Computer Go

Martin Muller
NTT Communication Science Laboratories
Atsugi, Japan
mueller@rudolph.brl.ntt.co.jp

Abstract

Computer Go is maybe the biggest challenge faced by game program-
mers.

1 Introduction

The introduction briefly describes the rules of the game, and the history of
computer Go. Section 2 gives an overview of the current state of the art, and
discusses the many challenges posed by this research domain. Section 3 surveys
the different kinds of knowledge built into a heuristic Go program. Applications
of minimax game tree search in Go are described in Section 4, and Section 5
discusses subproblems of the game for which specific solution techniques have
been developed. The final Section 6 poses challenge problems for further re-
search in the field. A glossary contains brief definitions for technical terms that
are marked by a star in the text, as in: komi* There is an extensive but by no
means exhaustive bibliography.

1.1 The Game of Go

Go is played between two players Black and White, who alternatingly place a
stone of their own color on an empty intersection on a Go board, with Black
playing first. The standard board size is 19 x 19, but smaller sizes such as 9 x 9
and 13 x 13 are often used for teaching or fast games. The goal of the game is
to control a larger area than the opponent. Figure 1 shows the opening phase
of a typical game.

The capturing rule states that if stones of one color have been completely
surrounded by the opponent, so that no adjacent empty point remains, they
are removed from the board. Figure 2 shows two white stones with a single
adjacent empty point (liberty) at ‘a’. Tf Black plays there, the two white stones
are captured and removed from the board. If White plays on the same point
first, it will now require Black three moves at ‘a’, ‘b’ and ‘c’ to capture the
three stones. Capturing and recapturing stones can potentially lead to the
infinite repetition of positions. The ko* rule prevents that. A basic ko is shown

|
N
@/
O
N
T

)
&

Figure 1: The game of Go

in Figure 3. Rules differ slightly in their treatment of rare, more complex cases
of repetition. Players can pass at any time; two or three consecutive passes
end the game. Differences in playing strength can be balanced by a handicap
system, which allows Black to place several stones in a row at the start of the
game.

2 State of Computer Go

Of all games of skill, Go is second only to chess in terms of research and pro-
gramming efforts spent. Yet in playing strength, Go programs lag far behind
their counterparts in almost any other game. While Go programs have advanced
considerably in the last 10-15 years, they can still be beaten easily by human
players of moderate skill. The Ing foundation’s million dollar price for a profes-
sional level Go program, which expires this year, will of course go unclaimed.
However, the prize has already served its purpose, by giving a great boost to
the popularity of Go amongst games programmers and researchers.

At the time of this writing (summer 2000), the future of big, world champi-
onship caliber events is uncertain. The FOST cup has been cancelled for lack
of funding this year, and the traditional Ing tournament will stop altogether.
However, small-scale computer Go tournaments continue to be held in Asia,
Europe, North America and on the internet [53]. While human Go players are
still concentrated mainly in Asia, Computer Go has become a truly interna-
tional activity, with serious programs being developed all over the world. After
the world championship-level performance of programs in games such as chess,
checkers or Othello, there is an increasing interest in Go as the final frontier of

‘___ L
._

2 OO0+

Figure 2: The capturing rule

100:0+ 10:00+

Figure 3: Ko

computer game research.

2.1 The Challenge of Computer Go

Computer Go poses many formidable conceptual and technical challenges. Most
competitive programs have required 5-10 person-years of effort, and contain 50-
100 modules dealing with different aspects of the game. Still, the overall perfor-
mance of a program is limited by the weakest of all these components. The best
programs usually play good, master level moves. However, their performance
level over a full game can be much lower.

The following two games illustrate both sides of the story: on one hand,
programs can look quite proficient in the right kind of games, but on the other
hand they can lose games even with a ridiculous number of handicap stones
against a human player who knows how to exploit their weak points.

amateur
| | |

TTTT] | | professional
20Ky 15Ky 10K 34321 Ewn 1Dan 9 Dan
l

Go Programs

Figure 4: Go programs on the human ranking scale

181 00e2%% B IoaaRe T 1!
o Ldn PPN *
9 90 To000 18
IS Or [RI3STATTES am
T Lotoe oo o
o o [rreeisst o
é @@ @ @ ‘ h (g@ T gz)
o 1o S5 s ,ﬁ' SLIeTOT
- @_22_e 6 @2 : "_ _@f seée _‘_ |
Gfjihiascaetiuzec . CiomeN it iis

Figure 5: Ing Cup 1999: Goemate (B) - God++ (W), moves 1-100

2.1.1 Case Study 1: Ing Cup 1999, Go4++ vs Goemate

Figures 5 and 6 show the deciding game of the 1999 International Computer
Go Congress, informally called the Ing cup, played in Shanghai on November
13. Playing white and receiving a komi* of 8 points, Go4++ by Michael Reiss
won by 13 points over Goemate, developed by Chen Zhixing as the successor
program of Handtalk. This game develops in a tight territorial fashion typical of
most current top programs, with little fighting going on. Up to 16, both follow
standard opening principles by first surrounding the corners and then expanding
to the sides. The joseki* moves from 16 to 23 are most likely contained in the
opening book of both programs. With move 30, Goj++ starts erasing the large
framework that Black has built on the left side. Black invades strongly at 31 and
39, but later lets White connect. Anyway, the result is not bad for Black in both
cases. White 52 is a strange shape move, but it succeeds in splitting up Black’s
left side. Around move 63 the game has already become an endgame contest.

N\

Figure 6: Ing Cup 1999: Goemate (B) - God++ (W), moves 101-248. 231
captures below 230, 245 pass

Black 75 is too passive. White 76 threatens to destroy the bottom left side,
but Black fails to defend, allowing successive moves at 94 and 112. However, in
return Black captures some white stones in the center in the sequence from 83,
and until move 130 the game stays very close. 131 is an inexplicable retreat and
must be caused by a programming bug. Of course Black should just connect
at 132. Up to 137 Black loses more than 10 points. The remaining endgame is
uneventful, and White achieves a safe win.

The performance of both programs in this game is very respectable. Their
play is rather simple and safe, mostly surrounding territory. While there is still a
large number of less-than-optimal moves, there are few really big mistakes. Both
programs demonstrate an understanding of many aspects of Go. For example,
they can build safe territory as well as large frameworks, and can react early
to reduce an opponent’s sphere of influence. The programs clearly incorporate
important principles of Go, they don’t just apply rote patterns as many of the
early programs did. This is evident in situations such as move 52, where they
program has insufficient detail knowledge to produce a stylish move, but is still
able to select a play in the right general area. Programs are also careful to avoid
getting weak groups, and play a reasonable endgame. In this game, White is
especially skilful in eliminating the opponent’s potential sente* moves.

This game shows computer Go at its best. However, it cannot be denied
that the style of play, which is typical of recent tournament games, hides much
of the inherent complexity of Go. In contrast, in the next case study another
top program is subjected to a more severe test.

