser [131] (see also Aharonov and Ta-Shma [23]).

The proof will use the following “amplification lemma” from [211]:6

Lemma 144 (Sahai and Vadhan) Given efficiently-samplable distributions Λ0 and Λ1,
we can construct new efficiently-samplable distributions Λ′

0 and Λ′
1, such that if ‖Λ0 − Λ1‖ ≤

1/3 then ‖Λ′
0 − Λ′

1‖ ≤ 2−n, while if ‖Λ0 − Λ1‖ ≥ 2/3 then ‖Λ′
0 − Λ′

1‖ ≥ 1 − 2−n.

In particular, Lemma 144 means we can assume without loss of generality that
either ‖Λ0 − Λ1‖ ≤ 2−n

c
or ‖Λ0 − Λ1‖ ≥ 1 − 2−n

c
for some constant c > 0.

Having covered the necessary facts about SZK, we can now proceed to the main
result.

Theorem 145 SZK ⊆ DQP.

Proof. We show how to solve Statistical Difference by using a history oracle. For
simplicity, we start with the special case where P0 and P1 are both one-to-one functions.
In this case, the circuit sequence U given to the history oracle does the following: it first
prepares the state

1

2(n+1)/2

∑

b∈{0,1},x∈{0,1}n

|b〉 |x〉 |Pb (x)〉 .

It then applies the juggle subroutine to the joint state of the |b〉 and |x〉 registers, taking
` = n+ 1. Notice that by the indifference axiom, the hidden variable will never transition
from one value of Pb (x) to another—exactly as if we had measured the third register in the
standard basis. All that matters is the reduced state |ψ〉 of the first two registers, which

6Note that in this lemma, the constants 1/3 and 2/3 are not arbitrary; it is important for technical
reasons that (2/3)2 > 1/3.

223

has the form (|0〉 |x0〉 + |1〉 |x1〉) /
√

2 for some x0, x1 if ‖Λ0 − Λ1‖ = 0, and |b〉 |x〉 for some
b, x if ‖Λ0 − Λ1‖ = 1. We have already seen that the juggle subroutine can distinguish
these two cases: when the hidden-variable history is inspected, it will contain two values of
the |b〉 register in the former case, and only one value in the latter case. Also, clearly the
case ‖Λ0 − Λ1‖ ≤ 2−n

c
is statistically indistinguishable from ‖Λ0 − Λ1‖ = 0 with respect to

the subroutine, and likewise ‖Λ0 − Λ1‖ ≥ 1−2−n
c

is indistinguishable from ‖Λ0 − Λ1‖ = 1.
We now consider the general case, where P0 and P1 need not be one-to-one. Our

strategy is to reduce to the one-to-one case, by using a well-known hashing technique of
Valiant and Vazirani [233]. Let Dn,k be the uniform distribution over all affine functions

mapping {0, 1}n to {0, 1}k, where we identify those sets with the finite fields Fn2 and Fk2
respectively. What Valiant and Vazirani showed is that, for all subsets A ⊆ {0, 1}n such
that 2k−2 ≤ |A| ≤ 2k−1, and all s ∈ {0, 1}k,

Pr
h∈Dn,k

[∣∣A ∩ h−1 (s)
∣∣ = 1

]
≥ 1

8
.

As a corollary, the expectation over h ∈ Dn,k of

∣∣∣
{
s ∈ {0, 1}k :

∣∣A ∩ h−1 (s)
∣∣ = 1

}∣∣∣

is at least 2k/8. It follows that, if x is drawn uniformly at random from A, then

Pr
h,x

[∣∣A ∩ h−1 (h (x))
∣∣ = 1

]
≥ 2k/8

|A| ≥ 1

4
.

This immediately suggests the following algorithm for the many-to-one case. Draw k
uniformly at random from {2, . . . , n+ 1}; then draw h0, h1 ∈ Dn,k. Have U prepare the
state

1

2(n+1)/2

∑

b∈{0,1},x∈{0,1}n

|b〉 |x〉 |Pb (x)〉 |hb (x)〉 ,

and then apply the juggle subroutine to the joint state of the |b〉 and |x〉 registers, ignoring
the |Pb (x)〉 and |hb (x)〉 registers as before.

Suppose ‖Λ0 − Λ1‖ = 0. Also, given x ∈ {0, 1}n and i ∈ {0, 1}, let Ai =
P−1
i (Pi (x)) and Hi = h−1

i (hi (x)), and suppose 2k−2 ≤ |A0| = |A1| ≤ 2k−1. Then

Pr
s,h0,h1

[|A0 ∩H0| = 1 ∧ |A1 ∩H1| = 1] ≥
(

1

4

)2

,

since the events |A0 ∩H0| = 1 and |A1 ∩H1| = 1 are independent of each other conditioned
on x. Assuming both events occur, as before the juggle subroutine will reveal both |0〉 |x0〉
and |1〉 |x1〉 with high probability, where x0 and x1 are the unique elements of A0 ∩ H0

and A1 ∩ H1 respectively. By contrast, if ‖Λ0 − Λ1‖ = 1 then only one value of the |b〉
register will ever be observed. Again, replacing ‖Λ0 − Λ1‖ = 0 by ‖Λ0 − Λ1‖ ≤ 2−n

c
, and

‖Λ0 − Λ1‖ = 1 by ‖Λ0 − Λ1‖ ≥ 1 − 2−n
c
, can have only a negligible effect on the history

distribution.

224

Of course, the probability that the correct value of k is chosen, and that A0 ∩H0

and A1 ∩H1 both have a unique element, could be as low as 1/ (16n). To deal with this,
we simply increase the number of calls to the juggle subroutine by an O (n) factor, drawing
new values of k, h0, h1 for each call. We pack multiple subroutine calls into a single oracle
call as described in Section 16.8, except that now we uncompute the entire state (returning
it to |0 · · · 0〉) and then recompute it between subroutine calls. A final remark: since the
algorithm that calls the history oracle is deterministic, we “draw” new values of k, h0, h1 by
having U prepare a uniform superposition over all possible values. The indifference axiom
justifies this procedure, by guaranteeing that within each call to the juggle subroutine, the
hidden-variable values of k, h0, and h1 remain constant.

Recall from Chapter 6 that there exists an oracle A relative to which SZKA 6∈
BQPA. By contrast, since Theorem 145 is easily seen to relativize, we have SZKA ∈ DQPA

for all oracles A. It follows that there exists an oracle A relative to which BQPA 6= DQPA.

16.10 Search in N
1/3 Queries

Given a Boolean function f : {0, 1}n → {0, 1}, the database search problem is simply to
find a string x such that f (x) = 1. We can assume without loss of generality that this
“marked item” x is unique.7 We want to find it using as few queries to f as possible, where
a query returns f (y) given y.

LetN = 2n. Then classically, of course, Θ (N) queries are necessary and sufficient.
By querying f in superposition, Grover’s algorithm [141] finds x using O

(
N1/2

)
queries,

together with Õ
(
N1/2

)
auxiliary computation steps (here the Õ hides a factor of the form

(logN)c). Bennett et al. [51] showed that any quantum algorithm needs Ω
(
N1/2

)
queries.

In this section, I show how to find the marked item by sampling histories, using
only O

(
N1/3

)
queries and Õ

(
N1/3

)
computation steps. Formally, the model is as follows.

Each of the quantum circuits U1, . . . , UT that algorithm A gives to the history oracle O (T)
is now able to query f . Suppose Ut makes qt queries to f ; then the total number of queries
made by A is defined to be Q = q1 + · · · + qT . The total number of computation steps is
at least the number of steps required to write down U1, . . . , UT , but could be greater.