2.1.2 Case Study 2: Giving Many Faces a 29 Stone Handicap

In August 1998, at the US Go congress in Santa Fe, New Mexico, a 29 stone
handicap game was played between the program The Many Faces of Go and
the author, with a total of 30$ in side bets riding on the outcome. Like Go/++
and Goemate, Many Faces is one of the strongest Go programs in the world,
and a few months afterwards it won the 1998 Ing cup. Many Faces is regarded
as one of the best programs when it comes to tactical fighting. However, in this
game its aggressiveness backfires. Despite the huge handicap, the game results
in a six point win for the human.

| [[|
HIPY P o Pl
| s Zan SEmE SEn ®
@ @ @
B 4 4 @ 00| S 00—
et s ®
| amn J @ SO0
[6+10) o5 1@)
PUEFNRFY ® Oll OS] COan 4 ®
|| - @ @@@@-—, ,-—
, ’ , 0B 56 @@@@
| | | 00016 ' '

Figure 7: Many Faces (B, 29 stones handicap) - Martin Miiller (W), moves 1 -
100. 28 at 21, 39 at 31, 48 at 32, 50 captures below 31, 55 at 31, 57 at 43

Figures 7 and 8 show the starting position and the game record. In the be-
ginning, White sprinkles some stones around the board to probe for weaknesses,
but Black defends well. In the bottom left, White uses a confused ko* fight to
get one living group, and continues from this basis, managing to reduce Black’s
group in the corner to one eye. Black spends too many moves trying to rescue
this group in a counterattack against the white stones floating in the center. In
the end, White manages to isolate another black group in the lower right corner,
and kill it by a nice combination that exploits a hidden dependence between two
seemingly safe eye areas. This second big capture makes the game very close,
and White easily overtakes Black in the remaining endgame. Throughout this
game, most of Black’s moves are quite reasonable, but there are just enough
mistakes to allow White to grind out a win.

Conceptually, Black’s main problem seems to be that the program tries to
fight it out with White on even terms, instead of preserving some of its huge
initial advantage by playing slow, ultra-safe moves. One might argue that a

ol L 18 00
00 L OO0 |
000, | OO O |
2000000000
o .88 ... 5.

00 00000

0OO®
00000
L S0000,

Figure 8: Moves 101-200, 201-279: 165 at 157, 196 connects below 184, 236 at
223, 264 connects right of 256, 275 pass

program playing a safer, more territorial style might be harder to overcome.
However, a few weeks before this game, in an exhibition match at the AAAI
conference professional player Janice Kim had already beaten Handtalk on a
similar huge handicap [40].

2.1.3 Assessing the State of the Art

Judged by human standards, play of current program looks ‘almost’ reasonable,
but certainly not impressive. Maybe only someone who has tried to write a Go
program him- or herself can fully appreciate the enormous amount of ingenuity
and hard work that has gone into building the state of the art systems. It is an
indication of just how hard a problem Go is that despite all efforts, the level of
programs is not higher than it is today.

2.2 Overview of the Development of Computer Go
2.2.1 Recent Development of Computer Go Programs

While Go programming started in the late sixties, it got a big boost in the mid
eighties, with the appearance of affordable PC’s on one hand, and of tournament
sponsors such as the Ing foundation on the other hand. In early tournaments,
Taiwanese programs such as Dragon [23] were successful. From 1989-91, Mark
Boon’s Goliath [5] dominated all tournaments, followed by Ken Chen’s Go In-
tellect [13, 14, 16, 15] and Chen Zhixing’s programs Handtalk and Goemate [16].
In recent years, David Fotland’s Many Faces of Go [21], the controversial North
Korean program KCC Igo and the current top program Goj++ by Michael

Reiss have also won major tournaments. In total there are about 10 top class
programs, including Haruka, Wulu, FunGo, Star of Poland and Jimmy [82].
Most of these programs are developed and distributed commercially. A step
behind the top 10 is a set of about 30 medium-strength programs, often writ-
ten by university researchers or dedicated hobbyists. Program authors include
many strong amateur Go players, and even one professional 9-dan Go player,
Tei Meiko. An interesting recent phenomenon is the appearance of open source
programs such as the new GnuGo [7]. The total size of the computer Go com-
munity can be estimated at about 200 programmers, and is growing steadily.

Several milestones have been reached in the short history of computer Go:
In 1991, Goliath won the yearly playoff between the Ing cup winner and three
strong young human players for the first time, taking a handicap of 17 stones.
Handtalk won both the 15 and 13 stone matches in 1995, and took the 11 stone
match in 1997. Programs such as Handtalk and Go4++ have also achieved
some success in even games against human players close to dan* level strength.
However, as demonstrated in the previous section, experienced human players
can still beat all current programs on much more than 11 stones. Handtalk was
successively awarded 5, 4 and 3 kyu* diplomas by the Japanese Go Association
Nihon Kun after winning the 1995-97 FOST cups, and KCC Igo received a 2
kyu diploma after its success in 1999.

In Japan, in recent years there has been an enormous increase in the number
of Go software packages on the market. At an informal survey carried out in
1999 by the author, a local medium-size software store carried no less than 27
Go-related titles, with prices ranging from 5 — —100$. All but a few of these
packages contained a playing engine.

2.2.2 Literature about Computer Go

The literature on computer Go and relevant topics has grown to the point where
it is becoming difficult to read it all. This survey contains a long but by no means
exhaustive bibliography.

The development of computer Go has been documented in a number of
previous surveys. Wilcox [74] has written extensively about the early US-based
Go programs in the seventies and eighties by Zobrist [86], Ryder [60], and by
Reitman and Wilcox [54, 56, 55, 73, 74]. Important early papers on computer Go
are collected in [38]. Kierulf’s Ph.D. thesis [28] contains references for most of
the programs that participated in the early computer Go tournaments of 1985-
1989, and describes details of the Smart Go - Ezplorer - Go Intellect line of
programs. Erbach [20] gives a good overview of the state of the art in the early
nineties. Based on their contacts with the program authors, Burmeister and
Wiles have published detailed descriptions and comparisons of several modern
Go programs such as Go4++, Handtalk, Many Faces of Go, and Go Intellect
[9, 10].

Information about computer Go programs and tournaments is available from
many interconnected web sites, including a computer Go section on the Amer-
ican Go Association’s site, www.usgo.org/ computer, maintained by the author.

An extensive bibliography of online papers about computer Go by Markus En-
zenberger is currently located at home.t—online.de/home/markus.enzenberger
/compgo_biblio.html.

Ph.D. theses about computer Go started appearing 30 years ago, and are
recently published at a rate of about one per year [6, 12, 22, 24, 28, 32, 37, 43,
57, 59, 60, 62, 86].

2.3 Go Research in Related Fields

Go has been used as the topic for research in related fields such as cognitive
science, software engineering and machine learning [11, 8, 12, 18, 29, 33, 59, 61,
62, 63, 85, 74]. Starting from only the rules of the game, learning programs can
pick up basic Go principles, such as saving a stone from capture, or making a
one point jump. Methods for learning patterns from master games are discussed
in Section 3.1.

A study by Enzenberger [19] describes the integration of a priori knowledge
from expert Go modules into a neural network program. Many further tasks
such as automatically tuning and expanding an existing knowledge base, or
learning new high-level concepts, remain as future challenges.

There are many related books, papers and theses in the field of combinatorial

game theory, including [3, 4, 2, 27, 30, 41, 50, 51, 44, 52, 66, 80, 81, 83].

2.4 Some Facts that make Go a Difficult Game for Com-
puters

2.4.1 Differences Between Programs for Go and Other Games

The large search space caused by the great number of possible moves and by
the length of the game is often cited as the main reason for the difficulty of
Go. However, as Ken Chen points out [16], even 9 x 9 Go, with a branching
factor comparable to chess, is just as difficult as full 19 x 19 Go, and current
Go programs are by no means stronger on a small board than on a big one.

The biggest difference between Go and other games is that static evalua-
tion is orders of magnitude slower and more complicated. Moreover, a good
static full-board evaluation depends on performing many auxiliary local tacti-
cal searches. In this respect Go can be compared to the single-agent puzzle of
Sokoban. Andreas Junghanns’ Sokoban solver Rolling Stone [26] derives much
of its strength from auxiliary searches that solve or approximately solve sub-
problems, and thereby help to speed up the main search by many orders of
magnitude.

2.4.2 Size and Structure of the Problem Space

The search space for 19 x 19 Go 1s large compared to other popular board
games. The number of distinct board positions is 3'°%1® ~ 10'7 and about
1.2% of these are legal [72]. Such numbers are often cited as the size of the

bl

search space. Strictly speaking, the number of distinct game positions is very
much larger because Go rules forbid position repetition. To detect and prevent
illegal moves, state information must contain the complete move history, which
enormously increases the number of distinct states.

No simple yet reasonable evaluation function seems to exist for Go. This
claim is evident to serious students of the game, and is confirmed in theory by
the fact that many difficult combinatorial problems can be formulated as Go
problems [39, 42, 58]. The situation on a Go board can be extremely chaotic,
leaving exhaustive analysis as the only known method of solution. However, a
typical position reached during a game is much more regular. In some types of
complicated-looking endgame or semeai* positions, even perfect play is possible
with little search and a good theory. This aspect of Go is maybe best exemplified
by Berlekamp’s endgame studies [4]. To play well in real-game situations, a
Go program must therefore combine good theoretical foundations with lots of
computing power.

2.4.3 Quality and Quantity of Human Knowledge

Human professional players are amazingly good at Go. They are able to rec-
ognize subtle differences in Go positions that will have a decisive effect many
moves later, and can reliably judge very early whether a large, loose group of
stones can be captured or not. Such judgment is essential for good position eval-
uation in Go. In contrast, obtaining an equivalent proof by a computer search
seems completely out of reach. Skilled players usually know which side is better
in a game after a quick glance at the position, and have no trouble reading out
sequences many moves ahead. We can contrast Go with other popular games
such as Awari, checkers or chess: Humans often get lost in the ‘combinatorial
chaos’ of the game and miss a tactical combination, while machines are able to
exploit their superior computing power.

A huge quantity of Go knowledge has accumulated over centuries, much of
it implicit in the game records of master players. Thousands of game com-
mentaries, tutorial books and problem collections have been compiled. Pattern
knowledge of experts seems at least comparable to that of chess experts, which
is already daunting [8, 17, 85]. Patterns recognized by humans are much more
than just chunks of stones and empty spaces: Players can perceive complex re-
lations between groups of stones, and easily grasp fuzzy concepts such as ‘light’
and ‘heavy’ stones. This visual nature of the game fits human perception but
is hard to model in a program. The cognitive models of Reitman and Wilcox
[56] were interesting, but today’s programs make do with comparatively sim-
ple pattern matching [5, 43]. While the knowledge of chess programs is tuned
nicely to their searching power, Go programs are still lacking in both quality
and quantity of knowledge.

It is well-known amongst Go programmers that ‘improving’ a program by
adding knowledge often makes it weaker in practice. Small changes to a Go
program can also have large and unexpected effects, or lead a program into new
types of positions that it cannot handle well.

10

3 Modeling and Representing Go Knowledge:
Some Components of Heuristic Go Programs

There are two major ways of incorporating knowledge in a Go program: Pat-
terns, described in Section 3.1, are a very direct way. On the other hand, a
structured representation using a hierarchy of components can be used to ob-
tain a more high-level description of a game state. Such representations are
discussed in Section 3.2.

3.1 Patterns and Pattern Matching

s
?._
o4

HeHeHo
|

Figure 10: The 16 symmetric instances of a pattern

Patterns are a simple yet powerful way of encoding Go knowledge. Many
types of moves, such as joseki* and tesuji* are described by patterns in the Go
literature. Patterns can be applied in all stages of the game, from opening to
endgame. Almost all Go programs contain a pattern database and a pattern

11

matching subsystem. Most pattern databases are still generated by hand, and
contain several thousand patterns. However, methods have been developed
that can automatically extract patterns from professional games [84, 32, 33, 34,
65, 67], and such a pattern-learning system is used in at least one of the top
programs.

Many variants of pattern matching problems have been studied in computer
science. In Go, a large number of 2-dimensional patterns must be compared
to a single full board position in the 16 different ways illustrated in Figure 10.
Each pattern can appear on the board in many different locations, in 8 different
orientations and in two color combinations. It is computationally expensive to
match each pattern against the board at each possible location at each turn.
Filtering techniques based on hash tables [5, 21] or tries [64, 43] enormously
reduce the set of candidate patterns that have to be compared with the current
board position.

3.1.1 Definition of Patterns
A pattern used in a Go program typically consists of three parts:

e The pattern map indicates which points belong to a pattern, and which
state among { Empty, Black, White} each point in the pattern is allowed to
have. It is useful to distinguish between corner, edge and center patterns
because the edge of the board affects many patterns.

e The pattern context specifies additional nonlocal constraints that an over-
all board position must satisfy to match the pattern. The most important
constraints involve the liberty* count of stones on the boundary of a pat-
tern.

e The pattern information contains knowledge which can be applied if the
pattern matches, such as good and bad moves or connection information.

3.1.2 Pattern Matching

A typical midgame situation produces about 500 matches from a 3000 pattern
database. The effective running time of a pattern matching algorithm depends
on a large number of factors:

e Number and size of patterns in database

e Size of the Go board

Structure of the trie or hash table used for organizing the patterns

Number of currently matching patterns

e Ratio of matches pruned by trie or hash table

Speed of pattern-board comparisons, and of context checks

12

e Optimizations for incremental matching

e Low-level performance tuning

One optimization is very important for game play: a single matching or
mismatching pattern typically depends on only a few points on the board. After
making a move, most previous (mis-)matches stay valid. To exploit this fact,
a dependency set can be kept for each match. After each move matches whose
dependency set remains unchanged can be reused. This optimization is very
effective in game play. In an experiment with the program FEzplorer on a test
suite containing ten complete games, this optimization saved 96% of all center
matches, 94% of edge matches and 93% of corner matches [43]. In contrary,
on a set of 1000 unrelated positions, the savings were only 10%, 3% and 0.2%
respectively. Several further optimizations for tree-based matching are described

in [43].

3.2 Knowledge Representation

Go programs contain a number of standard components, which model Go con-
cepts at different levels of abstraction. Selecting such components and choosing
suitable representations are two of the main steps involved in building a Go
program. Most of the basic concepts surveyed here were already developed by
the pioneers Reitman and Wilcox more than twenty years ago. Of course, many
refinements and variations have been tried since.