Theorem 146 In the DQP model, we can search a database of N items for a unique marked
item using O

(
N1/3

)
queries and Õ

(
N1/3

)
computation steps.

Proof. Assume without loss of generality that N = 2n with n|3, and that each
database item is labeled by an n-bit string. Let x ∈ {0, 1}n be the label of the unique
marked item. Then the sequence of quantum circuits U does the following: it first runs
O
(
2n/3

)
iterations of Grover’s algorithm, in order to produce the n-qubit state α |x〉 +

β
∑

y∈{0,1}n |y〉, where

α =

√
1

2n/3 + 2−n/3+1 + 1
,

β = 2−n/3α

7For if there are multiple marked items, then we can reduce to the unique marked item case by using the
Valiant-Vazirani hashing technique described in Theorem 145.

225

(one can check that this state is normalized). Next U applies Hadamard gates to the first
n/3 qubits. This yields the state

2−n/6α
∑

y∈{0,1}n/3

(−1)xA·y |y〉 |xB〉 + 2n/6β
∑

z∈{0,1}2n/3

|0〉⊗n/3 |z〉 ,

where xA consists of the first n/3 bits of x, and xB consists of the remaining 2n/3 bits. Let
Y be the set of 2n/3 basis states of the form |y〉 |xB〉, and Z be the set of 22n/3 basis states

of the form |0〉⊗n/3 |z〉.
Notice that 2−n/6α = 2n/6β. So with the sole exception of |0〉⊗n/3 |xB〉 (which

belongs to both Y and Z), the “marked” basis states in Y have the same amplitude as the
“unmarked” basis states in Z. This is what we wanted. Notice also that, if we manage to
find any |y〉 |xB〉 ∈ Y , then we can find x itself using 2n/3 further classical queries: simply
test all possible strings that end in xB. Thus, the goal of our algorithm will be to cause the
hidden variable to visit an element of Y , so that inspecting the variable’s history reveals
that element.

As in Theorem 145, the tools that we need are the juggle subroutine, and a way
of reducing many basis states to two. Let s be drawn uniformly at random from {0, 1}n/3.
Then U appends a third register to the state, and sets it equal to |z〉 if the first two registers

have the form |0〉⊗n/3 |z〉, or to |s, y〉 if they have the form |y〉 |xB〉. Disregarding the basis

state |0〉⊗n/3 |xB〉 for convenience, the result is

2−n/6α


 ∑

y∈{0,1}n/3

(−1)xA·y |y〉 |xB〉 |s, y〉 +
∑

z∈{0,1}2n/3

|0〉⊗n/3 |z〉 |z〉


 .

Next U applies the juggle subroutine to the joint state of the first two registers. Suppose
the hidden-variable value has the form |0〉⊗n/3 |z〉 |z〉 (that is, lies outside Y). Then with
probability 2−n/3 over s, the first n/3 bits of z are equal to s. Suppose this event occurs.
Then conditioned on the third register being |z〉, the reduced state of the first two registers
is

(−1)xA·zB |zB〉 |xB〉 + |0〉⊗n/3 |z〉√
2

,

where zB consists of the last n/3 bits of z. So it follows from Section 16.8 that with
probability Ω (1/n), the juggle subroutine will cause the hidden variable to transition from

|0〉⊗n/3 |z〉 to |zB〉 |xB〉, and hence from Z to Y .
The algorithm calls the juggle subroutine Θ

(
2n/3n

)
= Θ

(
N1/3 logN

)
times, draw-

ing a new value of s and recomputing the third register after each call. Each call moves
the hidden variable from Z to Y with independent probability Ω

(
2−n/3/n

)
; therefore with

high probability some call does so. Note that this juggling phase does not involve any
database queries. Also, as in Theorem 145, “drawing” s really means preparing a uniform
superposition over all possible s. Finally, the probability that the hidden variable ever vis-
its the basis state |0〉⊗n/3 |xB〉 is exponentially small (by the union bound), which justifies
our having disregarded it.

226

A curious feature of Theorem 146 is the tradeoff between queries and computation
steps. Suppose we had run Q iterations of Grover’s algorithm, or in other words made Q
queries to f . Then provided Q ≤

√
N , the marked state |x〉 would have occurred with

probability Ω
(
Q2/N

)
, meaning that Õ

(
N/Q2

)
calls to the juggle subroutine would have

been sufficient to find x. Of course, the choice of Q that minimizes max
{
Q,N/Q2

}
is

Q = N1/3. On the other hand, had we been willing to spend Õ (N) computation steps, we
could have found x with only a single query!8 Thus, one might wonder whether some other
algorithm could push the number of queries below N1/3, without simultaneously increasing
the number of computation steps. The following theorem rules out that possibility.

Theorem 147 In the DQP model, Ω
(
N1/3

)
computation steps are needed to search an N -

item database for a unique marked item. As a consequence, there exists an oracle relative
to which NP 6⊂ DQP; that is, NP-complete problems are not efficiently solvable by sampling
histories.

Proof. Let N = 2n and f : {0, 1}n → {0, 1}. Given a sequence of quantum
circuits U = (U1, . . . , UT) that query f , and assuming that x ∈ {0, 1}n is the unique string
such that f (x) = 1, let |ψt (x)〉 be the quantum state after Ut is applied but before Ut+1

is. Then the “hybrid argument” of Bennett et al. [51] implies that, by simply changing the
location of the marked item from x to x∗, we can ensure that

‖|ψt (x)〉 − |ψt (x∗)〉‖ = O

(
Q2
t

N

)

where ‖ ‖ represents trace distance, and Qt is the total number of queries made to f by
U1, . . . , Ut. Therefore O

(
Q2
t /N

)
provides an upper bound on the probability of noticing

the x→ x∗ change by monitoring vt, the value of the hidden variable after Ut is applied. So
by the union bound, the probability of noticing the change by monitoring the entire history
(v1, . . . , vT) is at most of order

T∑

t=1

Q2
t

N
≤ TQ2

T

N
.

This cannot be Ω (1) unless T = Ω
(
N1/3

)
or QT = Ω

(
N1/3

)
, either of which implies an

Ω
(
N1/3

)
lower bound on the total number of steps.
To obtain an oracle relative to which NP 6⊂ DQP, we can now use a standard and

well-known “diagonalization method” due to Baker, Gill, and Solovay [41] to construct an
infinite sequence of exponentially hard search problems, such that any DQP machine fails
on at least one of the problems, whereas there exists an NP machine that succeeds on all of
them. Details are omitted.

16.11 Conclusions and Open Problems

The idea that certain observables in quantum mechanics might have trajectories governed
by dynamical laws has reappeared many times: in Schrödinger’s 1931 stochastic approach

8One should not make too much of this fact; one way to interpret it is simply that the “number of queries”
should be redefined as Q+ T rather than Q.

227

[215], Bohmian mechanics [59], modal interpretations [39, 98, 99], and elsewhere. Yet
because all of these proposals yield the same predictions for single-time probabilities, if we
are to decide between them it must be on the basis of internal mathematical considerations.
One message of this chapter has been that such considerations can actually get us quite far.

To focus attention on the core issues, I restricted attention to the simplest possible
setting: discrete time, a finite-dimensional Hilbert space, and a single orthogonal basis.
Within this setting, I proposed what seem like reasonable axioms that any hidden-variable
theory should satisfy: for example, indifference to the identity operation, robustness to
small perturbations, and independence of the temporal order of spacelike-separated events.
I then showed that not all of these axioms can be satisfied simultaneously. But perhaps more
surprisingly, I also showed that certain subsets of axioms can be satisfied for quite nontrivial
reasons. In showing that the indifference and robustness axioms can be simultaneously
satisfied, Section 16.6 revealed an unexpected connection between unitary matrices and the
classical theory of network flows.