3.2.1 Foundation: Basic Data Types and User Interface

To support programming at a higher level of abstraction, it is useful to build a
foundation of basic data types for a Go program, such as lists, trees, or hash
tables. Many such toolkits are available for modern programming environments,
or even part of the language standard such as STL for C++. A more specialized
toolkit can handle data types such as game trees and useful functions such as a
general purpose tree search engine and SGF Smart Go Format file input/output.
Another indispensable tool for developing Go software is a graphical user inter-
face, which can support development and debugging by a board display with
markers and labels on points, tree navigation tools, an overview window show-
ing several boards at the same time, or a tree view showing the structure of the
game tree. Recently, several authors have interfaced their Go-playing engine
to use the CGoban program as a graphical front-end. The Smart Game Board
[28], which combines a game-independent toolkit with a graphical user inter-
face, was the first and is probably still the most comprehensive such tool. A
number of open source initiatives with similar goals have been started recently.
An overview with many links is given on the GNU Go web page [7].

3.2.2 Go Board

A Go board is usually implemented as a one-dimensional array, as in Figure
11. Compared to a two-dimensional array, this allows faster access to a point

13

p-WE p+WE
-— p -
p+NS

MaxPoint

Figure 11: Embedding of board into a one-dimensional array, from [28].

without an implicit multiplication, and is more convenient because a point can
be identified by a single number rather than by a pair of coordinates.

The neighbors of a point are calculated by adding or subtracting the con-
stants NS (North-South) and WE (West-East). Given the row and column of a
point in the range [1..MaxSize], the array index of the point (row, col) is NS*row
+ column. Each point on the board has a color Empty, Black or White, and
all points off the board have the color Border. Boards smaller than the max-
imum size can use the upper left corner of the large board. The whole board
is surrounded by a one-point border, so that all eight neighbors of any point
are simply accessible without needing to check for array boundaries or stepping
over to the other side of the board. The borders to the left and to the right of
the board can be shared. The following code fragment implements a simple Go

board.

const int MaxSize = 19; // maximum board size
const int MaxPoint = MaxSize*MaxSize + 3*(MaxSize+1);
// MaxPoint is large enough to hold board plus three borders

const int WE = 1; // West-East: offset of horizontal neighbors
const int NS = MaxSize+1l; // North-South: offset of vertical neighbors

typedef int Point; // point on the board, range[0..MaxPoint-1]
typedef int Position[MaxPoint]; // array to hold Go board

enum {kEmpty = 0, kBlack, kWhite, kBorder}; // states of points

inline Point Pt (Grid col, Grid row) { return NS*row + col; }
// conversion from x,y coordinates.

14

int Col (Point p) const; // get x-coordinate of point p
int Row (Point p) const; // get y-coordinate of point p
int Line (Point p) const; // get distance of p from edge of board

Position goboard; // example: declare an array to store the board.
goboard[Pt(5,3)] = kBlack; // put a stone on (5,3).

Besides integer arrays, bitmaps which store 1 bit for every point on the board
can be used for elegantly expressing many Go algorithms. For example, blocks*
and surrounded territories can be identified as connected components of points

on such bitmaps.

3.2.3 Go Rules, Executing and Undoing Moves

When executing moves, a stack can store all information that is needed for
fast undo. For a simple board, this includes the stones played and removed,
and Ko status information for checking legality of later moves. A move checker
that handles full board repetition is described in [28]. The same stack-based
architecture can be used for incremental update of other data. Klinger and
Mechner [31] describe a macro-based revertible object system that simplifies the
incremental maintenance of complex state information during tree search.

3.2.4 Blocks

e——

O 2 1O
TOTO- 00 +:0:108
| | |

.
¢

Figure 12: Blocks and liberties

Due to a multitude of languages and traditions, there is no standard nomen-
clature for Go and computer Go terms. Following Benson [1] and Kierulf [28],
we call connected stones of the same color a block. Other authors have used
terms such as string, unit, chain or worm for the same concept. Figure 12
shows three sample blocks on the left. A liberty* of a block is an empty point
adjacent to a stone of the block. The liberties of a white and a black block are
marked in the right picture. The single white stone has four liberties labeled
a, b, ¢, and d; the black block is partially surrounded by white stones and has
only two liberties labelled e and f.

Blocks are the basic elements of board representation. Attributes of blocks
include stones, liberties, connections, and references to larger structures such

OO @0
god)&{) B

C

)

Figure 13: Tactical vs. strategic status of blocks

as territories that contain the block. Liberties are the most important factor
for determining the tactical safety of blocks. A standard heuristic used in Go
programs, first proposed by Wilcox, is that getting five liberties means tactical
safety. The tactical status of blocks with fewer liberties 1s computed by a capture
search, with each player moving first.

Tactical safety can be overridden by strategic considerations. A block can
be tactically safe, but strategically dead, or vice versa: In Figure 13, the black
block has many liberties and is tactically safe, but it has only one eye* and is
therefore strategically dead. The white five stone block in the corner is tactically
captured, but strategically part of a safe white territory. The safety of a block
is therefore computed in several phases. The initial value depends mainly on
the liberty count and tactical analysis, but it can change after computation of
higher-level structures, as in the example above.

3.2.5 Connections, Dividers and Sector Lines

Blocks are solidly connected sets of stones of the same color. Besides providing
connection for stones, blocks also serve the purpose of creating walls dividing
the Go board and thereby preventing the opponent from connecting. Connec-
tions and dividing walls can also be formed more efficiently, by leaving some
empty space between stones. Recognizing which loose arrangements of stones
are already connected, and which already form a dividing wall, is very impor-
tant.

@ (- K L @ c/
P09 00«
bbb '
Figure 14: Potential connections by a) joint liberty, b) pattern, c) weak oppo-
nent block

16

Potential connections are places where a connection can be made by a single
play. Examples of potential connections, shown in Figure 14, are single shared
liberties of two blocks, potential connection patterns from a library of standard
shapes, and weak adjacent opponent blocks which can be captured to form a
connection.

|
|
d e
d]

Figure 15: Connections by a) one protected liberty, b) - e) two potential con-
nections, f) - i) connection pattern, j) dead opponent block

Safe connections can be formed from potential connections in a number of
ways:

Figure 15a: A single potential connection which the opponent cannot
disrupt, for example on a protected shared liberty.

Figure 15b - e: Two independent potential connections such as a diagonal
link, bamboo joint, or other combination.

Figure 15f - h: A connection pattern from a pattern database.

Figure 151: A dead opponent block which can be removed to form a con-
nection there.

These connection types are implemented in most Go-playing systems. How-
ever, there are a lot of pitfalls caused by unexpected dependencies and by the
interaction with tactics. For example, detecting whether a liberty is protected
depends on tactical reading. Figure 16a shows a connection threatened by a
ko* fight, 16b and 16¢ show connections that can be broken because of a lack of
liberties. Sometimes, capturing opponent stones does not result in a connection
of the surrounding blocks, as in Figure 16d. Connections can be used to define
chains of blocks, as in Section 3.2.6.

Dividers [43], also called links, linkages or barriers [T4], are the dual concept
of connections. A divider is weaker than a connection: its purpose is to stop

17

000
P'Y 100

Figure 16: Connections endangered by tactical threats of a) ko, b) - d) lack of
liberties

e
X X 0 @XXaXXQ
|

Figure 17: Examples of dividers and potential dividers

an opponent’s connection from one side to the other, not to connect one’s own
stones. Dividers of both players may cross each other. Unlike connections,
dividers can also be formed between stones and the edge of the board.

A potential divider can be transformed into one or more real dividers by a
single move. It can be used to recognize the borders of large frameworks of po-
tential territory. Even more distant relations between stones can be recognized
using Wilcox’ concept of sector lines [74].