As mentioned previously, an important open problem is to show that the Schrödinger
theory satisfies robustness. Currently, I can only show that the matrix PST (ρ, U) is robust
to exponentially small perturbations, not polynomially small ones. The problem is that if
any row or column sum in the U (t) matrix is extremely small, then the (r, c)-scaling process
will magnify tiny errors in the entries. Intuitively, though, this effect should be washed out
by later scaling steps.

A second open problem is whether there exists a theory that satisfies indifference,
as well as commutativity for all separable mixed states (not just separable pure states).
A third problem is to investigate other notions of robustness—for example, robustness to
small multiplicative rather than additive errors.

On the complexity side, perhaps the most interesting problem left open by this
chapter is the computational complexity of simulating Bohmian mechanics. I strongly
conjecture that this problem, like the hidden-variable problems we have seen, is strictly
harder than simulating an ordinary quantum computer. The trouble is that Bohmian
mechanics does not quite fit in the framework of this chapter: as discussed in Section
16.3.2, we cannot have deterministic hidden-variable trajectories for discrete degrees of
freedom such as qubits. Even worse, Bohmian mechanics violates the continuous analogue
of the indifference axiom. On the other hand, this means that by trying to implement
(say) the juggle subroutine with Bohmian trajectories, one might learn not only about
Bohmian mechanics and its relation to quantum computation, but also about how essential
the indifference axiom really is for our implementation.

Another key open problem is to show better upper bounds on DQP. Recall that
I was only able to show DQP ⊆ EXP, by giving a classical exponential-time algorithm to
simulate the flow theory FT . Can we improve this to (say) DQP ⊆ PSPACE? Clearly
it would suffice to give a PSPACE algorithm that computes the transition probabilities for
some theory T satisfying the indifference and robustness axioms. On the other hand, this
might not be necessary—that is, there might be an indirect simulation method that does
not work by computing (or even sampling from) the distribution over histories. It would
also be nice to pin down the complexities of simulating specific hidden-variable theories,
such as FT and ST .

228

Chapter 17

Summary of Part II

Recall our hypothetical visitor from Conway’s Game of Life, on a complexity safari
of the physical universe. Based on the results in Part II, the following are some intuitions
about efficient computation that I would advise our visitor to toss in the garbage.

• We can be fairly confident that the class of functions efficiently computable in the
physical world coincides with P (or BPP, which is presumably equal).

• Although there are models of efficient computation more powerful than P, involving
the manipulation of arbitrary real or complex numbers, these models will inevitably
blow up small errors in the numbers nonlinearly, and must be therefore be unphysical.

• A robot, moving at unit speed, would need order n steps to search a spatial region of
size n for a marked item.

• The ability to see one’s entire “history” in a single time step cannot yield any complexity-
theoretic advantage, since one could always just record the history as one went along,
at the cost of a polynomial increase in memory.

On the other hand, just as in Part I, we have seen that many of the intuitions in
our visitor’s suitcase are good to go. For example:

• If the items in a database have distance d from one another, then the time needed to
search the database is about d times what it would be if the items had unit distance
from one another.

• It is possible to choose a probability distribution over histories, in such a way that state
i is never followed in a history by state j if the corresponding transition probability
is zero, and such that a small change to the transition matrices produces only a small
change in the history distribution.

• If, at the moment of your death, your entire life’s history flashed before you in an
instant, then you could probably still not solve NP-complete problems in polynomial
time.

229

Bibliography

[1] S. Aaronson. Book review on A New Kind of Science. Quantum Information and
Computation, 2(5):410–423, 2002. quant-ph/0206089.

[2] S. Aaronson. Quantum lower bound for the collision problem. In Proc. ACM STOC,
pages 635–642, 2002. quant-ph/0111102.

[3] S. Aaronson. Algorithms for Boolean function query properties. SIAM J. Comput.,
32(5):1140–1157, 2003.

[4] S. Aaronson. Quantum certificate complexity. In Proc. IEEE Conference on Compu-
tational Complexity, pages 171–178, 2003. ECCC TR03-005, quant-ph/0210020.

[5] S. Aaronson. Quantum lower bound for recursive Fourier sampling. Quantum Infor-
mation and Computation, 3(2):165–174, 2003. ECCC TR02-072, quant-ph/0209060.

[6] S. Aaronson. The complexity of agreement. ECCC TR04-061, 2004.

[7] S. Aaronson. Is quantum mechanics an island in theoryspace? In A. Khrennikov,
editor, Proceedings of the Växjö Conference “Quantum Theory: Reconsideration of
Foundations”, 2004. quant-ph/0401062.

[8] S. Aaronson. Limitations of quantum advice and one-way communication. Theory of
Computing, 2004. To appear. Conference version in Proc. IEEE Complexity 2004, pp.
320-332. quant-ph/0402095.

[9] S. Aaronson. Lower bounds for local search by quantum arguments. In Proc. ACM
STOC, pages 465–474, 2004. ECCC TR03-057, quant-ph/0307149.

[10] S. Aaronson. Multilinear formulas and skepticism of quantum computing. In Proc.
ACM STOC, pages 118–127, 2004. quant-ph/0311039.

[11] S. Aaronson. Quantum computing and hidden variables. Accepted to Phys. Rev. A.
quant-ph/0408035 and quant-ph/0408119, 2004.

[12] S. Aaronson. NP-complete problems and physical reality: a survey. In preparation;
invited for SIGACT News, 2005.

[13] S. Aaronson and A. Ambainis. Quantum search of spatial regions. Theory of Com-
puting, 2004. To appear. Conference version in Proc. IEEE FOCS 2003, pp. 200-209.
quant-ph/0303041.

230

[14] S. Aaronson and D. Gottesman. Improved simulation of stabilizer circuits. Phys. Rev.
Lett., 70(052328), 2004. quant-ph/0406196.

[15] D. S. Abrams and S. Lloyd. Nonlinear quantum mechanics implies polynomial-time
solution for NP-complete and #P problems. Phys. Rev. Lett., 81:3992–3995, 1998.
quant-ph/9801041.

[16] L. Adleman, J. DeMarrais, and M.-D. Huang. Quantum computability. SIAM J.
Comput., 26(5):1524–1540, 1997.

[17] M. Agrawal, N. Kayal, and N. Saxena. PRIMES is in P.
www.cse.iitk.ac.in/users/manindra/primality.ps, 2002.

[18] D. Aharonov. Quantum computation - a review. In Dietrich Stauffer, editor, Annual
Review of Computational Physics, volume VI. 1998. quant-ph/9812037.

[19] D. Aharonov, A. Ambainis, J. Kempe, and U. Vazirani. Quantum walks on graphs.
In Proc. ACM STOC, pages 50–59, 2001. quant-ph/0012090.

[20] D. Aharonov and M. Ben-Or. Fault-tolerant quantum computation with constant
error. In Proc. ACM STOC, pages 176–188, 1997. quant-ph/9906129.

[21] D. Aharonov and T. Naveh. Quantum NP - a survey. quant-ph/0210077, 2002.

[22] D. Aharonov and O. Regev. Lattice problems in NP intersect coNP. In Proc. IEEE
FOCS, pages 362–371, 2004.

[23] D. Aharonov and A. Ta-Shma. Adiabatic quantum state generation and statistical
zero knowledge. In Proc. ACM STOC, pages 20–29, 2003. quant-ph/0301023.

[24] D. Aldous. Minimization algorithms and random walk on the d-cube. Annals of
Probability, 11(2):403–413, 1983.

[25] A. Ambainis. In preparation.

[26] A. Ambainis. A note on quantum black-box complexity of almost all Boolean func-
tions. Inform. Proc. Lett., 71:5–7, 1999. quant-ph/9811080.

[27] A. Ambainis. Quantum lower bounds by quantum arguments. J. Comput. Sys. Sci.,
64:750–767, 2002. Earlier version in ACM STOC 2000. quant-ph/0002066.

[28] A. Ambainis. Polynomial degree vs. quantum query complexity. In Proc. IEEE FOCS,
pages 230–239, 2003. quant-ph/0305028.

[29] A. Ambainis. Quantum lower bounds for collision and element distinctness with small
range. quant-ph/0305179, 2003.

[30] A. Ambainis. Quantum walk algorithm for element distinctness. In Proc. IEEE FOCS,
2004. quant-ph/0311001.

231

[31] A. Ambainis, J. Kempe, and A. Rivosh. Coins make quantum walks faster. In
Proc. ACM-SIAM Symp. on Discrete Algorithms (SODA), 2005. To appear. quant-
ph/0402107.

[32] A. Ambainis, A. Nayak, A. Ta-Shma, and U. V. Vazirani. Quantum dense coding and
quantum finite automata. J. ACM, 49:496–511, 2002. Earlier version in ACM STOC
1999, pp. 376-383. quant-ph/9804043.

[33] A. Ambainis, L. J. Schulman, A. Ta-Shma, U. V. Vazirani, and A. Wigderson. The
quantum communication complexity of sampling. SIAM J. Comput., 32:1570–1585,
2003.

[34] A. Ambainis, L. J. Schulman, and U. V. Vazirani. Computing with highly mixed states
(extended abstract). In Proc. ACM STOC, pages 697–704, 2000. quant-ph/0003136.

[35] M. Arndt, O. Nairz, J. Vos-Andreae, C. Keller, G. van der Zouw, and A. Zeilinger.
Wave-particle duality of C60 molecules. Nature, 401:680–682, 1999.

[36] S. Arora, R. Impagliazzo, and U. Vazirani. Relativizing versus nonrelativizing tech-
niques: the role of local checkability. Manuscript, 1992.

[37] A. Aspect, P. Grangier, and G. Roger. Experimental realization of Einstein-Podolsky-
Rosen-Bohm gedankenexperiment: a new violation of Bell’s inequalities. Phys. Rev.
Lett., 49:91–94, 1982.

[38] L. Babai. Bounded round interactive proofs in finite groups. SIAM J. Discrete Math,
5(1):88–111, 1992.

[39] G. Bacciagaluppi and M. Dickson. Dynamics for modal interpretations of quantum
theory. Found. Phys., 29:1165–1201, 1999. quant-ph/9711048.

[40] D. Bacon. Quantum computational complexity in the presence of closed timelike
curves. quant-ph/0309189, 2003.

[41] T. Baker, J. Gill, and R. Solovay. Relativizations of the P=?NP question. SIAM J.
Comput., 4:431–442, 1975.

[42] S. Bakhtiari, R. Safavi-Naini, and J. Pieprzyk. Cryptographic hash functions: a
survey. Technical Report 95-09, Department of Computer Science, University of Wol-
longong, July 1995.

[43] Z. Bar-Yossef, T. S. Jayram, and I. Kerenidis. Exponential separation of quantum and
classical one-way communication complexity. In Proc. ACM STOC, pages 128–137,
2004. ECCC TR04-036.

[44] H. Barnum, M. Saks, and M. Szegedy. Quantum query complexity and semi-definite
programming. In Proc. IEEE Conference on Computational Complexity, pages 179–
193, 2003.

232

[45] R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf. Quantum lower bounds
by polynomials. J. ACM, 48(4):778–797, 2001. Earlier version in IEEE FOCS 1998,
pp. 352-361. quant-ph/9802049.

[46] R. Beigel. Perceptrons, PP, and the polynomial hierarchy. Computational Complexity,
4:339–349, 1994.

[47] R. Beigel, N. Reingold, and D. Spielman. PP is closed under intersection. J. Comput.
Sys. Sci., 50(2):191–202, 1995.

[48] J. D. Bekenstein. A universal upper bound on the entropy to energy ratio for bounded
systems. Phys. Rev. D, 23(2):287–298, 1981.

[49] J. S. Bell. Speakable and Unspeakable in Quantum Mechanics. Cambridge, 1987.

[50] P. Benioff. Space searches with a quantum robot. In S. J. Lomonaco and H. E. Brandt,
editors, Quantum Computation and Information, Contemporary Mathematics Series.
AMS, 2002. quant-ph/0003006.

[51] C. Bennett, E. Bernstein, G. Brassard, and U. Vazirani. Strengths and weaknesses of
quantum computing. SIAM J. Comput., 26(5):1510–1523, 1997. quant-ph/9701001.

[52] C. H. Bennett. Logical reversibility of computation. IBM Journal of Research and
Development, 17:525–532, 1973.

[53] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. Wootters.
Teleporting an unknown quantum state by dual classical and EPR channels. Phys.
Rev. Lett., 70:1895–1898, 1993.

[54] C. H. Bennett and J. Gill. Relative to a random oracle A, PA 6= NPA 6= coNPA with
probability 1. SIAM J. Comput., 10(1):96–113, 1981.

[55] E. Bernstein and U. Vazirani. Quantum complexity theory. SIAM J. Comput.,
26(5):1411–1473, 1997. First appeared in ACM STOC 1993.

[56] S. N. Bernstein. Sur l’ordre de la meilleure approximation des fonctions continues
par les polynômes de degré donné. Mem. Cl. Sci. Acad. Roy. Belg., 4:1–103, 1912.
French.

[57] A. Berthiaume and G. Brassard. Oracle quantum computing. In Proc. Workshop on
Physics of Computation: PhysComp’92, pages 195–199. IEEE, 1992.

[58] A. Beurling. An automorphism of direct product measures. Ann. Math., 72:189–200,
1960.

[59] D. Bohm. A suggested interpretation of the quantum theory in terms of “hidden”
variables. Phys. Rev., 85:166–193, 1952.

[60] D. Bohm and B. Hiley. The Undivided Universe. Routledge, 1993.

233

[61] D. Boneh and R. Lipton. Algorithms for black box fields and their application to
cryptography. In Proceedings of CRYPTO, volume 109, pages 283–297. Lecture Notes
in Computer Science, 1996.

[62] M. L. Bonet and S. R. Buss. Size-depth tradeoff for Boolean formulae. Inform. Proc.
Lett., 11:151–155, 1994.

[63] R. B. Boppana, J. H̊astad, and S. Zachos. Does co-NP have short interactive proofs?
Inform. Proc. Lett., 25:127–132, 1987.

[64] R. Bousso. Positive vacuum energy and the N-bound. J. High Energy Phys.,
0011(038), 2000. hep-th/0010252.

[65] R. Bousso. The holographic principle. Reviews of Modern Physics, 74(3), 2002. hep-
th/0203101.

[66] M. Boyer, G. Brassard, P. Høyer, and A. Tapp. Tight bounds on quantum searching.
Fortschritte Der Physik, 46(4-5):493–505, 1998. quant-ph/9605034.