3.2.6 Chains

A chain 1s a set of blocks joined by pairwise independent connections. A player
can counter all opponent threats to cut off blocks from a chain.

QE@Q

Figure 18: Double threat against two connections

A big problem of defining chains is that connectivity in Go is not transitive.
If A is connected to B, and B is connected to C, it does not follow that A 1is
connected to C, since the opponent might have a double threat which affects

both connections. Figure 18 shows an example. While either {A, B} or {B, ('}
are valid chains, {A, B, C'} is not, because a move at ‘a’ can cut off either A or
C from the rest. When defining chains, programs must decide which subset of
connections is more important.

3.2.7 Surrounded Areas, Potential and Safe Territory

Figure 19: Recognition of territories by dividers

Recognizing board regions surrounded by one player, or territory, is of fun-
damental importance in Go for several reasons. First of all, the player with the
larger total area wins the game in the end. Further, surrounded areas provide
safe liberties called eyes* for adjacent stones. Finally, opponent stones must be
surrounded in order to capture them.

In the literature there are many different names for surrounded areas and
related concepts, often with slightly differing meanings, such as region, areq,
eye, territory, zone, potential, moyo, framework. Territory can be found either
by detecting continuous areas of very high influence or by finding boundaries
consisting of blocks and dividers. Similarly, potential territory can be identi-
fied as regions of moderately high influence or as regions bounded by potential
dividers. At an even earlier stage, a program can identify nearby points and
generate moves to try to surround them.

For small well-enclosed areas, a definite eye status can be computed [36]. As
a heuristic for other areas, a program can compute the minimum and maximum
number of secure and of potential eyes [16]. Eyes greatly affect the safety of the

surrounding groups (see below), and play an important role in semeaz*.

3.2.8 Groups

On top of the basic structures of blocks, chains and surrounded areas, larger-
scale aggregates of related stones can be defined in a number of ways. The name
group is most common; alternative names are army, unit, dragon. Go programs
recognize groups as contiguous regions of a certain minimum influence [13], by
an iterative growing and shrinking process [6], by other distance measures such
as N-th dame [68], or by using potential connections and dividers [43]. Figure
20 shows an example of groups.

Groups are the basic units of attack and defense [13]. The relative strength
of groups determines whether they can survive or will be captured, whether

19

“‘MHH ‘

‘quﬂ HH‘»W i Whm-l
o

R

Figure 20: Groups

they can help nearby friendly groups, or attack opponent groups. Measures
of group strength are connectivity within the group and towards other groups,
the liberties of its blocks, and the eye space and eye potential of the contained
areas. Programs typically use extensive static analysis [16], enhanced by goal-
directed search for surrounded unsettled groups, to check if they can live, or be
killed. Group-related moves are decisive in many games: Adjacent weak groups
of the same color can connect to create a single safer group, or be subjected
to a splitting attack. Playing at a junction point between adjacent groups of
opposite color effectively combines attack and defense.

3.2.9 Global Move Generation

After building a detailed representation of the current state of a Go game by
static analysis and goal-oriented search, global move generation and evaluation
selects good or promising moves, while at the same time suppressing bad moves.
Examples of filters for suppressing bad moves are those that prevent suicidal or
otherwise tactically dubious moves, moves in the opponent’s sphere of influence
that could be cut off, playing on with a dead group, or playing into own or
opponent territory.

Move generators usually implement a single abstract concept. Current pro-
grams contain thousands of lines of code implementing move generators. Many
move generators are bound to a specific object, and propose moves related to
that object. The following table contains a small selection.

20

Type of object Move generators

Block escape, capture, stabilize, gain liberties

Group attack, defend, live, kill, expand, run, cut
Territory, framework | create, extend, reduce, defend, make eye, invade

Other move generators handle interactions between objects, or moves that do
not relate to a specific object. Examples are playing a double attack, occupying
a junction point between two territorial frameworks, or playing joseki* from an
opening book.

3.2.10 Move Evaluation

There are two basic approaches to move evaluation, both with different strengths
and weaknesses. The first way, which i1s used in most other games, is to play
the move and then use static evaluation to compute a full board score. The
advantage of this method is that evaluation after the move is usually more
accurate, since all effects of the move are taken into account. A disadvantage
is speed: computing a full board evaluation is slow. Another problem is greedy
play: many necessary long-term defensive moves don’t show their effect until
much later, and get too low an evaluation.

The second method is direct move evaluation. The value of moves is es-
timated by the move generator that proposes it, based on heuristics. Moves
proposed by several generators can attain a higher total value. The advantages
of this method are speed, and more possibilities to fine-tune the values. The
main disadvantage is that it is impossible to predict all good and bad side-effects
of a move accurately.

After evaluation of candidate moves, many programs perform some extra
steps, such as checks to avoid tactical blunders, or special rules to deal with ko*

fights [28].

4 Game Tree Search

Search can be applied to computer Go on different levels and in many distinct
ways. Three types of game tree search are commonly used: full-board search,
single-goal localized search and multiple-goal search.

Full board search in Go is difficult, for reasons that have already been
touched upon in the introduction and will be further developed in Section 4.3.
Specialized searches that focus on achieving a tactical goal constitute some of
the most important components of current Go programs. A major advantage
of goal-directed search over full-board search is that evaluation consists only of
a simple test of goal achievement, which is much faster than full board terri-
tory evaluation. One use of goal-directed search is to provide locally interesting
moves as an input to a selective global move decision process.

21

4.1 Single-Goal Search

| | | “ | | | I“
HLaL. i 6}880&— HLaL. i ¢%880&—
OO0 OO0 BPOODDID-

0 o0 H s - o00md200D

Dee O DO0000OPO DD
OO® = O o} Yol Jolola] ! P

oo@@iooo 9900008

- 900900 - 990900
R PFGEED gt R PFGEED gt
:bc e :bc e

O+ : O+ I

| |

Figure 21: Tactical capture by ladder

Single-goal search uses standard game tree searching techniques for finding
the tactical status of blocks, chains, groups, territories, or connections. Most
goal-oriented searches are performed twice, once for each player going first,
resulting in a tactical status captured, unsettled or safe. Finer distinctions are
possible to account for uncertainty introduced by inconclusive searches, or for
outcomes that depend on ko fights.

Knowing the tactical status of items improves the board representation and is
a precondition for creating a meaningful scoring function. The simplest example
of tactical searches are ladders, which are deep but almost unbranched capturing
sequences. Ladders can run across the whole board, as shown in Figure 21.
Further topics for which single-goal search has been used are listed in the table
below. A typical current program implements many but not all of these goal-
oriented searches.

One important difference to standard game tree search is that programs
should find all moves that achieve some tactical goal, whereas usually search
can be stopped after one successful move is found. Searching all moves is nec-
essary in order to find multi-purpose moves that achieve more than one goal
simultaneously, and also to allow secondary optimization of territory among all
tactically good moves.

22

Target Reference

Ladder [28]

Single block capture | [28]

Life and death [76, 35]; Section 5.1
Connect or cut [21]

Eye status -

Local score
Safety of territory [45]; Section 5.2
Semeal [21, 47]; Section 5.3

4.2 Multiple-Goal Search

Multiple-goal search tries to achieve an AND- or OR-combination of two or
more basic goals. Such combinations represent natural higher-level goals, such
as capturing at least one in a set of blocks (OR-combination), or keeping all
components of a territory boundary intact (AND-combination). Since it seems
infeasible to search each possible combination of interacting goals, heuristics
must be used to select the most promising combinations. The table below lists
a few common themes. The importance of multiple goals for Go was already
emphasized in the early work of Reitman, Wilcox and their co-workers, and
as a result an elaborate planning system was implemented for their Go pro-
gram [54, 56, 74]. In contrast, the implementation of multi-goal search tasks
is rudimentary in most current programs. However, there is a number of re-
cent research papers on architectures for adversary and multipurpose strategic
planning in Go [24, 25, 37, 75].