[67] G. Brassard, P. Høyer, M. Mosca, and A. Tapp. Quantum amplitude amplification
and estimation. In S. J. Lomonaco and H. E. Brandt, editors, Quantum Computation
and Information, Contemporary Mathematics Series. AMS, 2002. quant-ph/0005055.

[68] G. Brassard, P. Høyer, and A. Tapp. Quantum algorithm for the collision problem.
ACM SIGACT News, 28:14–19, 1997. quant-ph/9705002.

[69] S. L. Braunstein, C. M. Caves, N. Linden, S. Popescu, and R. Schack. Separability of
very noisy mixed states and implications for NMR quantum computing. Phys. Rev.
Lett., 83:1054–1057, 1999. quant-ph/9811018.

[70] R. P. Brent. The parallel evaluation of general arithmetic expressions. J. ACM,
21:201–206, 1974.

[71] H. J. Briegel and R. Raussendorf. Persistent entanglement in arrays of interacting
particles. Phys. Rev. Lett., 86:910–913, 2001. quant-ph/0004051.

[72] T. Brun. Computers with closed timelike curves can solve hard problems. Foundations
of Physics Letters, 16:245–253, 2003. gr-qc/0209061.

[73] N. H. Bshouty, R. Cleve, and W. Eberly. Size-depth tradeoffs for algebraic formulae.
SIAM J. Comput., 24(4):682–705, 1995.

[74] S. Bublitz, U. Schürfeld, B. Voigt, and I. Wegener. Properties of complexity measures
for PRAMs and WRAMs. Theoretical Comput. Sci., 48:53–73, 1986.

[75] H. Buhrman, R. Cleve, J. Watrous, and R. de Wolf. Quantum fingerprinting. Phys.
Rev. Lett., 87(16), 2001. quant-ph/0102001.

[76] H. Buhrman, R. Cleve, and A. Wigderson. Quantum vs. classical communication and
computation. In Proc. ACM STOC, pages 63–68, 1998. quant-ph/9702040.

234

[77] H. Buhrman, C. Dürr, M. Heiligman, P. Høyer, F. Magniez, M. Santha, and R. de
Wolf. Quantum algorithms for element distinctness. In Proc. IEEE Conference on
Computational Complexity, pages 131–137, 2001. quant-ph/0007016.

[78] H. Buhrman and R. de Wolf. Complexity measures and decision tree complexity: a
survey. Theoretical Comput. Sci., 288:21–43, 2002.

[79] P. Bürgisser, M. Clausen, and M. A. Shokrollahi. Algebraic Complexity Theory.
Springer-Verlag, 1997.

[80] A. R. Calderbank and P. W. Shor. Good quantum error-correcting codes exist. Phys.
Rev. A, 54:1098–1105, 1996. quant-ph/9512032.

[81] C. M. Caves, C. A. Fuchs, and R. Schack. Unknown quantum states: the quantum
de Finetti representation. J. Math. Phys., 45(9):4537–4559, 2002. quant-ph/0104088.

[82] E. W. Cheney. Introduction to Approximation Theory. McGraw-Hill, 1966.

[83] A. M. Childs, R. Cleve, E. Deotto, E. Farhi, S. Gutmann, and D. A. Spielman.
Exponential algorithmic speedup by quantum walk. In Proc. ACM STOC, pages
59–68, 2003. quant-ph/0209131.

[84] A. M. Childs, E. Farhi, and S. Gutmann. An example of the difference between
quantum and classical random walks. Quantum Information and Computation, 1(1-
2):35–43, 2002. quant-ph/0103020.

[85] A. M. Childs and J. Goldstone. Spatial search and the Dirac equation. Phys. Rev. A,
70(042312), 2004. quant-ph/0405120.

[86] A. M. Childs and J. Goldstone. Spatial search by quantum walk. Phys. Rev. A,
70(022314), 2004. quant-ph/0306054.

[87] R. Cleve, A. Ekert, C. Macchiavello, and M. Mosca. Quantum algorithms revisited.
Proc. Roy. Soc. London, A454:339–354, 1998. quant-ph/9708016.

[88] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms
(2nd edition). MIT Press, 2001.

[89] J. Cronin. CP symmetry violation - the search for its origin. Nobel Lecture, December
8, 1980.

[90] W. van Dam, S. Hallgren, and L. Ip. Algorithms for some hidden shift problems.
In Proc. ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 489–498, 2003.
quant-ph/0211140.

[91] W. van Dam, M. Mosca, and U. Vazirani. How powerful is adiabatic quantum com-
putation? In Proc. IEEE FOCS, pages 279–287, 2001. quant-ph/0206003.

[92] D. Deutsch. Quantum theory, the Church-Turing principle and the universal quantum
computer. Proc. Roy. Soc. London, A400:97–117, 1985.

235

[93] D. Deutsch. Quantum mechanics near closed timelike lines. Phys. Rev. D, 44:3197–
3217, 1991.

[94] D. Deutsch. The Fabric of Reality. Penguin, 1998.

[95] D. Deutsch. Quantum theory of probability and decisions. Proc. Roy. Soc. London,
A455:3129–3137, 1999. quant-ph/9906015.

[96] D. Deutsch, A. Barenco, and A. Ekert. Universality in quantum computation. Proc.
Roy. Soc. London, A449:669–677, 1995. quant-ph/9505018.

[97] D. Deutsch and R. Jozsa. Rapid solution of problems by quantum computation. Proc.
Roy. Soc. London, A439:553–558, 1992.

[98] M. Dickson. Modal interpretations of quantum mechanics. In Stanford Encyclopedia
of Philosophy. Stanford University, 2002. At http://plato.stanford.edu/entries/qm-
modal/.

[99] D. Dieks. Modal interpretation of quantum mechanics, measurements, and macro-
scopic behaviour. Phys. Rev. A, 49:2290–2300, 1994.

[100] R. Diestel. Graph Theory (2nd edition). Springer-Verlag, 2000.

[101] S. Droste, T. Jansen, and I. Wegener. Upper and lower bounds for randomized search
heuristics in black-box optimization. ECCC TR03-048, 2003.

[102] W. Dür and H. J. Briegel. Stability of macroscopic entanglement under decoherence.
Phys. Rev. Lett., 92, 2004. quant-ph/0307180.

[103] P. Durǐs, J. Hromkovič, J. D. P. Rolim, and G. Schnitger. Las Vegas versus de-
terminism for one-way communication complexity, finite automata, and polynomial-
time computations. In Proc. Intl. Symp. on Theoretical Aspects of Computer Science
(STACS), pages 117–128, 1997.

[104] C. Dürr and P. Høyer. A quantum algorithm for finding the minimum. quant-
ph/9607014, 1996.

[105] G. Egan. Quarantine: A Novel of Quantum Catastrophe. Eos, 1995. First printing
1992.

[106] H. Ehlich and K. Zeller. Schwankung von Polynomen zwischen Gitterpunkten. Math-
ematische Zeitschrift, 86:41–44, 1964.

[107] M. Ettinger and P. Høyer. On quantum algorithms for noncommutative hidden sub-
groups. Advances in Applied Mathematics, 25(3):239–251, 2000. quant-ph/9807029.

[108] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, and D. Preda. A quan-
tum adiabatic evolution algorithm applied to random instances of an NP-complete
problem. Science, 292:472–476, 2001. quant-ph/0104129.

236

[109] S. Fenner, F. Green, S. Homer, and R. Pruim. Determining acceptance possibility
for a quantum computation is hard for the polynomial hierarchy. Proc. Roy. Soc.
London, A455:3953–3966, 1999. quant-ph/9812056.

[110] R. P. Feynman. Simulating physics with computers. Int. J. Theoretical Physics,
21(6-7):467–488, 1982.

[111] R. P. Feynman. The Character of Physical Law. MIT Press, 1998. Originally published
1965.

[112] V. Fitch. The discovery of charge-conjugation parity asymmetry. Nobel Lecture,
December 8, 1980.

[113] L. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton, 1962.

[114] R. Fortet. Résolution d’un système d’équations de M. Schrödinger. J. Math Pures et.
Appl., 9:83–105, 1940.

[115] L. Fortnow. My Computational Complexity Web Log. Wednesday, October 30, 2002
entry. fortnow.com/lance/complog.

[116] L. Fortnow. One complexity theorist’s view of quantum computing. Theoretical
Comput. Sci., 292(3):597–610, 2003.

[117] L. Fortnow and N. Reingold. PP is closed under truth-table reductions. Information
and Computation, 124(1):1–6, 1996.

[118] L. Fortnow and J. Rogers. Complexity limitations on quantum computation. J.
Comput. Sys. Sci., 59(2):240–252, 1999. cs.CC/9811023.

[119] L. Fortnow and M. Sipser. Are there interactive protocols for co-NP languages?
Inform. Proc. Lett., 28:249–251, 1988.

[120] J. Franklin and J. Lorenz. On the scaling of multidimensional matrices. Linear Algebra
Appl., 114/115:717–735, 1989.

[121] J. R. Friedman, V. Patel, W. Chen, S. K. Tolpygo, and J. E. Lukens. Quantum
superposition of distinct macroscopic states. Nature, 406:43–46, 2000.

[122] M. Furst, J. B. Saxe, and M. Sipser. Parity, circuits, and the polynomial time hierar-
chy. Math. Systems Theory, 17:13–27, 1984.

[123] S. B. Gashkov. The complexity of the realization of Boolean functions by networks
of functional elements and by formulas in bases whose elements realize continuous
functions. Prob. Kibernetiki, 37:52–118, 1980.

[124] M. Gell-Mann and J. Hartle. Quantum mechanics in the light of quantum cosmol-
ogy. In W. H. Zurek, editor, Complexity, Entropy, and the Physics of Information.
Addison-Wesley, 1990.

237

[125] G. C. Ghirardi, A. Rimini, and T. Weber. Unified dynamics for microscopic and
macroscopic systems. Phys. Rev. D, 34:470–491, 1986.

[126] S. Ghosh, T. F. Rosenbaum, G. Aeppli, and S. N. Coppersmith. Entangled quantum
state of magnetic dipoles. Nature, 425:48–51, 2003. cond-mat/0402456.

[127] D. T. Gillespie. Why quantum mechanics cannot be formulated as a Markov process.
Phys. Rev. A, 49:1607, 1994.

[128] N. Gisin. Weinberg’s non-linear quantum mechanics and superluminal communica-
tions. Phys. Lett. A, 143:1–2, 1990.

[129] A. M. Gleason. Measures on the closed subspaces of a Hilbert space. J. Math. Mech.,
6:885–893, 1957.

[130] O. Goldreich. On quantum computing. www.wisdom.weizmann.ac.il/˜oded/on-
qc.html, 2004.

[131] O. Goldreich and S. Goldwasser. On the limits of non-approximability of lattice
problems. In Proc. ACM STOC, pages 1–9, 1998.

[132] O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but their validity
or all languages in NP have zero-knowledge proof systems. J. ACM, 38(1):691–729,
1991.

[133] S. Goldwasser and M. Sipser. Private coins versus public coins in interactive proof
systems. In Randomness and Computation, volume 5 of Advances in Computing
Research. JAI Press, 1989.

[134] D. Gottesman. Class of quantum error-correcting codes saturating the quantum Ham-
ming bound. Phys. Rev. A, 54:1862–1868, 1996. quant-ph/9604038.

[135] D. Gottesman. The Heisenberg representation of quantum computers. Talk at Int.
Conf. on Group Theoretic Methods in Physics. quant-ph/9807006, 1998.

[136] F. Green, S. Homer, C. Moore, and C. Pollett. Counting, fanout, and the complexity
of quantum ACC. Quantum Information and Computation, 2(1):35–65, 2002. quant-
ph/0106017.

[137] F. Green and R. Pruim. Relativized separation of EQP from PNP . Inform. Proc.
Lett., 80(5):257–260, 2001.

[138] D. M. Greenberger, M. A. Horne, and A. Zeilinger. Bell’s theorem without inequalities.
In A. I. Miller, editor, Sixty-Two Years of Uncertainty: Historical, Philosophical, and
Physical Inquiries into the Foundations of Quantum Mechanics. Plenum, 1990.

[139] R. B. Griffiths. Choice of consistent family, and quantum incompatibility. Phys. Rev.
A, 57:1604, 1998. quant-ph/9708028.

238

[140] M. Grigni, L. Schulman, M. Vazirani, and U. Vazirani. Quantum mechanical algo-
rithms for the nonabelian hidden subgroup problem. In Proc. ACM STOC, pages
68–74, 2001.

[141] L. K. Grover. A fast quantum mechanical algorithm for database search. In Proc.
ACM STOC, pages 212–219, 1996. quant-ph/9605043.

[142] E. Guay and L. Marchildon. Two-particle interference in standard and Bohmian quan-
tum mechanics. J. Phys. A.: Math. Gen., 36:5617–5624, 2003. quant-ph/0302085.

[143] S. Hallgren. Polynomial-time quantum algorithms for Pell’s equation and the principal
ideal problem. In Proc. ACM STOC, pages 653–658, 2002.

[144] Y. Han, L. Hemaspaandra, and T. Thierauf. Threshold computation and crypto-
graphic security. SIAM J. Comput., 26(1):59–78, 1997.

[145] L. Hardy. Quantum theory from five reasonable axioms. quant-ph/0101012, 2003.

[146] A. J. Hoffman and H. W. Wielandt. The variation of the spectrum of a normal matrix.
Duke J. Math, 20:37–39, 1953.

[147] A. S. Holevo. Some estimates of the information transmitted by quantum commu-
nication channels. Problems of Information Transmission, 9:177–183, 1973. English
translation.

[148] P. Høyer and R. de Wolf. Improved quantum communication complexity bounds for
disjointness and equality. In Proc. Intl. Symp. on Theoretical Aspects of Computer
Science (STACS), pages 299–310, 2002. quant-ph/0109068.

[149] R. Impagliazzo and A. Wigderson. P=BPP unless E has subexponential circuits:
derandomizing the XOR Lemma. In Proc. ACM STOC, pages 220–229, 1997.

[150] D. Janzing, P. Wocjan, and T. Beth. Cooling and low energy state preparation for
3-local Hamiltonians are FQMA-complete. quant-ph/0303186, 2003.

[151] D. S. Johnson, C. H. Papadimitriou, and M. Yannakakis. How easy is local search?
J. Comput. Sys. Sci., 37:79–100, 1988.

[152] E. Kashefi, A. Kent, V. Vedral, and K. Banaszek. A comparison of quantum oracles.
Phys. Rev. A, 65, 2002. quant-ph/0109104.

[153] I. Kerenidis and R. de Wolf. Exponential lower bound for 2-query locally decodable
codes via a quantum argument. In Proc. ACM STOC, pages 106–115, 2003. quant-
ph/0208062.

[154] A. Kitaev. Quantum measurements and the abelian stabilizer problem. ECCC TR96-
003, quant-ph/9511026, 1996.

[155] A. Kitaev. Quantum computation: algorithms and error correction. Russian Math.
Surveys, 52(6):1191–1249, 1997.