Target(s) Multiple goals
Multiple blocks save all blocks
Territory boundary capture block or break through divider

Two or more opponent groups | splitting, leaning attacks
Opponent group and open area | attack group or make territory
Own group live locally or break out

Own and opponent group make eyes or counterattack

4.3 Global-Level Search and Full-Board Move Decision

There is a great variety of approaches to the problem of global move decision
in Go. Many ingenious combinations of search and knowledge-based methods
are used in practice. No single paradigm, comparable to the full board mini-
max search used in most other games, has emerged. Because of the complex
evaluation and high branching factor of Go, full-board search has to be highly
selective and shallow, and needs many special adjustments [15]. The role of full

23

board search is often reduced to a kind of quiescence search for weak groups.
Most programs use a combination of the following methods:

e Extensive static analysis and evaluation to select a small number of promis-
ing moves

o Selective search to decide between candidate moves
e Shortcuts to play some ‘urgent’ moves immediately
e Recognition and following of temporary goals

e Choice of aggressive or defensive play based on a score estimate

Experimentation with global-level control strategies in Go is likely to con-
tinue for at least some time, until a clear preference or standard model can
emerge. Local analysis methods based on combinatorial game theory [3] have the
potential to replace more traditional decision procedures. However, in practice
it appears to be difficult to integrate such techniques with current Go programs

[15].

5 Solving Subproblems of Go

For many subproblems of Go, specialized methods have been developed which
achieve a much greater heuristic accuracy that general methods, or can even
solve a subproblem precisely. Some of these subsystems, most notably those
for Life and Death analysis, have been integrated with Go programs, but many
others remain as standalone versions that are only usable for specialized analysis
tasks. Much work remains to be done in the integration of such expert modules
into full-scale heuristic Go programs.

5.1 Life and Death

P

®
o0
QOO

ST

-
|
|

OO0

SToeT

Figure 22: The diamond and the carpenter’s square

Most Go programs contain some Life and Death knowledge, typically as
a combination of exact and heuristic rules [35]. The performance of normal
programs on Life and Death puzzles is not above their overall level of skill. A
program specialized for solving such problems in a small, completely enclosed

24

region can do much better. Thomas Wolf’s GoTools has reached the level of
strong amateur players [76, 77, 79]. Figure 22 shows two notoriously difficult
problems solved by the program. GoTools contains powerful rules for static Life
and Death recognition, elaborate move ordering heuristics and a refined tree
searching algorithm. The problems involved in generalizing such a program to
more open types of positions are discussed in [78].

5.2 Safety of Stones and Territory

Figure 23: Safe stones, unsafe territory

Proving the safety of stones and territory is similar to Life and Death recog-
nition. One main difference is that safety proofs for large areas cannot use
straightforward search since the state space is too large. Another difference is
in the treatment of coexistence in seki*. While stones are safe if the opponent
cannot capture them, territory is safe only if it can be proven that no opponent
stones can survive inside. Figure 23 shows an example where the black stones
are safe but the area that they surround is not.

Figure 24: Unconditional safety, and safety by locally alternating play

Benson [1] has given a mathematical characterization of unconditionally alive
blocks of stones. Such blocks can never be captured, not even by an arbitrary
number of successive opponent moves. For example, all black blocks on the 5 x5
board on the left side of Figure 24 are unconditionally safe. Benson’s method is

Figure 25: Proving the safety of blocks and territories, from [45].

mathematically elegant but limited in practice, since no defense against threats
is allowed. This limitation has led to the development of (less elegant) rules
for detecting groups of blocks which are safe under the usual alternating play
[45]. The right side of Figure 24 shows an example of blocks which are not
unconditionally safe, but safe under alternating play. Combined with a tree
search, such rules can be used to prove the safety of many moderately large
areas, as in Figure 25.

5.3 Semeal

Figure 26: Semeai example, from [47].

Semeai* are capturing races between blocks of both colors, which do not

have two eyes. In order to survive, blocks in semeai must capture the opponent,
or at least try to coexist in seki*. Figure 26 shows an example. The strength of
blocks in semeai can be measured by two incomparable quantities, liberty count
and eye status. Simple kinds of semeai can be solved by static analysis [47], and
more complicated cases by the search technique of partial order bounding [49].

26

@
QOOOEDOOOOR@
.®980 Q
OO 0900
Figure 27: 89 point endgame problem and solution, from [46].

5.4 Endgame

Very late stage Go endgames can be solved by full board minimax search. How-
ever, the solution effort grows exponentially with the total size of endgame ar-
eas [48]. Endgames that can be decomposed into independent local areas can be
solved many orders of magnitude more efficiently by the local search technique of
decomposition search [46, 48]. This technique implements a divide-and-conquer
approach based on combinatorial game theory [3, 4]. Figure 27 shows an 89
point endgame problem, and the computed solution.

Prof. Berlekamp of UC Berkeley and his co-workers have pushed the math-
ematical analysis of local Go positions much further, to the point where real
endgames from professional games can be analyzed. Automating these tech-
niques and applying them to computer Go is a challenge for the future.

6 Challenges for Computer Go Research

Develop a search-bound Go program In contrast to most other games, in
Go there has not yet been a clear demonstration of correlation between
deeper search and playing strength. Develop such a Go program that can
automatically take advantage of greater processing power.

Comprehensive local analysis Develop a search architecture that can inte-
grate all aspects of local fighting and evaluation.

Threats and forcing moves Develop modules that can systematically detect
threats and use them for double threats, ko threats, or for forcing moves.
Avoid bad forcing moves, which have unexpected side effects.

27

Test suite Develop a comprehensive public domain computer Go test suite.

Computer Go source code library Unify the efforts to provide a highly (re-
Jusable library of common functions.

Sure-win program for high handicaps Build a program that can demon-
strably win all games on n stone handicap. Then reduce n.

Integrate exact modules in heuristic program Solve the problems of in-
terfacing modules that can understand one aspect of the game very well
with a general Go program.

Solve Go on small boards Human players have analyzed Go on many small
rectangular boards, but there are few exact proofs [69, 70, 71] Solve Go
on small board sizes such as 5 x 5 or 7 x 7.

Glossary

block Connected stones of the same color. See Section 3.2.4.
dan Master level. Higher numbers are better. See Figure 4.

eye A surrounded area providing one safe liberty. Two eyes are usually necessary to
make stones safe.

joseki A standard move sequence, often in the corner.
ko A single stone capture that can lead to repetition, as in Figure 3.

komi A number of points given to the second player to compensate for the first
player’s advantage. Usually 5.5 or 6.5 points, but 8 points in tournaments
played by Ing rules.

kyu Student level. Lower numbers are better. See Figure 4.

liberty An empty point adjacent to a stone, or a block of stones.
seki Coexistence of Black and White blocks that don’t have two eyes.
semeai A race to capture. See Figure 26 for an example.

sente The initiative, the right to play next. A sente move must be answered by the
opponent and therefore retains the initiative.

tesuji A skilful tactical move

References

[1] D.B. Benson. Life in the game of Go. Information Sciences, 10:17-29, 1976.
Reprinted in Computer Games, Levy, D.N.L. (Editor), Vol. II, pp. 203-213,
Springer Verlag, New York 1988.