239

[156] H. Klauck. Quantum communication complexity. In Proc. Intl. Colloquium on
Automata, Languages, and Programming (ICALP), pages 241–252, 2000. quant-
ph/0005032.

[157] H. Klauck. Quantum time-space tradeoffs for sorting. In Proc. ACM STOC, pages
69–76, 2003. quant-ph/0211174.

[158] H. Klauck, R. Špalek, and R. de Wolf. Quantum and classical strong direct product
theorems and optimal time-space tradeoffs. In Proc. IEEE FOCS, pages 12–21, 2004.
quant-ph/0402123.

[159] A. Klivans and D. van Melkebeek. Graph nonisomorphism has subexponential size
proofs unless the polynomial-time hierarchy collapses. SIAM J. Comput., 31:1501–
1526, 2002. Earlier version in ACM STOC 1999.

[160] E. Knill, R. Laflamme, R. Martinez, and C. Negrevergne. Implementation of the
five qubit error correction benchmark. Phys. Rev. Lett., 86:5811–5814, 2001. quant-
ph/0101034.

[161] E. Knill, R. Laflamme, and W. Zurek. Resilient quantum computation. Science,
279:342–345, 1998. quant-ph/9702058.

[162] E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge, 1997.

[163] S. Kutin. A quantum lower bound for the collision problem. quant-ph/0304162, 2003.

[164] R. E. Ladner. On the structure of polynomial time reducibility. J. ACM, 22:155–171,
1975.

[165] C. Lautemann. BPP and the polynomial hierarchy. Inform. Proc. Lett., 17:215–217,
1983.

[166] A. J. Leggett. Testing the limits of quantum mechanics: motivation, state of play,
prospects. J. Phys. Condensed Matter, 14:R415–451, 2002.

[167] L. A. Levin. Polynomial time and extravagant models, in The tale of one-way func-
tions. Problems of Information Transmission, 39(1):92–103, 2003. cs.CR/0012023.

[168] N. Linial, Y. Mansour, and N. Nisan. Constant depth circuits, Fourier transform, and
learnability. J. ACM, 40(3):607–620, 1993.

[169] N. Linial, A. Samorodnitsky, and A. Wigderson. A deterministic strongly polynomial
algorithm for matrix scaling and approximate permanents. Combinatorica, 20(4):545–
568, 2000.

[170] D. C. Llewellyn and C. Tovey. Dividing and conquering the square. Discrete Appl.
Math, 43:131–153, 1993.

[171] D. C. Llewellyn, C. Tovey, and M. Trick. Local optimization on graphs. Discrete
Appl. Math, 23:157–178, 1989. Erratum: 46:93–94, 1993.

240

[172] S. Lloyd. Computational capacity of the universe. Phys. Rev. Lett., 88, 2002. quant-
ph/0110141.

[173] C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic methods for interactive
proof systems. J. ACM, 39:859–868, 1992.

[174] A. A. Markov. On a question by D. I. Mendeleev. Zapiski Impera-
torskoi Akademii Nauk, SP6(62):1–24, 1890. Russian. English translation at
www.math.technion.ac.il/hat/fpapers/markov4.pdf.

[175] V. A. Markov. Über Polynome, die in einem gegebenen Intervalle möglichst wenig
von Null abweichen. Math. Ann., 77:213–258, 1916. German. Originally written in
1892.

[176] N. Megiddo and C. H. Papadimitriou. On total functions, existence theorems, and
computational complexity. Theoretical Comput. Sci., 81:317–324, 1991.

[177] N. D. Mermin. From cbits to qbits: teaching computer scientists quantum mechanics.
American J. Phys., 71(1):23–30, 2003. quant-ph/0207118.

[178] G. Midrijanis. A polynomial quantum query lower bound for the set equality problem.
In Proc. Intl. Colloquium on Automata, Languages, and Programming (ICALP), pages
996–1005, 2004. quant-ph/0401073.

[179] G. L. Miller. Riemann’s hypothesis and tests for primality. J. Comput. Sys. Sci.,
13:300–317, 1976.

[180] M. Minsky and S. Papert. Perceptrons (2nd edition). MIT Press, 1988. First appeared
in 1968.

[181] M. Nagasawa. Transformations of diffusions and Schrödinger processes. Prob. Theory
and Related Fields, 82:109–136, 1989.

[182] A. Nayak. Optimal lower bounds for quantum automata and random access codes.
In Proc. IEEE FOCS, pages 369–377, 1999. quant-ph/9904093.

[183] E. Nelson. Quantum Fluctuations. Princeton, 1985.

[184] M. Nielsen and I. Chuang. Quantum Computation and Quantum Information. Cam-
bridge University Press, 2000.

[185] N. Nisan. CREW PRAMs and decision trees. SIAM J. Comput., 20(6):999–1007,
1991.

[186] N. Nisan and M. Szegedy. On the degree of Boolean functions as real polynomials.
Computational Complexity, 4(4):301–313, 1994.

[187] N. Nisan and A. Wigderson. Hardness vs. randomness. J. Comput. Sys. Sci.,
49(2):149–167, 1994.

241

[188] H. Nishimura and T. Yamakami. Polynomial time quantum computation with advice.
Inform. Proc. Lett., 90:195–204, 2003. ECCC TR03-059, quant-ph/0305100.

[189] C. H. Papadimitriou. Talk at UC Berkeley, February 6, 2003.

[190] C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[191] R. Penrose. The Emperor’s New Mind. Oxford, 1989.

[192] C. Philippidis, C. Dewdney, and B. J. Hiley. Quantum interference and the quantum
potential. Nuovo Cimento, 52B:15–28, 1979.

[193] J. Polchinski. Weinberg’s nonlinear quantum mechanics and the Einstein-Podolsky-
Rosen paradox. Phys. Rev. Lett., 66:397–400, 1991.

[194] M. Rabin and A. C-C. Yao. Manuscript, cited in [247], 1979.

[195] E. Rains. Talk given at AT&T, Murray Hill, New Jersey, on March 12, 1997.

[196] R. Raussendorf, D. E. Browne, and H. J. Briegel. Measurement-based quantum com-
putation on cluster states. Phys. Rev. A, 68, 2003. quant-ph/0301052.

[197] R. Raz. Multi-linear formulas for permanent and determinant are of super-polynomial
size. In Proc. ACM STOC, pages 633–641, 2004. ECCC TR03-067.

[198] R. Raz. Multilinear-NC1 6= Multilinear-NC2. In Proc. IEEE FOCS, pages 344–351,
2004. ECCC TR04-042.

[199] R. Raz, G. Tardos, O. Verbitsky, and N. Vereshchagin. Arthur-Merlin games in
Boolean decision trees. J. Comput. Sys. Sci., 59(2):346–372, 1999.

[200] A. A. Razborov. Lower bounds for the size of circuits of bounded depth with basis
{&,⊕}. Mathematicheskie Zametki, 41(4):598–607, 1987. English translation in Math.
Notes. Acad. Sci. USSR 41(4):333–338, 1987.

[201] A. A. Razborov. Quantum communication complexity of symmetric predicates.
Izvestiya Math. (English version), 67(1):145–159, 2003. quant-ph/0204025.

[202] A. A. Razborov and S. Rudich. Natural proofs. J. Comput. Sys. Sci., 55(1):24–35,
1997.

[203] I. B. Damg̊ard. Collision free hash functions and public key signature schemes. In Pro-
ceedings of Eurocrypt’87, volume 304 of Lecture Notes in Computer Science. Springer-
Verlag, 1988.

[204] O. Reingold. Undirected ST-connectivity in log-space. 2004.

[205] T. J. Rivlin. Chebyshev Polynomials: From Approximation Theory to Algebra and
Number Theory. Wiley, 1990.

242

[206] T. J. Rivlin and E. W. Cheney. A comparison of uniform approximations on an
interval and a finite subset thereof. SIAM J. Numerical Analysis, 3(2):311–320, 1966.

[207] C. Rovelli and L. Smolin. Discreteness of area and volume in quantum gravity. Nuclear
Physics, B442:593–622, 1995. Erratum in Vol. B456, p. 753. gr-qc/9411005.

[208] T. Rudolph and L. Grover. Quantum searching a classical database (or how we learned
to stop worrying and love the bomb). quant-ph/0206066, 2002.

[209] B. S. Ryden. Introduction to Cosmology. Addison-Wesley, 2002.

[210] S. Perlmutter and 31 others (Supernova Cosmology Project). Measurements of Ω and
Λ from 42 high-redshift supernovae. Astrophysical Journal, 517(2):565–586, 1999.
astro-ph/9812133.

[211] A. Sahai and S. Vadhan. A complete promise problem for statistical zero-knowledge.
J. ACM, 50(2):196–249, 2003. ECCC TR00-084. Earlier version in IEEE FOCS 1997.

[212] M. Santha. On the Monte-Carlo decision tree complexity of read-once formulae.
Random Structures and Algorithms, 6(1):75–87, 1995.

[213] M. Santha and M. Szegedy. Quantum and classical query complexities of local search
are polynomially related. In Proc. ACM STOC, pages 494–501, 2004.

[214] N. Sauer. On the density of families of sets. J. Combinatorial Theory Series A,
13:145–147, 1972.

[215] E. Schrödinger. Über die Umkehrung der Naturgesetze. Sitzungsber. Preuss. Akad.
Wissen. Phys. Math. Kl., (1):144–153, 1931.

[216] L. J. Schulman and U. V. Vazirani. Molecular scale heat engines and scalable quantum
computation. In Proc. ACM STOC, pages 322–329, 1999.

[217] A. Shamir. IP=PSPACE. J. ACM, 39(4):869–877, 1992.

[218] N. Shenvi, J. Kempe, and K. B. Whaley. A quantum random walk search algorithm.
Phys. Rev. A, 67(5), 2003. quant-ph/0210064.

[219] Y. Shi. Both Toffoli and controlled-NOT need little help to do universal quantum
computation. Quantum Information and Computation, 3(1):84–92, 2002. quant-
ph/0205115.

[220] Y. Shi. Quantum lower bounds for the collision and the element distinctness problems.
In Proc. IEEE FOCS, pages 513–519, 2002. quant-ph/0112086.

[221] P. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms
on a quantum computer. SIAM J. Comput., 26(5):1484–1509, 1997. Earlier version
in IEEE FOCS 1994. quant-ph/9508027.

[222] D. Simon. On the power of quantum computation. In Proc. IEEE FOCS, pages
116–123, 1994.

243

[223] R. Sinkhorn. A relationship between arbitrary positive matrices and doubly stochastic
matrices. Ann. Math. Statist., 35:876–879, 1964.

[224] M. Sipser. A complexity theoretic approach to randomness. In Proc. ACM STOC,
pages 330–335, 1983.

[225] R. Smolensky. Algebraic methods in the theory of lower bounds for Boolean circuit
complexity. In Proc. ACM STOC, pages 77–82, 1987.

[226] J. H̊astad. Some optimal inapproximability results. J. ACM, 48:798–859, 2001.

[227] A. Steane. Multiple particle interference and quantum error correction. Proc. Roy.
Soc. London, A452:2551–2577, 1996. quant-ph/9601029.

[228] V. Strassen. Gaussian elimination is not optimal. Numerische Mathematik,
14(13):354–356, 1969.

[229] G. ’t Hooft. Quantum gravity as a dissipative deterministic system. Classical and
Quantum Gravity, 16:3263–3279, 1999. gr-qc/9903084.

[230] S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM J. Comput., 20(5):865–
877, 1991.

[231] B. Tsirelson. Quantum information processing lecture notes, 1997.
www.math.tau.ac.il/˜tsirel/Courses/QuantInf/lect7.ps.

[232] G. Turán and F. Vatan. On the computation of Boolean functions by analog circuits
of bounded fan-in (extended abstract). In Proc. IEEE FOCS, pages 553–564, 1994.

[233] L. G. Valiant and V. V. Vazirani. NP is as easy as detecting unique solutions. Theo-
retical Comput. Sci., 47(3):85–93, 1986.

[234] L. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. H. Sherwood, and I. L.
Chuang. Experimental realization of Shor’s quantum factoring algorithm using nuclear
magnetic resonance. Nature, 414:883–887, 2001. quant-ph/0112176.

[235] U. Vazirani. UC Berkeley Quantum computation course lecture notes, 2004. At
www.cs.berkeley.edu/˜vazirani/quantum.html.

[236] G. Vidal. Efficient classical simulation of slightly entangled quantum computations.
Phys. Rev. Lett., 91, 2003. quant-ph/0301063.

[237] H. E. Warren. Lower bounds for approximation by non-linear manifolds. Trans. Amer.
Math. Soc., 133:167–178, 1968.

[238] J. Watrous. On one-dimensional quantum cellular automata. In Proc. IEEE FOCS,
pages 528–537, 1995.

[239] J. Watrous. Succinct quantum proofs for properties of finite groups. In Proc. IEEE
FOCS, pages 537–546, 2000. cs.CC/0009002.

244

[240] I. Wegener and L. Zádori. A note on the relations between critical and sensitive
complexity. EIK: Journal of Information Processing and Cybernetics, 25:417–421,
1989.

[241] S. Weinberg. Dreams of a Final Theory. Vintage, 1994.

[242] E. Wigner. The unreasonable effectiveness of mathematics in the natural sciences.
Communications in Pure and Applied Mathematics, 13(1), 1960.

[243] A. Winter. Quantum and classical message identification via quantum channels.
In O. Hirota, editor, Quantum Information, Statistics, Probability (A. S. Holevo
festschrift). Rinton, 2004. quant-ph/0401060.

[244] R. de Wolf. Quantum Computing and Communication Complexity. PhD thesis, Uni-
versity of Amsterdam, 2001.

[245] R. de Wolf. Characeterization of non-deterministic quantum query and quantum
communication complexity. SIAM J. Comput., 32(3):681–699, 2003. Earlier version
in Proc. IEEE Complexity 2000. cs.CC/0001014.

[246] S. Wolfram. A New Kind of Science. Wolfram Media, 2002.

[247] A. C-C. Yao. Some complexity questions related to distributive computing. In Proc.
ACM STOC, pages 209–213, 1979.

[248] A. C-C. Yao. Quantum circuit complexity. In Proc. IEEE FOCS, pages 352–361,
1993.

[249] A. C-C. Yao. Princeton University course assignment, 2001. At
www.cs.princeton.edu/courses/archive/spr01/cs598a/assignments/hw3.ps.

[250] A. C-C. Yao. On the power of quantum fingerprinting. In Proc. ACM STOC, pages
77–81, 2003.

[251] Ch. Zalka. Could Grover’s algorithm help in searching an actual database? quant-
ph/9901068, 1999.

[252] W. H. Zurek. Environment-assisted invariance, causality, and probabilities in quantum
physics. Phys. Rev. Lett., 90, 2003. quant-ph/0211037.