[2] E. Berlekamp. The economist’s view of combinatorial games. In R. Nowakowski,
editor, Games of No Chance: Combinatorial Games at MSRI pages 365-405.
Cambridge University Press, 1996.

[3] E. Berlekamp, J. Conway, and R. Guy. Winning Ways. Academic Press, London,
1982.

28

[4]

[10]

[11]

[12]

E. Berlekamp and D. Wolfe. Mathematical Go: Chilling Gets the Last Point. A
K Peters, Wellesley, 1994.

M. Boon. A pattern matcher for Goliath. Computer Go, 13:12-23, 1990.

B. Bouzy. Modélisation cognitive du joueur de Go. PhD thesis, University Paris
6, 1995.

D. Bump. GNU Go. http://www.gnu.org/software/gnugo/gnugo.html, 1999.

J. Burmeister. Memory performance of master Go players. In J. van den Herik
and H. lida, editors, Games in Al Research, pages 271-286, Maastricht, 2000.
Universiteit Maastricht.

J. Burmeister and J. Wiles. An introduction to the computer Go field and associ-
ated internet resources. Technical Report 339, Department of Computer Science,
University of Queensland, 1995.

J. Burmeister and J. Wiles. Al techniques used in computer Go. In Fourth
Conference of the Australasian Cognitive Science Society, Newcastle, 1997.

J. Burmeister, J. Wiles, and H. Purchase. The integration of cognitive knowledge
into perceptual representations in computer Go. In Game Programming Workshop
in Japan °95, pages 85-94, Kanagawa, Japan, 1995. Computer Shogi Association.

T. Cazenave. Systeme d’Apprentissage Par Auto-Observation. Application au jeu
de Go. PhD thesis, University of Paris, 1997. www-laforia.ibp.fr/~cazenave/-
papers.html.

K. Chen. Group Identification in Computer Go. In D. Levy and D. Beal, editors,
Heuristic programming in artificial intelligence: the first computer Olympiad. Ellis
Horwood, Chichester, 1989.

K. Chen. The move decision process of Go Intellect. Computer Go, 14:9-17, 1990.
K. Chen. Some practical techniques for global search in Go. ICGA Journal, 2000.
To appear.

K. Chen and Z. Chen. Static analysis of life and death in the game of Go.
Information Sciences, 121:113-134, 1999.

A.D. De Groot. Thought and Choice in Chess. The Hague, The Netherlands:
Mouton & Co, 1965.

H.D. Enderton. The Golem Go program. Technical Report CMU-CS-92-101,
Carnegie Mellon University, 1991.

M. Enzenberger. The integration of a priori knowledge into a Go playing neural
network. cgl.ucsf.edu/go/Programs/NeuroGo.html, 1996.

D. W. Erbach. Computers and Go. In Richard Bozulich, editor, The Go Player’s
Almanac. The Ishi Press, 1992. Chapter 11.

D. Fotland. Knowledge representation in The Many Faces of Go. Report posted
on internet newsgroup rec.games.go, 1993. Available by ftp from igs.nuri.net.

K. J. Friedenbach. Abstraction Hierarchies: A Model of Perception and Cognition
in the Game of Go. PhD thesis, University of California, Santa Cruz, 1980.

S.C. Hsu and D.Y. Liu. The design and construction of the computer Go program
Dragon 2. Computer Go, 16:3-14, 1991.

S. Hu. Multipurpose Adversary Planning in the Game of Go. PhD thesis, George
Mason University, 1995.

29

[25]

[30]
[31]
[32]

33]

[34]

S. Hu and P. Lehner. Multipurpose strategic planning in the game of Go. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 19(9):1048-1051,
1997.

A. Junghanns. Pushing the Limits: New Developments in Single-Agent Search.
PhD thesis, University of Alberta, 1999.

K.Y. Kao. Sums of Hot and Tepid Combinatorial Games. PhD thesis, University
of North Carolina at Charlotte, 1997.

A. Kierulf. Smart Game Board: a Workbench for Game-Playing Programs, with
Go and Othello as Case Studies. PhD thesis, ETH Zurich, 1990.

A. Kierulf, K. Chen, and J. Nievergelt. Smart Game Board and Go Explorer:
A study in software and knowledge engineering. Communications of the Associ-
ation for Computing Machinery, 33(2):152-167, 1990.

Y. Kim. New Values in Domineering and Loopy Games in Go. PhD thesis,
University of California at Berkeley, 1995.

T. Klinger and D. Mechner. An architecture for computer Go. Manuscript avail-

able on WWW_ 1996.

T. Kojima. Automatic Acquisition of Go Knowledge from Game Records: Deduc-
tive and Fvolutionary Approaches. PhD thesis, University of Tokyo, 1998.

T. Kojima, K. Ueda, and S. Nagano. An evolutionary algorithm extended by
ecological analogy and its application to the game of Go. In Proceedings of the
Fifteenth International Joint Conference on Artificial Intelligence (IJCAI-97),
pages 684-689, 1997. www.brl.ntt.co.jp/people/kojima/research.

T. Kojima, K. Ueda, and S. Nagano. Flexible acquisition of various types of
knowledge from game records: Application to the game of Go. In Proceedings
of the IJCAI-97 Workshop on Using Games as an Ezperimental Testbed for AT
Research, pages 51-57, 1997. www.brl.ntt.co.jp/people /kojima/research.

J. Kraszek. Heuristics in the life and death algorithm of a Go-playing program.
Computer Go, 9:13-24, 1988.

H. Landman. Eyespace values in Go. In R. Nowakowski, editor, Games of No
Chance, pages 227-257. Cambridge University Press, 1996.

P. Lehner. Planning in adversity: a computational model of strategic planning in
the game of Go. PhD thesis, University of Michigan, 1981.

D. Levy, editor. Computer Games I+I1. Springer Verlag, 1988.

D. Lichtenstein and M. Sipser. Go is polynomial-space hard. Journal ACM,
27(2):393-401, April 1980.

D. Mechner. All systems Go. The Sciences, 38(1), 1998.

D.J. Moews. On Some Combinatorial Games Connected with Go. PhD thesis,
University of California at Berkeley, 1993.

F.L. Morris. Playing disjunctive sums is polynomial space complete. Int. Journal
Game Theory, 10(3-4):195-205, 1981.

M. Miiller. Computer Go as a Sum of Local Games: An Application of Combi-
natorial Game Theory. PhD thesis, ETH Ziirich, 1995. Diss. ETH Nr. 11.006.

30

[44]

[45]

[46]

[47]

[48]

[49]

[56]

[57]

(58]
[59]

[60]

M. Miiller. Generalized thermography: A new approach to evaluation in computer
Go. In H. lida, editor, IJCAI-97 Workshop on Using Games as an Fxperimental
Testbed for Al Research, pages 41-49, Nagoya, 1997. Also published in the book
Games in Al Research.

M. Miiller. Playing it safe: Recognizing secure territories in computer Go by using
static rules and search. In H. Matsubara, editor, Game Programming Workshop
in Japan °97, pages 80-86, Computer Shogi Association, Tokyo, Japan, 1997.

M. Miller. Decomposition search: A combinatorial games approach to game tree

search, with applications to solving Go endgames. In IJCAI-99, pages 578-583,
1999.

M. Miiller. Race to capture: Analyzing semeai in Go. In Game Programming
Workshop in Japan ’99, volume 99(14) of IPSJ Symposium Series, pages 61-68,
1999.

M. Miiller. Not like other games - why tree search in Go is different. In Proceedings
of Fifth Joint Conference on Information Sciences (JCIS 2000), pages 974-977,
2000.

M. Muller. Partial order bounding: A new approach to evaluation in game
tree search. Technical Report TR-00-10, Electrotechnical Laboratory, Tsukuba,
Japan, 2000. Also submitted for journal publication.

M. Miiller, E. Berlekamp, and B. Spight. Generalized thermography: Algorithms,
implementation, and application to Go endgames. Technical Report 96-030, 1CSI
Berkeley, 1996.

M. Miiller and R. Gasser. Experiments in computer Go endgames. In
R. Nowakowski, editor, Games of No Chance, pages 273-284. Cambridge Uni-
versity Press, 1996.

R. Nowakowski, editor. Games of No Chance. Cambridge University Press, 1996.
E. Pettersen. The Computer Go Ladder. cgl.ucsf.edu/go/ladder.html, 1994.

W. Reitman, J. Kerwin, R. Nado, J. Reitman, and B. Wilcox. Goals and plans
in a program for playing Go. In Proceedings of the 29th National Conference of
the ACM, pages 123-127, San Diego, 1974. ACM.

W. Reitman and B. Wilcox. Modeling tactical analysis and problem solving in
Go. In Proceedings of the Tenth Annual Pittsburg Conference on Modelling and
Simulation, pages 2133-2148, Pittsburg, 1979. Instrument Society of America.

W. Reitman and B. Wilcox. The structure and performance of the Interim.2 Go
program. In IJCAI-79, pages 711-719, 1979.

P. Ricaud. GOBFLIN: une approche pragmatique de ’abstraction appliquée a la
modélisation de la stratégie elémentaire du jeu de Go. PhD thesis, University
Paris 6, 1995.

J. Robson. The complexity of Go. In Proc. IFIP (International Federation of
Information Processing), pages 413-417, 1983.

C. Rosin. Coevolutionary Search Among Adversaries. PhD thesis, University of
California, San Diego, 1997.

J.L.. Ryder. Heuristic Analysis of Large Trees as Generated in the Game of Go.
PhD thesis, Stanford University, 1971. Microfilm no. 72-11,654.

31

[61]

[62]

[67]

[68]

[76]

[77]

[78]

[79]

Y. Saito. Cognitive Scientific Study of Go. PhD thesis, University of Tokyo, 1996.
In Japanese.

N. Sasaki. The Neural Network Programs for Games. PhD thesis, Tohoku Uni-
versity, 1998. In Japanese.

N. Schraudolph. Temporal difference learning of position evaluation in the game
of Go. In Neural Information Processing Systems 6. Morgan Kaufmann, 1994.

R. Sedgewick. Algorithms. Addison-Wesley, 1983.

S. Sei and T. Kawashima. Memory-based approach in
Go-program Katsunari. Complex Games Lab Workshop.
http://www.etl.go.jp/etl/divisions/~ 7236 /Events/workshop98/, 1998.

W. Spight. Extended thermography for multiple kos in Go. In J. van den Herik
and H. lida, editors, Computers and Games. Proceedings CG’98, number 1558 in
Lecture Notes in Computer Science, pages 232-251. Springer Verlag, 1998.

D. Stoutamire. Machine learning, game play and Go. Technical Report TR
91-128, Case Western Reserve University, Cleveland, Ohio, 1991.

M. Tajima and N. Sanechika. Estimating the Possible Omission Number for
groups in Go by the number of n-th dame. In H.J.van den Herik and H.lida, ed-
itors, Computers and Games: Proceedings CG’98, number 1558 in Lecture Notes
in Computer Science, pages 265—-281. Springer Verlag, Tsukuba, Japan, 1999.

E. Thorp and W. Walden. A partial analysis of Go. Computer Journal, 7(3):203—
207, 1964. Reprinted in: [38], Vol.II, pp.143-151.

E. Thorp and W. Walden. A computer assisted study of Go on m*n boards.
Information Sciences, 4(1):1-33, 1972. Reprinted in: [38], Vol.II, pp.152-181.

J. Tromp. Small board Go. Message on computer-go mailing list, 1998.
J. Tromp. On game space size. Message on computer-go mailing list, 1999.

B. Wilcox. Reflections on building two Go programs. SIGART Newsletter, 94:29—
43, 1985.

B. Wilcox. Computer Go. In D.N.L. Levy, editor, Computer Games, volume 2,
pages 94-135. Springer-Verlag, 1988.

S. Willmott, J. Richardson, A. Bundy, and J. Levine. An adversial planning
approach to Go. In H.J.van den Herik and H.lida, editors, Computers and Games:
Proceedings CG’98, number 1558 in Lecture Notes in Computer Science, pages
93-112. Springer Verlag, Tsukuba, Japan, 1999.

T. Wolf. Investigating tsumego problems with RisiKo. In D.N.L. Levy and D.F.
Beal, editors, Heuristic Programming in Artificial Intelligence 2. Ellis Horwood,
1991.

T. Wolf. The program GoTools and its computer-generated tsume go database. In
H. Matsubara, editor, Game Programming Workshop in Japan ’94, pages 84-96,
Computer Shogi Association, Tokyo, Japan, 1994.

T. Wolf. About problems in generalizing a tsumego program to open positions. In
H. Matsubara, editor, Game Programming Workshop in Japan ’96, pages 20-26,
Computer Shogi Association, Tokyo, Japan, 1996.

T. Wolf. Forward pruning and other heuristic search techniques in tsume go.
Information Sciences, 122:59-76, 2000.

32

[80]

81]

82]
83]
[84]

[83]

[86]

D. Wolfe. Mathematics of Go: Chilling Corridors. PhD thesis, University of
California at Berkeley, 1991.

D. Wolfe. The gamesman’s toolkit. In R. Nowakowski, editor, Games of No
Chance: Combinatorial Games at MSRI, pages 93-98. Cambridge University
Press, 1996.

S.-J. Yan and S.-C. Hsu. Design and implementation of a computer Go program
JIMMY 4.0. Journal of Technology, 14(3):423-430, 1999.

L. Yedwab. On playing well in a sum of games. Master’s thesis, MIT, 1985.
MIT/L.CS/TR-348.

H. Yoshii. Move evaluation tree system. Complex Games Lab Workshop,
http://www.etl.go.jp/etl/divisions/~ 7236 /Events/workshop98/, 1998.

Atsushi Yoshikawa, Takuya Kojima, and Yasuki Saito. Relations between skill
and the use of terms - an analysis of protocols of the game of Go. In H. Jaap
van den Herik and Hiroyuki lida, editors, Computers and Games, number 1558
in LNCS, pages 282-299. Springer-Verlag, 1999.

A. L. Zobrist. Feature Extraction and Representation for Pattern Recognition and
the Game of Go. PhD thesis, Univ. of Wisconsin, 1970. Microfilm 71-03, 162.

33

